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Résumé

Nous abordons deux problèmes différents et complémentaires : le problème du chemin cou-
vrant (ou CPP) et le problème du chemin de recherche optimal (ou OSP). Le CPP est un
défi important en robotique mobile alors que l’OSP est un classique de la théorie de la re-
cherche. Nous effectuons d’abord une revue de littérature qui souligne leurs différences et
leurs similitudes du point de vue d’une opération de recherche. Le CPP et l’OSP sont com-
parés par rapport aux données connues sur la position d’un objet de recherche. Ensuite,
nous formalisons une généralisation du problème CPP aux détections imparfaites et distantes
nommée CPPIED. Nous présentons un algorithme heuristique efficace qui utilise à la fois la
programmation dynamique et une réduction au problème du voyageur de commerce (TSP).
Nous appliquons l’algorithme dans le contexte des opérations de déminage sous-marin sur des
cartes qui contiennent plus de 21 000 cellules. Nous poursuivons par l’étude d’un nouveau
modèle de programmation par contraintes (CP) pour l’OSP pour lequel nous proposons une
amélioration de la définition de la fonction objectif. Cette nouvelle définition permet un filtrage
plus fort des variables de probabilité prodiguant ainsi une amélioration des performances du
modèle. Nous proposons, pour l’OSP, une nouvelle heuristique nommée « détection totale »
(ou TD). Les résultats expérimentaux démontrent que notre modèle, utilisé avec l’heuristique
TD, est compétitif avec des algorithmes de séparation et d’évaluation (ou branch-and-bound)
spécifiques au problème de l’OSP (l’approche CP étant plus générale). Cette dernière obser-
vation supporte notre assertion que la CP est un bon outil pour résoudre des problèmes de
la théorie de la recherche. Finalement, nous proposons la contrainte de transition de Markov
(Mtc) en tant que nouvel outil de modélisation pour simplifier l’implémentation de modèles
basés sur les chaînes de Markov. Nous démontrons, tant empiriquement que formellement,
que l’arithmétique des intervalles est insuffisante pour l’atteinte de la cohérence de bornes,
c’est-à-dire, pour filtrer les variables de probabilité de cette contrainte. Or, l’arithmétique
des intervalles est l’outil utilisé par les solveurs CP pour filtrer une Mtc lorsque celle-ci est
décomposée en contraintes arithmétiques individuelles. Nous proposons donc un algorithme
basé sur la programmation linéaire qui atteint la cohérence de bornes. Du fait que la program-
mation linéaire est coûteuse en temps de calcul pour un solveur CP lorsqu’utilisée à chaque
noeud de l’arbre de recherche, nous proposons aussi une approche intermédiaire basée sur le
problème du sac à dos fractionnel. L’utilisation des Mtcs est illustrée sur l’OSP.
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Abstract

We tackle two different and complementary problems: the coverage path planning (CPP) and
the optimal search path (OSP). The CPP is a main challenge in mobile robotics. The OSP is
a classic from search theory. We first present a review of both problems that highlights their
differences and their similarities from the point of view of search (coverage) operations. Both
problems are positioned on the continuum of the a priori knowledge on the whereabouts of a
search object. We then formalize an extension of the CPP we call the CPP with imperfect
extended detections (CPPIED). We present a novel and powerful heuristic algorithm that
uses dynamic programming and a traveling salesman (TSP) reduction. We apply the method
to underwater minesweeping operations on maps with more than 21 thousand cells. We then
study a novel constraint programming (CP) model to solve the OSP. We first improve on using
the classical objective function found in the OSP definition. Our novel objective function,
involving a single modification of the operators used to compute the probability of success of
a search plan, leads to a stronger filtering of the probability variables of the model. Then,
we propose a novel heuristic for the OSP: the total detection (TD) heuristic. Experiments
show that our model, along with the proposed heuristic, is competitive with problem-specific
branch-and-bounds supporting the claim that CP is a good technique to solve search theory
problems. We finally propose the Markov transition constraint (Mtc) as a novel modeling
tool in CP to simplify the implementation of models based on Markov chains. We prove, both
empirically and theoretically, that interval arithmetic is insufficient to filter the probability
variables of a single Mtc, i.e., to enforce bounds consistency on these variables. Interval
arithmetic is the only available tool to filter an Mtc when it is decomposed into individual
arithmetic constraints. We thus propose an algorithm based on linear programming which is
proved to enforce bounds consistency. Since linear programming is computationally expensive
to use at each node of the search tree of a CP solver, we propose an in-between solution based
on a fractional knapsack filtering. The Mtc global constraint usage is illustrated on a CP
model of the OSP.
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Introduction

Path and trajectory planning problems have received a considerable attention in the scientific
literature. A path can be defined as a sequence of waypoints [LaValle, 2006]. In specific cases,
these waypoints pertain to a discretized physical environment where they could represent
traversed regions. A trajectory, on the other hand, is a path where each segment is associated
with information on the dynamic of the motion, e.g., the velocity and the acceleration of
the object traveling on the segment [LaValle, 2006]. The formalisms used for both path
and trajectory planning are many. The considered constraints and the optimized objective
(if any) mainly depend on the decision maker’s goal and hypotheses, i.e., on a real world
problem to solve. For instance, we may need to minimize the total traveled distance or the
threat exposure of a vehicle as it travels between two points, to detect a search object with
a high probability along our way, to map an unknown environment or to catch an evasive
target. In many cases the position of the goal, i.e., the endpoint to reach from a given starting
position, is known. In other cases the endpoint depends on a specific objective, the target’s
position is unknown, and/or the environment is not fully deterministic or known leading to
an uncertain location of the goal.

In this research we propose to tackle two seemingly very different families of path plan-
ning problems under uncertainty in the context of search, surveillance and detection tasks:
the coverage path planning problems (CPPs) from the robotics literature [Choset, 2001] and
the optimal search path problems (OSPs) [Trummel and Weisinger, 1986] from search the-
ory [Stone, 2004]. Although CPPs and OSPs use different formalisms and come from two
different domains, they are equally applicable to solve problems related to detection, search
and surveillance. The hardest part, notwithstanding the inherent computational complexity
of these problems, is for the decision maker to choose the right formalism for the right task.

The context of our study is not to be mingled with object or target tracking. In computer
vision, object tracking usually implies to detect one or multiple objects in a scene, to identify
them, and to follow (and/or predict) their motion [Yilmaz et al., 2006]. Tracking also has
roots in multi-sensor data fusion. Multi-sensor data fusion deals with the combination of the
information from various sources (sensors) in following a target’s motion [Smith and Singh,
2006]. When considering a maneuvering target, such as in military applications, tracking

1



can be seen as the modeling of that target’s motion which could involve dealing with the
uncertainty in the evolution of the target’s trajectory (or path) [Li and Jilkov, 2003]. In all
cases, the tracking phase, i.e., following the target after a detection, is an important aspect
of the problem. We focus, in this research, on coverage and detection search problems that
do involve both a target (search object) and a “search” phase which could possibly lead to a
detection. However, in our context, no further tracking is required after that detection.

Coverage path planning (CPP) problems are often solved in order to plan an agent’s path (or
multiple agents’ path) in such a way to guarantee complete coverage of an area [Mannadiar
and Rekleitis, 2010]. In its simplest form, the coverage problem is a planning problem where
the goal is to find a path of minimal length that guarantees to sweep (cover, see, scan) the
whole area of interest. The goal achieved by covering an area differs from application to
application. In cartography, for instance, achieving a complete coverage means obtaining
a map of the area whereas in cleaning it means to send a robot to sweep an entire floor.
Ultimately, one may wish to cover an area in order to find an intruder or a lost object in
which case a full coverage is interpreted as a thorough and efficient survey of the area. The
efficiency of the covering path can be quantified according to various criteria including path
length and/or number of turns minimization which cost energy and time [Choset, 2001]. Most
of the time, the implicit objective(s) can be seen as a minimization of the expenses incurred
to guarantee the coverage of the area. In some cases, the coverage is uncertain and multiple
passes might be required over an area to guarantee a minimal required coverage, e.g., [Gage,
1993, Drabovich, 2008]. This is often the case in search operations.

Search theory problems consist in allocating the available resources optimally in order to locate
a missing search object (or maybe many missing objects) under constraints that are specific to
the actual case studied, e.g., the allowed time, a vehicle’s physical constraints, or the detection
constraints of the sensor used to search the area. In search theory problems, it is not necessary
to cover the whole area, but to maximize the chances of finding the search object(s). The first
search theory report Search and Screening, published in 1946 and extended in 1980 [Koopman,
1980], laid the foundations of the discipline. Search theory, just as coverage path planning, has
many contexts of application on which depend several families of problems. One of them is
the family of optimal search path problems (OSPs) which is, in fact, fairly close to CPPs. The
optimal search path of an OSP maximizes the global probability of finding the search object
(e.g., survivor, crashed plane, lost vessel). In these detection search problems, the search stops
after the first detection, an event for which we define a probability of detection conditional to
the object’s presence. Moreover, the probability distribution on the whereabouts of the object
is usually known a priori. The whereabouts are taken into account during the planning of
the search. This is not the case in most coverage problems. Although some authors assume a
priori knowledge of the location of the target(s) in CPP variants [Nguyen and Hopkin, 2005,
Acar et al., 2001, Zhang et al., 2001], the whereabouts of the object (if there is any object to
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search for) is usually unknown. In OSPs, the path length, or the allowed time, is a resource
constrained by the definition of the problem. This contrasts with CPPs as well since the
(possibly uncertain) coverage of the area must be guaranteed while minimizing expenses (a
required coverage and a goal on resources).

With applications as different as cartography (coverage) and search and rescue (search theory),
it is not a surprise that the two problem families are considered to be two different fields
of research. Furthermore, the CPP and the OSP problems arose in different communities:
robotics (engineering science) and operations research (management science). Even though
the formalisms differ (e.g., conditional detection [Gage, 1993] versus occupancy grids [Elfes,
1989]), we argue that the whole point is to search an area of interest in a manner optimal
to our specific application which strongly depends on our a priori knowledge, i.e., on the
whereabouts. The links between coverage and detection become clear from a search operation
perspective.

Contributions and Structure of the Document

A point of view we adopt in this thesis is to consider both OSPs and CPPs as complementary
formalisms to search an area with different levels of uncertainty on the whereabouts of a
search object and under different decision maker’s goals and constraints. That is, the general
objective of this thesis is to consider CPPs and OSPs from the unified point of view of searches.
With this goal in mind, we first review, in Chapter 1, important concepts from optimization
and modeling we use later on as solving tools. Thereby, we stay as close as possible to coverage
and detection search problems by using problem examples related to these fields to illustrate
the concepts.

We then propose, in Chapter 2, to position both families of problems on the uncertainty
continuum of the a priori knowledge on the location of the goal (a goal we consider here as a
search object) by a review of the related literature in both fields. This leads to the observation
that both problem families are in fact close to each other in terms of applications related
to searches. Recalling that CPPs tend to minimize expenses under guaranteed coverage
constraints and that OSPs tend to aim at the converse goal of maximizing the effectiveness
of the searches under resources constraints, it justifies the study of a particular problem from
each family as both applies to search in different contexts and under different conditions.
Later chapters aim at studying particular coverage and detection search problems from a
combinatorial optimization perspective, namely the CPP problem with imperfect and extended
detections (CPPIED) and the OSP from search theory. Some of the direct contributions made
in the development of this thesis are published in the literature of their relevant field [Morin
et al., 2012, 2013b, Morin and Quimper, 2014].

We formalize, in Chapter 3, an extension of the CPP problem to imperfect and extended
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detections initially introduced in [Drabovich, 2008]. We call this formalized extension, the
CPPIED problem. Our formulation of the CPPIED is close to the one of the OSP in that it
considers imperfect detections. The goal, in a CPPIED, is no longer to guarantee a complete
coverage of the search environment, but to guarantee that a minimal required coverage in
terms of probability of detection in each subarea of the area of interest is attainable by fol-
lowing the proposed path. Even though we describe the problem in the context of underwater
minesweeping operations, the formalism is general enough to be adapted to other surveillance
problems. We propose, to solve this problem, a novel heuristic that outperforms the existing
technique suggested in [Drabovich, 2008] in terms of solution quality. Our algorithm, the
dynamic programming sweeper (DpSweeper) algorithm, finds high quality solutions, in terms
of path length, on grids with more than 21 thousand cells without requiring any fine-tuning
and in very short time. The algorithm is built on two general ideas. First, we efficiently build
a disconnected path to guarantee the searcher (here an underwater autonomous vehicle) to
respect the constraint on the minimal required coverage of the area. Then, we connect the
disconnected components to minimize the expenses (here the length of the path is a priority).
Chapter 3 is based on an original work realized in collaboration with Irène Abi-Zeid, Yvan R.
Petillot, and Claude-Guy Quimper. We presented the paper at the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2013) [Morin et al., 2013b]. The re-
search conducted in [Morin et al., 2013b] was the subject, to date, of two internships ([Fruitet,
2013] and [Royer, 2014])1.

On the search path planning side, we tackle, in Chapter 4, the OSP problem using combina-
torial optimization techniques. We first present a novel constraint programming (CP) model
and implement it in a CP solver. The solver then needs to read a model representing the
problem instance to solve and to provide an optimal search path for that instance. The latter
is not a trivial task for problems as complex as the OSP. We thus improve the formulation of
the model by providing a modification of the objective function based on the searcher’s indi-
visibility. This proved to slightly improve the performance of the solver but more is needed
to efficiently tackle this problem. We thus develop, for the OSP problem and to improve the
overall performance of the CP solver on that problem, the total detection (TD) heuristic which
is based on search games from graph theory. The TD heuristic turned out to be an efficient
technique to guide the CP solver towards high-quality search paths quickly. Chapter 4 is based
on an original work realized in collaboration with Anika Pascale Papillon, François Laviolette,
Irène Abi-Zeid, and Claude-Guy Quimper. We presented the paper at the 18th International
Conference on Principles and Practice of Constraint Programming (CP 2012) [Morin et al.,
2012]. We also collaborated on a research project studying novel bounding techniques for the
OSP problem. To date, this project led to two publications we co-authored with Frédéric
Simard, Claude-Guy Quimper, François Laviolette, and Josée Desharnais. The first publica-

1 We do not claim the authorship on these reports. These are the original work of Armand Fruitet [Fruitet,
2013] and François Royer [Royer, 2014] respectively.
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tion is a workshop paper entitled Relaxation of the optimal search path problem with the cop
and robber game [Simard et al., 2014]. The paper presents a relaxation of the OSP problem
into a pursuit game. This relaxation can be used to provide a bound on the objective value of
an OSP. An extended version of the paper has been published in the Proceedings of the 21st

International Conference on Principles and Practice of Constraint Programming (CP 2015).
This research extends our work on the TD heuristic. The results it presents are not part of
this thesis. We also collaborated, during the development of this thesis, to projects aimed
at defining and discretizing search environments, i.e., the area likely to contain the object of
the search. These projects lead to two publications: Vers une planification multicritère dans
le cadre de missions de recherche et sauvetage terrestres realized in collaboration with Irène
Abi-Zeid and Thanh Tung Nguyen [Abi-Zeid et al., 2011a], and Search and Surveillance in
Emergency Situations – A GIS based Approach to Construct Optimal Visibility Graphs real-
ized in collaboration with Irène Abi-Zeid, Thanh Tung Nguyen, Luc Lamontagne, and Patrick
Maupin [Morin et al., 2013a]. Publications prior to the beginning of the present study, even
if related to search and/or coverage problems, are not discussed but are available from their
respective publishers.

Finally, in Chapter 5, we propose the Markov transition constraint (Mtc) as a novel global
constraint in CP. A global constraint is basically a constraint on an arbitrary number of
variables (see Section 1.2.1 of Chapter 1 for further and more formal details on the matter
of global constraints and CP). Global constraints add to the expressive power of CP while
enabling the use of specific algorithms to solve small subproblems of a larger problem, e.g.,
the computation of a single motion of the search object (i.e., our small problem) in an in-
stance of the (larger) OSP problem. A key component of a global constraint is its filtering
algorithm. In our context, a Mtc applies to a set of probability variables that represent the
whereabouts before and after a motion of the object. These whereabouts are unknown (or
uncertain) during the solving process performed by the solver on an OSP problem instance
since the complete search path has yet to be determined. The whereabouts are represented
by probability variables in an OSP model. For an incomplete search path, the value of some
of these variables are not fixed leading to a loose estimate of the probabilities including that
of finding the object during the search (our objective function). Considering that probability
variables are represented by a lower bound and an upper bound on their plausible value, a
filtering algorithm’s goal is to enforce bounds consistency which means tightening these lower
and upper bounds to the smallest possible intervals and, ultimately, to a singleton probability
without discarding feasible solutions. Such a process, when performed efficiently, improves
the performance of a CP solver. We prove, both empirically and theoretically, that interval
arithmetic is insufficient to filter the probability variables of a single Mtc, i.e., to enforce
bounds consistency on these variables. Interval arithmetic is the only available tool to filter
an Mtc when it is decomposed into individual arithmetic constraints, i.e., when no specific
filtering algorithm is used for the global constraint. We thus propose an algorithm based on
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linear programming which is proved to enforce bounds consistency. Since linear programming
is computationally expensive to use at each node of the search tree of a CP solver, we propose
an in-between solution based on a fractional knapsack filtering. The Mtc global constraint
usage is illustrated on the OSP problem. The novel algorithm for the Mtc improves on the
filtering performance of the CP solver we obtain on a model equivalent to the one presented
in Chapter 4. Markov chains (processes) are a widely used modeling tool, from economics and
business science (see [Hamilton, 1989]) to artificial intelligence (see [Russell and Norvig, 2013]).
It thus remains that one of the important aspects of our contributions related to the Mtc
derives from the generality of the constraint. Chapter 5 is based on our original work [Morin
and Quimper, 2014] realized in collaboration with Claude-Guy Quimper. We presented the
paper at the 11th International Conference on Integration of Artificial Intelligence (AI) and
Operations Research (OR) Techniques in Constraint Programming (CP-AI-OR 2014).
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Chapter 1

Optimization and Modeling:
Background Theory

The goal of this chapter is to give the necessary background in optimization and modeling so
that the tools we develop later on for coverage and detection search problems are built on a
solid basis. We use, whenever possible, examples that are close to coverage and search path
planning such as the traveling salesman problem (TSP), a classical coverage problem we use
as part of the techniques developed in Chapter 3. The overview of the literature on coverage
and search path planning is provided in Chapter 2. Here, we focus on solving and modeling
techniques and we position our research with respect to mathematical programming, com-
binatorial optimization, heuristics and other concepts such as Markov chains and imprecise
probabilities.

1.1 On Optimization and Mathematical Programming

Mathematical programming is a family of techniques for solving optimization problems. Opti-
mization problems arise in many contexts. We mentioned, in the introduction, two well-known
optimization problems: the OSP problem from search theory and the CPP problem from the
robotics community. Both of them are useful in various practical contexts from search and
rescue to cartography.

In a well formulated optimization problem there is a goal to fulfill, i.e., an objective function
to optimize (maximize or minimize).1 The value of that objective depends on the choices
we made (e.g., the searcher’s position along the path in an OSP). These decision points are
called decision variables. When choosing the value of a variable, we instantiate that variable.
The set of values available for a variable is the domain of the variable. The value of some
variables may be totally dependent on other variables. Such variables are implicit variables

1We first restrict our discussion on optimization to the single objective case. An introduction to multi-
objective optimization is found in Section 1.3.
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Figure 1.1: Optimization problems

as they do not require a direct decision to be made. Implicit variables are used for modeling
purposes (e.g., the success probabilities in an OSP depend on the searcher’s path and on the
containment probabilities).

Optimization problems arise in different “flavors”, e.g., unconstrained optimization, linear
optimization, convex optimization, nonlinear optimization [Papadimitriou and Steiglitz, 1998].
The “flavor” of an optimization problem depends on the problem’s practical context, i.e., the
real-life unsimplified important question to answer, and, ultimately, to modeling choices made
by the decision makers, the researchers and the practitioners who tackle it. Figure 1.1 presents
four simple optimization problems with a different flavor.

The first one (Figure 1.1(a)) is an unconstrained problem with a single real-valued variable
x. The domain of x is continuous. It is infinite and uncountable. The decision to be made
on x is to fix its value, i.e., to instantiate it, so that the objective, f(x), is maximal. In this
example, a simple derivative enables us to find the maximum point of the quadratic curve
(represented by the red dot on the plot).

In the second problem (Figure 1.1(b)), we add the constraint that x must be less than a
constant c. A solution is said to be feasible if it respects the constraints on the variables.
Otherwise, it is said to be an infeasible solution. With the additional constraint, the optimal
solution of the previous unconstrained version of the problem is no longer feasible. The
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problem of Figure 1.1(b) is a convex problem (f(x) is concave, −f(x) is convex). It has a
quadratic objective function and a linear inequality. This instance turns out to be simple to
solve since it has a single variable. An evaluation of the graph tells us that x → c is the
solution.

The third problem (Figure 1.1(c)) has a supplementary constraint on x. This constraint says
that x is a natural number (zero excluded). The domain of x is still infinite, but it is countable.
The choices to be made are discrete choices. Again, with only one variable, the solution is quite
simple to find. However, as soon as a problem has more than one discrete domain variable
each solution is a combination of choices. Some combinations lead to a maximal value of
the objective function, many of them will not, and some will lead to an infeasible solution.
Even if each variable has a finite domain, there is an exponential number of combinations
to explore to determine the optimal objective value and thus to find an optimal solution.
To further add complexity some objective functions are non-convex (Figure 1.1(d)). Even in
the case of continuous variables, gradient descent do not lead to global optimality, but to a
local optimum. Larger problems also have parameters. These parameters are constants in
the definition of the problem. A problem instance is made of the definition of the problem
(including variables and constraints) along with instantiated parameters.

We further detail these concepts in the next few sections to give a background on the tools
made available for optimization purposes, especially in the combinatorial case. We effectively
start, in Section 1.2, with a description of combinatorial optimization. The constraint pro-
gramming (CP) approach (Section 1.2.1) is used in Chapters 4 and 5 to solve the OSP problem.
Sections 1.2.2 and 1.2.3 introduce the branch-and-bound (B&B) algorithm and dynamic pro-
gramming, two central techniques in combinatorial optimization and CP. These were also in
the first few techniques to be tried on the OSP [Stewart, 1979, Eagle, 1984] (Chapter 2).
Section 1.2.4 introduces methods to handle the complexity of large optimization problems.
Along with dynamic programming (Section 1.2.3), such techniques are part of the method-
ology we develop in Chapter 3 to solve our coverage problem on large grids representing an
ocean map. Section 1.3 summarizes important concepts for optimizing multiple contradictory
objectives. The concept of lexicographic optimization (ranking of the objectives) arises in
the definition of the coverage problem we tackle in Chapter 3 and in the more classical CPP
problem (Chapter 2). Finally, Section 1.4 introduces Markov chains, an important modeling
tool used in the OSP formalism (Chapters 2, 4, and 5). This section has three subsections.
Section 1.4.1 gives a general definition of Markov chains along with an example. Section 1.4.2
reviews Markov chains with respect to the CP literature. Section 1.4.3 introduces important
concepts in the theory of imprecise probability that arise in the filtering of the probability
variables used in CP models with Markov chains.
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1.2 Combinatorial Optimization

Combinatorial optimization can be understood as the maximization (or minimization) of an
objective subject to constraints under discrete choices. Discrete choices are the essence of
combinatorial optimization. Combinatorial optimization problems, in the general sense of the
term, are NP-hard2 [Papadimitriou and Steiglitz, 1998]. Definitions 1.2.1 to 1.2.7 provide
an intuitive summary of the important concepts discussed so far. We do include in the
combinatorial optimization problem family problems for which implicit variables may have a
continuous domain. A more formal treatment can be found in [Papadimitriou and Steiglitz,
1998].

Definition 1.2.1 (Combinatorial optimization problem). A combinatorial optimization prob-
lem is defined by a set of decision variables representing discrete choices, a set of implicit
variables, a collection of constraints, and an objective function along with parameters that
are constants in the definition of the problem. /

Definition 1.2.2 (Assignment). A variable or a constant is instantiated (assigned) when its
value is fixed. /

Definition 1.2.3 (Combinatorial problem instance). The instance of a combinatorial opti-
mization problem has instantiated parameters. /

Definition 1.2.4 (Candidate solution). A candidate (feasible) solution to a combinatorial
problem instance is a collection of choices instantiating the decision variables that satisfies
the constraints. /

Definition 1.2.5 (Feasible solutions set). The feasible solution set FSET of a combinatorial
optimization problem instance is the set of all candidate solutions.3 /

Definition 1.2.6 (Global optimum). Given a set of feasible solutions FSET , a solution is a
global optimum if its objective value is at least as good as any other solution of the set. /

Definition 1.2.7 (Local optimum). Given a set of feasible solutions FSET , a solution is a
local optimum with respect to its neighborhood NSET ⊆ FSET if its objective value is at
least as good as any other solution in NSET . /

It often turns out, in combinatorial optimization, that a specific sub-structure (or sub-
problem) of a larger or more complex problem can be solved efficiently. Most of the time,
finding an optimal solution to an applied problem, or simply a better solution with respect

2 Informally speaking, the NP-hardness of a problem is widely recognized as a strong indication that the
problem is intractable.

3 A list of symbols is provided in appendix.
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to what is usually done in practice, has an important impact on the performance of an en-
terprise. Sometimes, it is a matter of preserving life or of improving its quality. This is the
case for problems from search theory and coverage as we can see from their applications to
search and rescue and minesweeping. The next section introduces constraint programming
(CP), a general combinatorial optimization solving scheme where solving sub-structures by
using specific algorithms and heuristics takes an important part in efficiently solving larger
and complex combinatorial problems.

1.2.1 Constraint Programming

In constraint programming (CP), real-world problems and/or mathematically described prob-
lems are carefully expressed in a specific language. This language is made of constraints taken
from a global catalog actively developed by the CP community.4 Translated problems are
called models. Just as standard combinatorial optimization problems, models are made of pa-
rameters, variables, and constraints. Solvers read models along with their parameters. Once
the model is read, the solver runs optimization algorithms on (a possibly translated version
of) the model to instantiate its variables and find a solution. The solver runs algorithms that
are specific to each model’s constraint to achieve an improved performance on a global scale.

CP regroups constraint satisfaction problems (CSPs) and constraint optimization problems
(COPs). CSPs are satisfaction problems whereas COPs are combinatorial optimization prob-
lems expressed in the CP language. The objective of a CSP is to find a feasible solution,
i.e., to satisfy the constraints. There is, in such a problem, no objective function to optimize.
We might, however, see the objective as an implicit maximization of the number of satis-
fied constraints. Similarly, we might see a COP as a CSP with supplementary constraints
and variables that define the objective function. That is, at least one variable to represent
the objective function value along with at least one constraint to maximize (or to minimize)
it [van Beek, 2006, van Hoeve and Katriel, 2006]. Both CSPs and COPs are combinatorial
optimization problems in that they require determining a combination of discrete choices as
their solution.

Definition 1.2.8 (Domain of a CP variable). The domain of a variable X , noted dom(X) is
the set of values to which the solver can instantiate that variable. /

Definition 1.2.9 (CSP). A CSP is a triple (X ,D, C) of variables, domains and constraints.
The set X =

{
X1, . . . ,X |X |

}
is a set of variables of which D =

{
dom(X1), . . . ,dom(X |X |)

}
is

the set of the corresponding domains. C is a collection of constraints on X . /

In general, the domain of a decision variable, just as in a standard combinatorial optimization
problem, is countable. The values in the domain can be enumerated, in which case we have

4 Although each CP solver has its own constraint catalog, a constraint catalog of all constraints published
in the literature is maintained online [Beldiceanu and Demassey, 2014].
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an enumerated domain, or they can be bounded, in which case we have an interval domain
(or bounded domain).

Definition 1.2.10 (Upper bound on the domain of a CP variable). The upper bound X of
the domain of a CP variable X is defined as:

X = max
x∈dom(X)

x. (1.1)

/

Definition 1.2.11 (Lower bound on the domain of a CP variable). The lower bound X of
the domain of a CP variable X is defined as:

X = min
x∈dom(X)

x. (1.2)

/

Definition 1.2.12 (Scope). The scope of a constraint C[X1, . . . , Xn], noted SCOPE(C), is
the set of variables that are constrained by C, i.e., SCOPE(C) = {X1, . . . , Xn}. /

Definition 1.2.13 (Arity). The arity of a constraint C is the cardinality of its scope, i.e.,
|SCOPE(C)|. /

In CP models, simple constraints are usually expressed in mathematical language. For in-
stance, the inequality between a variable X and a variable Y is simply expressed as X 6= Y .
The scope of X 6= Y is {X ,Y }, and its arity is two. More complex constraints may either be
expressed mathematically as individual constraints or as global constraints.

Definition 1.2.14 (Global constraint). A global constraint is a relation between a variable
set of non-fixed cardinality [van Hoeve and Katriel, 2006]. /

Example 1.2.1 (Global constraint). Suppose, for instance, that we wish to express the
pairwise inequality of variables X , Y , and Z . By posing X 6= Y ∧ X 6= Z ∧ Y 6= Z , we are
not posing one constraint, but three individual constraints:

X 6= Y , (1.3)

X 6= Z , (1.4)

Y 6= Z . (1.5)

Alternatively, the pairwise inequality of X , Y , and Z can be posed as:

AllDifferent(X ,Y ,Z ), (1.6)

where AllDifferent(X ,Y ,Z ) is a global constraint [Beldiceanu and Demassey, 2014]. /
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One of the modeling advantage of using AllDifferent instead of a conjunction of inequal-
ities is conciseness. The pairwise inequality of n variables is posted in only one constraint
when using AllDifferent. This is a tremendous improvement in the size of the model if we
compare it to the solution of posting

(n
2
)

= n!
(n−2)! inequality constraints, but global constraints

are not only syntactic sugar. First, smaller models usually save memory. Second, by using a
global constraint instead of its mathematical decomposition into individual constraints (also
called elementary constraints), we are instructing the solver to use a specific algorithm to
resolve that constraint. This modeling choice will influence the solver’s performance [Régin,
1994, Smith, 2006].

Example 1.2.2 (A CSP example for the Hamiltonian cycle problem). Suppose that, as a
security guard, we have to visit each room of a building once during each run. We would like
to avoid visiting the same room twice during the same run. Given a graph G = (V (G) , E (G))
of the building where the vertices are the rooms and the edges are the corridors, our goal is
to find a cycle on G that visits each vertex exactly once or to prove that such a cycle does not
exist. This is the Hamiltonian cycle problem (HCP) which is NP-hard [Garey and Johnson,
1979]. The graph G is a parameter of the problem. A CP model for that problem could
have a set of variables representing our position at each time i of the tour. Let TOURi (for
1 ≤ i ≤ |V (G)|) be such a variable. The domain of each tour variables TOURi is the set of
vertices in the graph, i.e., dom(TOURi) = V (G). Since we travel between the vertices along
the edges of the graph, we need the following constraints to model our movements:

(TOURi,TOURi+1) ∈ E (G) , ∀i : 1 ≤ i < |V (G)| . (1.7)

The constraint (TOURi,TOURi+1) ∈ E (G) is an InRelation constraint more commonly
known as the Table constraint [Beldiceanu and Demassey, 2014]. The pairs of values that
TOURi and TOURi+1 can take are explicitly defined by the set E (G). At this point, there
is no guarantee that the last point will enable us to come back to our original position. We
need to force the path to be a loop:

(TOUR|V(G)|,TOUR1) ∈ E (G) . (1.8)

The last constraint of the model is an AllDifferent global constraint:

AllDifferent(TOUR1,TOUR2, . . . ,TOUR|V(G)|). (1.9)

The AllDifferent constraint forces the TOURi variables to take distinct values. Now
suppose that we are concerned by the graph of the building represented on Figure 1.2. The
model is instantiated with G as a parameter. Then, the solver reads the model and provides
the following solution: TOUR1 = a, TOUR2 = b, TOUR3 = c, TOUR4 = d, TOUR5 = e,
and TOUR6 = f . /

Note (CP conventions). As a convention for CP models, we write constrained variables names
in ITALIC UPPER CASE, constrained variables values in italic font and global constraints
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Figure 1.2: A HCP instance

names in small capitals. Arithmetic and “individual” constraints are expressed mathe-
matically. To express a conjunction of constraints, we pose them on separate lines as in
Example 1.2.2. /

As mentioned, solving a combinatorial optimization problem requires instantiating each vari-
able to a value from its domain to obtain an optimal (feasible in the case of a CSP) solution.
The space spawned by the Cartesian product of the domains is called the decision space. CSP
solvers proceed in a depth-first search fashion to explore the decision space. Using a depth-first
search, partial solutions are generated by instantiating one variable at a time.5 Instantiating
a variable X to a value x ∈ dom(X ) is as simple as posting constraint X = x. By doing so,
the solver creates a search tree. The root of the search tree is an empty assignment, i.e., no
variable is instantiated. The leaves are complete assignments (feasible or not). In between
nodes are partial assignments. The best solution found so far is the incumbent solution which
is, by definition, a feasible solution.

The order in which the variables are selected is a part of the solver’s search strategy which is
customizable. This is called the variable ordering heuristic [van Beek, 2006]. When instan-
tiating a variable to a value from its domain, the solver is said to branch on that variable.
The order in which the values are selected is also a part of the solver’s customizable strategy.
This is the value ordering heuristic [van Beek, 2006].

Whenever a variable is instantiated, the constraints are verified. If any constraint is violated,
the solver backtracks, i.e., it goes up one level by removing the constraint X = x posted for
the instantiation. The last assigned value, which is conflictual, is removed from the domain
of the variable. The solver then instantiates the variable to another value from its domain. If
the removal of the conflictual value from the domain of a variable produces an empty set, i.e.,
dom(X )/ {x} = ∅, the solver backtracks one more level and resets the domain. A backtrack
event from the root indicates that there is no feasible solution.

Example 1.2.3 (Branching in a HCP). Suppose that we provide the HCP instance of Ex-
5 Depending on the solver, other branching strategies might be available [van Beek, 2006]. We assume, in

our discussion of CP solvers, a basic depth-first strategy with a simple backtracking system.
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ample 1.2.2 to a basic CP solver. The solver reads the following instantiated model:

(TOURi,TOURi+1) ∈ E (G) , ∀i : 1 ≤ i < 6,

(TOUR6,TOUR1) ∈ E (G) ,

AllDifferent(TOUR1,TOUR2, . . . ,TOUR6),

dom(TOURi) = V (G) , ∀i : 1 ≤ i ≤ 6,

(1.10)

where G is the graph of Figure 1.2. We assume the following static order of the variables
as our variable ordering heuristic: TOUR1, . . . ,TOUR6. For our value ordering heuristic, we
assume that the values are selected in the lexicographic order they appear in the domains of
the variables which is {a, b, c, d, e, f}. The solver proceeds in a depth-first fashion to explore
the search space. A backtrack occurs whenever a constraint is violated after an instantiation.
Figure 1.3 shows the complete depth-first search tree spawned by this strategy. The leftmost
branch is explored first. A straight edge is an explored edge. The path that leads to the
final solution is highlighted using thick straight edges. The instantiated variables appear in
blue. A dotted edge indicates an opened, but yet unexplored, node, i.e., the solver did not
proceed to the instantiation of the variable. Square red nodes are nodes where a backtrack
occurred. A backtrack occurred, for instance, when instantiating variable TOUR2 to a since
TOUR1 already equals a. First, there is no loop on vertex a in the graph meaning that
the assignment violates (TOUR1,TOUR2) ∈ E (G). Second, the assignment violates the
AllDifferent constraint on the tour variables as well. Only one insatisfied constraint is
necessary to trigger a backtrack. /

Search trees are not all created equal. Given a CP model, the usual performance metrics for
solvers are both the solving time and the total number of backtracks. In Example 1.2.3, the
solver backtracked 15 times using depth-first search. To improve this performance, solvers
implement several methods such as forward checking and filtering algorithms [van Beek, 2006].
Forward checking is an algorithm that runs each time a variable X is instantiated. The
algorithm iterates on all constraints C that have X in their scope and for which all variables
except one, say Y , are instantiated. For each almost solved constraint C, the forward checking
algorithm ensures that the instantiation of the only non-instantiated variable Y to each value
y ∈ dom(Y ) is consistent. That is, the assignment Y = y does not violate C. If Y = y violates
C, it is removed from dom(Y ). Forward checking is fast, but it only runs on constraints with
one non-instantiated variable.

Filtering algorithms push the idea of forward checking a step further. A filtering algorithm
for a constraint C prunes the values from the domains of the variables in SCOPE(C) that are
inconsistent with the constraint. Just as search trees are not all created equal, there exists
different levels (degrees) of consistency. A complete filtering algorithm, i.e., one that prunes
all inconsistent values relative to one constraint, is said to enforce domain consistency [van
Hoeve and Katriel, 2006]. That is, the domain of the variables in the scope of the constraint
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Figure 1.3: Search tree of the HCP instance of Example 1.2.3 when using a depth-first search;
the nodes of the tree are numbered according to the order in which they are visited by the
solver.

cannot be pruned any further without removing a solution that is feasible with respect to the
constraint.

Definition 1.2.15 (Domain support). Let C([X1, . . . , Xn]) be a constraint of arity n. The
assignment [X1, . . . , Xn] = [x1, . . . xn] is a domain support if and only if C([x1, . . . xn]) is
satisfied and xi ∈ dom(Xi) for all i ∈ {1, . . . , n}. /

Definition 1.2.16 (Domain consistency). A constraint C([X1, . . . , Xn]) is domain consistent
if and only if, for every variable Xi, there exists a domain support with Xi = xi for all
xi ∈ dom(Xi). /

Definition 1.2.17 (Interval support). Let C([X1, . . . , Xn]) be a constraint of arity n. The
assignment [X1, . . . , Xn] = [x1, . . . xn] is an interval support if and only if C([x1, . . . xn]) is
satisfied and the inequality Xi ≤ xi ≤ Xi holds for all i ∈ {1, . . . , n}. /
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Definition 1.2.18 (Range consistency). A constraint C([X1, . . . , Xn]) is range consistent if
and only if, for every variable Xi, there exists an interval support for all xi ∈ dom(Xi). /

Definition 1.2.19 (Bounds consistency). A constraint C([X1, . . . , Xn]) is bounds consistent
if and only if, for every variable Xi, there exists an interval support where the variable is
assigned to the lower bound of its domain Xi and a bounds support where the variable is
assigned to the upper bound of its domain Xi. /

Example 1.2.4 (A faster/better search with domain filtering in a HCP). Suppose that we
provide the HCP instance of Example 1.2.2 to a CP solver implementing filtering algorithms.
The solver reads the instantiated model of Equation (1.10). We assume the following static
order of the variables as our variable ordering heuristic: TOUR1, . . . ,TOUR6. For our value
ordering heuristic, we assume that the values are selected in the lexicographic order they
appear in the domains of the variables which is {a, b, c, d, e, f}. The solver proceeds in a depth-
first fashion to explore the search space. Whenever a variable Y is instantiated, the solver
runs filtering algorithms that are specific to each constraint C such that Y ∈ SCOPE(C).
Figure 1.4 shows the complete depth-first search tree spawned by this strategy. A straight
edge is an explored edge. The path that leads to the final solution is highlighted using thick
straight edges. The instantiated variables appear in blue. A dotted edge indicates an opened,
but yet unexplored, node, i.e., the solver did not proceed to the instantiation of the variable.
There is, on this instance, no backtrack. Table B.1 of Appendix B details the solving process
and the filtering that occurs at each level of the search tree. /

In Example 1.2.4, the solver did not backtrack. This is an improved performance in terms
of total number of backtracks compared to the 15 backtracks triggered in Example 1.2.3
when using depth-first search only. This kind of performance is very rare when solving large
and complex problem instances. It is a known result that the strongest level of consistency
over a single constraint is domain consistency. Domain consistency is followed by range
consistency and then bounds consistency. Bounds consistency and range consistency are
weaker in that they prune fewer values from the domains, but they are usually faster to enforce
than domain consistency. Sometimes, even enforcing bounds consistency is too expensive and
weaker forms of consistency are preferred. The reason to prefer a weaker form of consistency
over a stronger one is that it is often NP-hard to enforce a stronger consistency level on a
global constraint [van Hoeve and Katriel, 2006]. Choosing the filtering algorithms, and thus
the desired consistency level for each constraint, is finding a trade-off between the time spent
at exploring a search tree of exponential size and the time spent at running filtering algorithms
to prune the domains. We now formally define the concept of consistency levels with respect
to a constraint C. Let A and B be two filtering algorithms for a constraint C([X1, . . . , Xn]).
Let domA(Xi) be the domain of variable Xi after running A on C. Let domB(Xi) be the
domain of variable Xi after running B on C.
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Figure 1.4: Search tree of the HCP instance of Example 1.2.4 when using a depth-first search
with filtering; the nodes of the tree are numbered according to the order in which they are
visited by the solver.

Definition 1.2.20 (Stronger or equal level of consistency). A is said to enforce a level of
consistency that is stronger or equal to the one enforced by B, noted B � A, if and only if
domA(Xi) ⊆ domB(Xi) for all variables Xi ∈ SCOPE(C) for any constraint C and original
domain dom(Xi). /

Definition 1.2.21 (Strictly stronger level of consistency). A is said to enforce a level of
consistency that is strictly stronger than the one enforced by B, noted B ≺ A, if and only if
B � A and there exist a constraint C and an original domain dom(Xi) such that domA(Xi) 6=
domB(Xi) for at least one variable Xi ∈ SCOPE(C). /

Theorem 1.2.1. Let D, R, and B be three algorithms to filter a constraint C([X1, . . . , Xn]).
D, R, and B respectively enforce domain consistency, range consistency, and bounds consis-
tency. Then, it holds that B ≺ R ≺ D.
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Figure 1.5: A TSP instance

Proof. The proof follows directly from the definitions.

Up to this point, we considered discrete domain variables. The domains were either enumer-
ated or described as an integer interval. They were, however, countable sets. There is a grow-
ing literature on continuous domain variables and constraints [Benhamou and Grandvilliers,
2006], i.e., involving real numbers.6 Using bounded domains over real numbers is considered
to be a promising approach for interval (continuous) constraints [Benhamou and Grandvilliers,
2006]. Because the domain of a variable representing a real number cannot be enumerated,
various forms of bound consistency are applied to filter the domain of these variables. Still, the
vast majority of solvers available online deal with countable domains only. For that reason,
the discretization of continuous domain is frequent.

Optimization problems in CP are COPs. As mentioned, the only difference between CSPs
and COPs is the presence, in COPs, of an objective function for which the value is represented
by a variable Z . The way to handle the objective function varies from solver to solver. A
common approach in CP is to solve a sequence of CSPs with constraints on the objective
value variable Z [van Beek, 2006].

Example 1.2.5 (A COP example for the traveling salesman problem). Suppose we refine
the problem of Example 1.2.2. We still need to plan a tour to visit each room of a building
represented by a graph G, but we now have further information on the travel time between
each room. The travel time, in time units, is given by a function c : E (G) → N+. If a
Hamiltonian cycle exists, we would like it to be of minimal time. This is a traveling salesman
problem (TSP) which is, in the general case, NP-hard [Garey and Johnson, 1979]. Suppose
we need to solve the problem for the graph on Figure 1.5. The solver needs to minimize the
sum of the costs of the traversed edges which we represent by a variable Z in the following

6 Filtering bounded domain variables representing probabilities is the subject of Chapter 5 where we
develop a global constraint for Markov chains.
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instantiated CP model:

Z = min c[T6, T1] +
5∑
i=1

c[Ti, Tt+1],

subject to the constraints:

(TOURi,TOURi+1) ∈ E (G) , ∀i : 1 ≤ i < 6,

(TOUR6,TOUR1) ∈ E (G) ,

AllDifferent(TOUR1,TOUR2, . . . ,TOUR6),

dom(TOURi) = V (G) , ∀i : 1 ≤ i ≤ 6.

(1.11)

The first solution found by the solver is TOUR1 = a, TOUR2 = b, TOUR3 = c, TOUR4 = d,
TOUR5 = e, TOUR6 = f , and Z = 12. This is a feasible solution, but we do not know if
Z is optimal. To verify its optimality, we need to solve the instance (1.11) again with the
supplementary constraint that Z < 12. The solver finds the following solution: TOUR1 = a,
TOUR2 = b, TOUR3 = c, TOUR4 = e, TOUR5 = d, TOUR6 = f , and Z = 9. To verify its
optimality, we add constraint Z < 9. The solver finds no feasible solution. This means that
9 is the optimal value and that abcedfa is the optimal tour. /

The approach of Example 1.2.5, although natural, seems naive as it looks like the problem
needs to be solved several times from scratch. This is, however, not the case. Solvers imple-
ment it using bounds on the domain of the variable representing the objective value of the
problem. Tight bounds on the objective value (either obtained by filtering algorithms during
the search or by supplementary heuristics) are required to achieve good performances in the
presence of a COP [van Beek, 2006]. The method we just described for COPs is also known
as a branch-and-bound (B&B) algorithm.

1.2.2 Branch-and-Bound or the Implicit Enumeration of Solutions

The concept of search tree we discussed in the context of CSPs is a general combinatorial
optimization tool that goes beyond CP. In its simplest form, a search tree is an exhaustive
enumeration of all the solutions of a given problem instance. In optimization algorithms using
a search tree, there is no need to perform an exhaustive enumeration of all the solutions to
find the optimal one. What we need is to prove that we cannot do better on a branch than
what we actually did with the current incumbent (or with the current incumbent estimate).
If we can do that for a particular partial solution on a branch of the tree, we know that
any solution constructed from that partial solution will not lead to an improvement of the
objective value. The branch that involves that partial solution is pruned. There is no need
to further explore it.

What we just described is the main idea behind B&B algorithms. B&B is not a single
algorithm, but a family of algorithms that uses bounds on the objective value to prune the
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branches of the search tree. These algorithms perform an implicit enumeration of all the
solutions in the tree. To do so, a B&B algorithm estimates the attainable objective value from
the current partial solution. In CP, this is done by filtering. This estimate of the attainable
objective value is called the bound. Suppose we are solving a maximization problem. If the
bound (which is an upper bound in the context of a maximization problem) is lower than the
lower bound on the objective of the incumbent solution (which is often the objective of the
incumbent itself), then the partial solution is unpromising and the branch is pruned. That
happens when the domain of the objective variable gets wiped-out. A bound, in the context
of a maximization problem, is said to be admissible if it does not underestimate the objective
value attainable from any partial solution. When using an admissible bound, no branch that
leads to an optimal solution is pruned. The tighter a bound is, the more branches it prunes.
In practice, there is a trade-off between getting a bound that is tight enough and saving
computational resources.

We described the B&B procedure as done in CP although it is a general tool for mathematical
programming as well. B&B algorithms are widely used in the operations research community.
Especially in integer programming (IP) methods, shall they be mixed-integer programming
methods (involving both real and integer variables) or non-linear methods (e.g., quadratic,
convex) [Salkin, 1975]. In mathematical programming, they are mixed with cutting plane tech-
niques that involves adding valid inequalities to the model to force integer solutions [Salkin,
1975]. B&B are also related to A∗ algorithms [LaValle, 2006] that are mainly used by the
artificial intelligence community for planning. The B&B and the A∗ algorithms are proved
to belong to the same family of methods [Labat and Pomerol, 2003]. The two algorithms
describe a similar implicit enumeration of all possible solutions.

1.2.3 Dynamic Programming or Exploiting Optimal Substructures

Suppose that the combinatorial optimization problem we tackle can be divided into a sequence
of recursively smaller subproblems. We say that the problem exhibits the optimal substructure
property when the solutions to these smaller instances can be recombined to obtain the
solutions to larger instances. One obvious approach, in this case, is to recursively divide the
problem into its subproblems, to solve the smallest possible instances first and to recombine
their solutions to obtain the solutions of the larger subproblems (see the divide-and-conquer
approach [Cormen et al., 2009]). However, some of the subproblems might appear more than
once in the recursion tree. Thus, some subproblems might need to be solved more than
once by an algorithm. These are overlapping subproblems. It is often computationally more
efficient to store the solution of an overlapping subproblem instead of recomputing it. This is
the strategy used in dynamic programming [Papadimitriou and Steiglitz, 1998] for which we
provide a TSP example. The dynamic programming formulation we provide as an example
is attributed to [Bellman, 1962, Held and Karp, 1962].
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Example 1.2.6 (A dynamic programming algorithm for the TSP). Consider the graph of
Figure 1.5 we used in Example 1.2.5. We assume that all pairs of vertices u, v ∈ V (G) (with
u 6= v) such that (u, v) is not an edge of G, i.e., (u, v) /∈ E (G), are given an infinite cost, i.e.,
c(u, v) = ∞. Furthermore, we assume that c(u, u) = 0. A recurrence relation for the TSP
in terms of optimal substructures could be defined as follows. Let Zx,S,z be the cost of the
shortest path (in terms of total cost of the traversed edges) that starts in vertex x ∈ V (G),
visits all vertices of set S ⊆ V (G), and ends in vertex z ∈ V (G). Suppose that |S| = 1,
then the minimal cost required to visit the only vertex y ∈ S before reaching vertex z is the
cost of edge (x, y) plus the cost of edge (y, z). Thus, for all vertices x, y, z ∈ V (G) such that
S = {y}, we have that

Zx,S,z = c(x, y) + c(y, z). (1.12)

Now suppose that |S| > 1. The minimal cost required to visit all of the vertices of set S
exactly once is the minimum of the costs required to visit all of the vertices of a set S \ {y}
(for y ∈ S) plus the additional cost of visiting z from y:

Zx,S,z = min
y∈S

Zx,S\{y},y + c(y, z). (1.13)

Let n be the number of vertices of graph G. By computing Zx,S\{x},x we obtain the minimal
cost of cycling over all the vertices of G from vertex x. Given x, the recurrence can be
computed recursively, i.e., without storing any of the partial results. There are (n − 1)!
tours to enumerate. This is the divide-and-conquer approach which leads to a complexity
of Θ((n − 1)!). When using dynamic programming, we build a table Z that stores partial
solutions:

1. For all y, z ∈ V (G), initialize

Zx,{y},z = c(x, y) + c(y, z). (1.14)

2. Let Si be a subset of V (G) of cardinality i. For each i ∈ {2, 3, . . . , n− 1}, subset Si,
and z ∈ Si updates

Zx,Si,z = min
y∈Si

Zx,Si\{y},y + c(y, z). (1.15)

The first step is done in O(n2). In the second part, we have a total of O(2n) subsets of V (G).
For each of these subsets, we have a total of O(n) choices for z, and we need to find the
minimum of O(n) values. This leads to an algorithm in O(n22n) to compute the minimal cost
of a tour on the vertices of V (G). The complexity of the dynamic programming algorithm
is still exponential, but it is computationally more efficient than a factorial. The minimal
required cost is stored at position Zx,V(G)\{x},x. We retrieve the optimal tour by backtracking
the table from S = V (G) \ {x} while keeping track of the optimal choices:
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1. Let TOUR1, . . . ,TOURn be the variables that will contain the optimal tour. Let S be
the set of all vertices minus x, i.e., S = V (G) \ {x}.

2. While S is not empty do:

a) Choose y ∈ S such that Zx,S\{y},y is minimal.

b) Assign y to TOUR|S|, i.e., TOUR|S| ← y.

c) Remove y from S, i.e., S ← S \ {y}.

3. Assign x to TOUR1, i.e., TOUR1 ← x.

By applying this procedure on the graph of Figure 1.5 with x = a, we obtain TOUR1 = a,
TOUR2 = f , TOUR3 = d, TOUR4 = e, TOUR5 = c, TOUR6 = b which has a cost of
Za,V(G)\{a},a = 9. /

1.2.4 Further Handling Complexity

We rarely, as humans, perform an exhaustive enumeration of all the solutions to solve a
problem, not even an implicit one. We use heuristics. Heuristic approaches are based on good
judgment and experience [Luger, 2005]. As we discussed in the context of CP, heuristics can
be used as a part of an enumerative search strategy to improve the performance of a solver.
However, for complex problems and/or instances, the cost of optimality may be too high for
complete algorithms to be successful in practice. This explain the large volume of scientific
literature on standalone heuristics, local searches, and greedy approaches [Papadimitriou and
Steiglitz, 1998].

Standalone heuristics guide the search for solutions towards “good” solutions or promising
subspaces of the decision space, but they may miss global optimality [Papadimitriou and Stei-
glitz, 1998]. The nature of heuristics varies. We find, in the literature, methods ranging from
greedy algorithms to nature inspired algorithms [Talbi, 2009]. When, we are able to obtain
guarantees on the quality of a solution provided by a heuristic, we have an approximation
algorithm [Papadimitriou and Steiglitz, 1998]. A heuristic that does locally optimal choices
(see Definition 1.2.7) without looking back is a greedy algorithm. Depending on the problem
instance to solve, greedy algorithms might lead to global optimality.

Example 1.2.7 (Greedy choices for the TSP). Given a partial solution to a TSP problem on
a complete graph G defined as a sequence of edges (path) ending by arc (u, v), a greedy choice
would be to select x such that the cost c(v, x) is minimal. A greedy algorithm implementing
this heuristic would simply be to start from an arbitrary vertex s, to perform a sequence of
greedy choices until the growing path has traversed all the vertices of G, and to come back to
s. This algorithm is known as the nearest neighbor algorithm for the TSP. Suppose that the
cost function c is positive and symmetric and that it satisfies the triangle inequality. Then,
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this simple heuristic, which involves greedy choices in the neighborhood of the last vertex
added to the path, is known to produce solutions with a total length of at most 1

2dlog2 ne+ 1
2

times the optimal length where n is the number of vertices in the graph [Rosenkrantz et al.,
1977].7 /

Most algorithms we discussed up to this point are constructive approaches in that they start
with an empty solution and iteratively complete it [Hoos and Stützle, 2004]. Suppose we
already have a feasible solution to the problem at hand or that it is easy to construct one.
We might try to improve that solution instead of building a new one from scratch. To do
so, we modify some variable assignments to obtain a new solution. This is the concept
behind perturbative approaches [Hoos and Stützle, 2004]. Local searches are often viewed as
perturbative algorithms. A local search algorithm starts at a point in the decision space, i.e.,
from a solution. It then successively moves from neighbor to neighbor until its termination
criterion is met. This process, easily seen in terms of a perturbative algorithm, can be
performed in a constructive fashion [Hoos and Stützle, 2004]. Ant colony optimization [Dorigo
et al., 1996] is an example of constructive local search where each ant builds a solution using a
shared knowledge stored in the pheromone trails accumulated in the search space. Ant colony
optimization algorithms often involve an additional perturbative local search step [Dorigo and
Blum, 2005]. In any case, local searches need a neighborhood operator that, when applied to
a solution of the decision space, returns a collection of solutions. Deterministic or stochastic
neighborhood operators can be used in local searches. The latter case leads to what we call
a stochastic local search algorithm.

A heuristic describing a general strategy in problem solving rather than problem-specific
rules is called a metaheuristic [Talbi, 2009]. Metaheuristics are appealing in that they are
often inspired by nature8. Their design, however, involve extensive experiments and careful
adaptation to the problem at hand.

1.3 Multi-objective Optimization

A multi-objective optimization problem (combinatorial or not) involves not a single, but n
objective functions. The domain of each objective fi (1 ≤ i ≤ n) is the decision space. We
assume, for our discussion, that the image of a solution S from that decision space, i.e., fi(S),
is in R. Then, F (S) = [f1(S), f2(S), . . . , fn(S)] is the objective vector associated with S.9

The point F (S) ∈ Rn, i.e., the image of S in the objective space, is its value in terms of all
objectives. We suppose, without loss of generality, that all objectives are to be minimized.

7 Other approximation algorithms are known to achieve a better approximation ratio than the nearest
neighbor algorithm for this special TSP case. Christofides’ algorithm, for instance, is guaranteed to return a
solution with a total length of at most 3

2 times the optimal length [Papadimitriou and Steiglitz, 1998].
8Ant colony optimization is an example of nature-inspired metaheuristic.
9 An alternative formulation is to consider a set of objectives rather than a vector.
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Even so, objectives might be conflictual or incommensurable. For that reason, the goal of
multi-objective optimization is not to find the best feasible solution, but to find one that is in
accordance with the decision maker’s preferences. Such preferences may be articulated a pri-
ori, a posteriori or interactively. A priori preferences articulation [Miettinen, 2008] takes into
account expressed preferences of the decision maker such as her/his goals and her/his aspira-
tions prior to the solving process. Interactive preferences articulation [Miettinen et al., 2008]
deals with approaches where the decision maker continuously expresses her/his preferences as
the algorithm searches for solutions. A posteriori preferences articulation [Miettinen, 2008]
includes methods where the algorithm produces a set of efficient (acceptable, reasonable) so-
lutions before taking the decision maker’s preferences into account. This set ultimately needs
to be reduced to a single solution that reflects her/his goals and aspirations. A reasonable
notion of efficiency is that of Pareto optimality. Pareto optimal solutions are feasible solutions
that are also non-dominated.

Definition 1.3.1 (Dominance relation). A feasible solution S dominates a feasible solution
S′, written S dominates S′, if and only if(∀i : fi(S) ≤ fi(S′)

) ∧ (∃j : fj(S) < fj(S′)
)
. (1.16)

In other words, S is at least as good as S′ on all objectives and strictly better on at least one
of them. /

Definition 1.3.2 (Pareto optimality). A Pareto optimal solution S is not dominated by any
other feasible solution, i.e., ¬ (S′ dominates S) (∀S′ ∈ FSET ). /

Common techniques for solving multi-objective optimization problems are the approxima-
tion of the Pareto optimal set by metaheuristics, the aggregation of the objective functions
into a single objective, and lexicographic optimization which is also known as goal program-
ming [Talbi, 2009]. Lexicographic optimization involves a ranking of the objectives according
to their preferred order. A common technique of lexicographic optimization is to sequentially
optimize the objectives in that order. Each subsequent optimization on an objective with a
lower priority includes constraints to avoid a substantial decrease in the objective value of
the previously optimized objectives which are of a higher priority. A solution is said to be
lexicographically optimal if it is non-dominated in the lexicographic sense.

Definition 1.3.3 (Lexicographic dominance). Suppose the order of the objectives in F cor-
responds to their rank from the highest to the lowest preference. A feasible solution S lex-
icographically dominates a feasible solution S′ with respect to an ordering of the objectives
f1, f2, . . . , fn if and only if there exists 1 ≤ k ≤ n such that(∀i < k : fi(S) = fi(S′)

) ∧ fk(S) < fk(S′). (1.17)

In other words, S is as good as S′ on the first (k − 1)th objectives while being strictly better
on the kth objective. /
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In Chapter 3, we use the concept of lexicographic dominance from Definition 1.3.3 to compare
the solutions provided by heuristics on a bi-objective coverage problem. Non-dominated
solutions in the lexicographic sense are Pareto optimal [Talbi, 2009].

1.4 Markov Chains

Markov processes (also called Markov chains) are central to many applications. They are
used to model the motion of a target in a physical environment [Stone, 2004]. In computer
science they are used in the Pagerank algorithm used by Google [Page et al., 1999]. They
are also used in economics and business science [Hamilton, 1989]. They form the basis of
decision making frameworks, such as Markov decision processes and hidden Markov decision
processes which are fundamental to many applications in artificial intelligence [Russell and
Norvig, 2013]. They even apply to arts for the generation of melodies [Pachet et al., 2011]
and lyrics [Barbieri et al., 2012]. In this section, we first define Markov chains and Markov
transitions (Section 1.4.1). We then provide an overview of Markov chains as a modeling tool
in combinatorial optimization and more precisely in CP (Section 1.4.2). Finally, we discuss
how Markov chains can be related to the theory of imprecise probability when considering
them from a CP point of view (Section 1.4.3), a tool we use in Chapter 5.

1.4.1 A Definition of Markov Chains with a Motion Model Example

Let N = {1, . . . , N} be a space of N states. States are mutually exclusive and jointly
exhaustive, i.e., the process is in exactly one state of N at any time. Let M be the N × N
transition matrix of the Markov process. That is, for all i, j ∈ N , Mij is the probability of
moving from state i to state j at any step. The total probability of moving from state i ∈ N
(given that the process is in state i) is 1. That is,∑

j∈N
Mij = 1, ∀i ∈ N . (1.18)

Let xt = [xt1, . . . , xtN ] be the row vector of the probability distribution on the states at a
time t ∈ {1, . . . , T} where xti is the probability that the process is in state i ∈ N at step
t ∈ {1, . . . , T}. Given an initial distribution x1 over the states such that ∑i∈N x

1
i = 1 and

0 ≤ x1
i ≤ 1 for all i ∈ N , the Markov property states that

xt+1 = xtM, ∀t ∈ {2, . . . , T} . (1.19)

That is, the state at time t + 1 depends on the previous state only. Some generalizations
of Markov chains allow the current state to depend on d previous states where d > 1 (e.g.,
Markov chains of order d). We restrict ourselves to previous state dependencies only, i.e., to
first-order Markov chains. Given the distribution xt, the distribution after k steps from step
t, xt+k, is computed as:

xt+k = xtMk, ∀t ∈ {1, . . . , T} , k ∈ {0, . . . , T − t} . (1.20)
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Figure 1.6: A mall with three stores and the related transition probabilities of a lost child
(fictional).

Example 1.4.1. Suppose that we wish to model the motion of a lost child between three
stores (store 1, 2, and 3) of a mall with discrete time intervals of one minute. The child’s
behavior is as follows:

• s/he may spend time in the toys store (number 1);

• after one minute, her/his probability of leaving to the candy store (number 2) is 1
8 ;

• from the candy store, s/he either returns to the toys store, stays there, or goes to the
food market (number 3);

• whenever the child is in the food market, s/he directly returns to the candy store.

Figure 1.6 shows the environment where the child is lost. The states, representing the child’s
plausible locations, are numbered from 1 to 3. Transition probabilities are displayed on each
arcs. The resulting child’s motion model is a transition matrix M:

M =


7
8

1
8 0

1
3

1
3

1
3

0 1 0

 . (1.21)

The source states (from 1 to 3) are on rows. The destination states (from 1 to 3) are on
columns. We see, for instance, that the probability of a child’s movement from the food
market (state 3) to the candy store (state 2) is 1.

Suppose that the child starts in store 1. That is, the probability distribution at time 1 is
x1 = [1, 0, 0]. We may, using equation (1.19), infer that the distribution over the child’s
location after a minute is x2 =

[
7
8 ,

1
8 , 0
]
. It is as easy to know, using equation (1.20), the

distribution over the child’s location after a delay of k > 1 minutes. /
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1.4.2 Markov Constraints in the Literature

Markov chains (processes) are a widely used modeling tool. Constraint programming makes
no exception as there exist, in the literature, constraints to tackle models based on Markov
chains. One approach is the decomposition of the Markov chain into individual arithmetic
constraints. As discussed in Chapter 5 this method is, however, not sufficient to guarantee
an optimal filtering.

A second approach is the use of global constraints. Pachet and Roy [2011] introduced the
elementary Markov constraint (Emc). The Emc is general enough to take d-order Markov
chains (with d > 1) into account [Pachet and Roy, 2011]. For the purpose of this review, we
restrict our Emc definition to first-order Markov chains.

Definition 1.4.1 (The elementary Markov constraint). Let S and S′ be two variables that
represent states in N . The domains of the state variables S and S′ are subsets of N :

S, S′ ⊆ N . (1.22)

Let PS′ be a variable representing a probability. The domain of the probability variable PS′
is the set of conditional probabilities of achieving state S′ from any previous state:

dom(PS′) =
{
p
∣∣ ∃i ∈ N , p = MiS′

}
. (1.23)

These probabilities are computed prior to the solving process during the generation of the
model. Given M, a known Markovian transition matrix, the Emc is defined as follows:

Emc(S, S′,PS′)⇔ PS′ = MSS′ . (1.24)

The constraint Emc(S, S′,PS′) states that the probability of moving from state S to state S′

is PS′ . /

Using multiple Emcs, the authors model constrained Markov processes, i.e., Markov processes
with supplementary constraints on the generated sequence. Let S1, . . . , ST be the state vari-
ables of a sequence of a first-order Markov chain. Let PS2 , . . . ,PST

be the variables that
represent the probabilities. The constrained sequence is modeled as chained Emcs:

Emc(St, St+1,PSt+1), ∀t ∈ {1, . . . , T − 1} . (1.25)

The Markov property, enforced by the Emcs, is a cost function to optimize whereas supple-
mentary constraints are used to steer the generation of the sequence. The approach is applied
to the generation of melody and chord sequence.

Following Pachet and Roy [2011], Pachet et al. [2011] show that when the scope of the supple-
mentary constraints does not exceed the order of the chain d, the constrained Markov process
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may be recompiled into a statistically equivalent unconstrained Markov process. The ap-
proach is illustrated on the melody generation problem. In [Barbieri et al., 2012], the authors
apply constrained Markov processes to the generation of lyrics.

We introduce, in Chapter 5, the Markov transition constraint (Mtc). The Mtc differs from
the elementary Markov constraint (Emc) presented in [Pachet and Roy, 2011, Pachet et al.,
2011]. The Mtc keeps, at a time step t ∈ {1, . . . , T} , a distributions xt over the states.
The Emc keeps, at a time step t ∈ {1, . . . , T} , a single state. Moreover, the Mtc deals
with interval-domain probabilities while the Emc deals with finite-domain probabilities each
probability being computed during the generation of the model. The next section gives a
broad overview of the concept of probabilities defined as intervals.

1.4.3 Imprecise Markov Chains

Imprecise (uncertain) Markov chains (e.g., [Blane and den Hertog, 2008, de Cooman et al.,
2009, Škulj, 2009]) are Markov chains with imprecise probabilities [Coolen et al., 2011]. The
probabilities of the transition matrix and of the initial distribution over the state space are
imprecise in the sense that they are given as credal sets (sets of probability measures) which
may be represented as probability intervals instead of classical (singleton) probabilities. A
complete introduction to imprecise Markov chains goes far beyond the scope of this thesis
since we deal, in our models, with “precise” Markov chains where both the transition ma-
trix and the initial distribution are defined using the usual concept of probabilities. The
introduction of imprecise probability concepts is nonetheless desirable due to the filtering of
probability variables in CP models. When filtering the probability distributions resulting of
the application of a Markov chain in CP, the probability variables are not fixed. That is, they
are defined as probability intervals which are imprecise probabilities.

The theory of the imprecise probabilities is more general than the one of “classical” probabil-
ities [Coolen et al., 2011]. Singleton probabilities are a specific case of imprecise probability
theory where the interval is reduced to a single value. Just as optimization problems has
many flavors, the theory of imprecise probability has. Perhaps one of the most general formu-
lation of the theory in terms of interpretation is that of Weichselberger [2000] who builds the
theory from the Kolmogorov axioms. It is not our intent to go into the details of the theory
since it is often sufficient, for our filtering purposes in CP, to consider that the probability
P̂r (E) of an event E is imprecise if it is defined as an interval P̂r (E) = [Pr (E) ,Pr (E)]. This
statement, however, has a lot of subtle implications that can be clarified by a summary of the
axioms of the theory of imprecise probability we summarize in Definitions 1.4.2 to 1.4.4. It
is also worth mentioning that the challenges involved in solving the computational problems
underlying the theory (e.g., filtering an imprecise Markov chain) are still opens [Coolen et al.,
2011]. Interested readers are referred to [de Campos et al., 1994, 1995, Weichselberger, 2000]
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Definition 1.4.2 (The Kolmogorov axioms and the probability space). Let Ω be a sample
space, and F be a σ-field10 of random events F ⊆ Ω, i.e., an event space. A function Pr with
domain F is a Kolmogorov-function (or K-function) if it satisfies:

1. Pr (E) of an event E ∈ F is a non-negative real number;

2. Pr (Ω) = 1;

3. any sequence of mutually exclusive events E1, E2, . . . (with Ei ∈ F for i > 0) satisfies:

Pr (E1 ∪ E2 ∪ . . .) =
∞∑
i

Pr (Ei) . (1.26)

It follows from the three axioms that Pr (∅) = 0, and that Pr (E) is in the interval [0, 1] for
any event E ∈ F . The triplet (Ω,F ,Pr) is called the probability field. /

Definition 1.4.3 (Reasonable (imprecise) probability). Let P̂r (E) be an imprecise probability
defined as an interval [Pr (E) ,Pr (E)]. Let M be the set of Kolmogorov functions on F for
which the probability of any events is within the bounds:

M =
{

Pr :
(
∀E ∈ F : Pr (E) ≤ Pr (E) ≤ Pr (E)

)}
. (1.27)

P̂r with domain F is a reasonable (imprecise) probability (or R-probability) if:

1. for any E ∈ F , P̂r (E) = [Pr (E) ,Pr (E)] is such that:

0 ≤ Pr (E) ≤ Pr (E) ≤ 1; (1.28)

2. M is not empty.

It follows from the definition that Pr (∅) = 0, and Pr (Ω) = 1. The quadruplet (Ω,F ,Pr,Pr)
is called a reasonable probability field. /

Definition 1.4.4 (Feasible (imprecise) probability). A P̂r with domain F is a feasible (im-
precise) probability (or F-probability) if:

1. it is a reasonable probability;

2. for any E ∈ F , the lower bound on P̂r (E) is attainable:

inf
Pr∈M

Pr (E) = Pr (E) ; (1.29)
10 F is a σ-field (or σ-algebra) of a set Ω if the following holds: (i) F ⊆ 2Ω, (ii) F 6= ∅, (iii) Ω ∈ F ,

(iv) E ∈ F implies that the complement of E is in F (i.e., Ω/E ∈ F), (v) for any sequence of E1, E2, . . .
of elements of F , their union is in F (i.e., E1 ∪ E2 ∪ . . . ∈ F). See the following page http://mathworld.
wolfram.com/Sigma-Algebra.html [Weisstein, 2014].
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3. for any E ∈ F , the upper bound on P̂r (E) is attainable:

sup
Pr∈M

Pr (E) = Pr (E) . (1.30)

It follows from the definition that Pr (∅) = 0, and Pr (Ω) = 1. Furthermore, for any E ∈ F
we have that:

Pr (E) = 1− Pr (¬E) , (1.31)

where ¬E is the converse of E. The triplet (Ω,F ,Pr) is called a feasible probability field. /

Definition 1.4.2 states the probability theory axioms whereas Definition 1.4.3 builds the con-
cept of a reasonable imprecise probability. That is, the upper bound of the imprecise prob-
ability of an event is larger or equal to its lower bound, and the probability of any event is
between the bounds. For an imprecise probability to be feasible (Definition 1.4.4), there must
exist at least one event with a probability that reaches the lower bound and at least one event
with a probability that reaches the upper bound. This last definition means that the bounds
of a feasible imprecise probability are as tight as possible. This recalls the concept of bounds
consistency we defined for CP (Definition 1.2.19).

Definition 1.4.5 (Uncertain distribution). We call a probability distribution an uncertain
distribution if at least one of its probability is defined as an interval. /
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Chapter 2

Coverage and Search Problems:
Classical Models and Methodologies

We provide, in this chapter, an overview of the CPP literature and of the OSP literature.
We focus on classic algorithms and methods while providing, whenever it is possible, recent
applications or ideas in both fields. We introduce CPPs and coverage-related problems in
Section 2.1. Then, we present the OSPs in the search theory context in Section 2.2.

2.1 The Coverage Path Planning Problem

CPPs often arise in mobile robotics applications [Choset, 2001]. We may think, for instance, of
minesweeping operations [Williams, 2010, Stack and Smith, 2003], seabed surveys in harbors
and waterways [Fang and Anstee, 2010], robotic mowing [Weiss-Cohen et al., 2008], harvesting
and ploughing [Oksanen and Visala, 2009], marine habitat planning [Galceran and Carreras,
2012], and floor cleaning [de Carvalho et al., 1997] as recent and successful applications of the
CPP in mobile robotics. Nonetheless, attempting to cover a physical environment remains an
important challenge.

Coverage planning requires assumptions on the robot’s capability to sense its environment
(sensing capabilities), to know its position (map knowledge and positioning capabilities) and to
efficiently plan its path (reasoning and optimization capabilities). Even when assuming perfect
positioning and knowledge of the environment in presence of a perfect sensor that allows full
coverage of a sub-region in a single scan, a complex path planning problem needs to be
solved and discretization choices will influence the overall methodology. Furthermore, mobile
robots evolve in different playgrounds (e.g., underwater [Galceran, 2011], in the air [Goerzen
et al., 2010], on the ground [Iagnemma and Dubowsky, 2004]) which gives rise to a variety of
challenges and plausible applications.
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Handling a Continuous Space. Most path planning algorithms use a discretized repre-
sentation of the continuous environment which is either performed off-line (when the map
of the environment is known) or on-line (when the robot discovers the environment by it-
self). There are two major families of discretization methods [Russell and Norvig, 2013]:
roadmaps and cellular decompositions. The general concept of a roadmap is to add points
in the (obstacle-)free space and to link these points using accessibility links. Two points are
linked together if they are neighbors and if the space between them is traversable, i.e., if it
is obstacle-free. The concept of neighboring points, which is problem dependant, can intu-
itively be seen as the nearest neighbors problem in Euclidean space applied to path planning.
The roadmap (or skeletonization) approach to discretization includes Voronoï diagrams [de
Berg et al., 2008, Aurenhammer, 1991], visibility graphs [de Berg et al., 2008], and probabilistic
roadmaps [Russell and Norvig, 2013]. These approaches are mostly used in an off-line context.
More sophisticated methods or adaptation of the usual roadmaps, like the rapidly-exploring
random trees [LaValle, 1998, LaValle and Jr., 2001], can be performed on-line removing the
need of a complete discretization of the continuous environment. Roadmaps, up to a certain
point, are graphs where the vertices represent points in the Euclidean space and where the
edges represent accessibility. Since the concept of region is more intuitive for coverage (we
need to cover regions and not points), cellular decompositions are found more frequently than
roadmaps in the coverage literature.

In a cellular decomposition, the continuous environment is divided in a set of uniform or
non-uniform cells (regions, subregions) [Russell and Norvig, 2013]. Uniform cellular decom-
positions involve grids where cells have the same size. We may think, for instance, of a grid
of square or hexagonal cells. If the environment contains obstacles, we have an occupancy
grid [Elfes, 1989]. Such a decomposition technique is considered to be approximate since
some cells may be partially obstructed and/or some parts of the environment may not be
fully covered. In a non-uniform cellular decomposition the cell size constraint is relaxed.
These include trapezoidal decomposition [de Berg et al., 2008], triangulations methods (such
as Delaunay triangulation [de Berg et al., 2008]), boustrophedon decomposition (all three
exact when considering obstacles), and recursive cellular decomposition [Russell and Norvig,
2013] (approximate). The discretization of a continuous environment using an exact cellular
decomposition is NP-hard in the general case of the minimization of the total cut length
(i.e., the length of frontier between the cells) [Bast and Hert, 2000]. The same is true for the
simpler case of the bisection of a polygon [Koutsoupias et al., 1992]. Huang [2000] presents an
alternative and tractable cellular decomposition method that minimizes the number of turns
of the robot instead of the cut length.

Optimal exact cellular decomposition (with respect to cell size or to cut length) are com-
putationally hard to achieve. For that reason, simpler cells that are easy to cover (with
a lawnmower pattern for instance) are often preferred to decompositions that are carefully

34



performed using some optimality criterion [Choset, 2001]. Moreover, exact decompositions
which are non-uniform are often preferred over uniform decompositions in presence of obsta-
cles as they entirely cover the free space [Choset, 2001]. It remains, however, that the larger
cells produced by exact decompositions, which are often performed using heuristics, imply
assumptions on the robot coverage pattern inside the cell. Such approaches do not result in
a low level optimization of the coverage path.

The shape and the orientation of the robot is another issue in the discretization of continuous
environments for coverage in mobile robotics. An incorrectly positioned robot may interfere
with an obstacle if it is not positioned correctly [Russell and Norvig, 2013]. Handling the
robot’s shape and orientation forces path planners to work in the configuration space rather
than in the original environment. The configuration space is the space of the entire robot’s
possible configurations whose dimensionality depends on the total number of degrees of free-
dom of the robot. The number of degrees of freedom of a robot is the required number of
parameters (or directions) needed to describe its complete positioning including the position
of its effectors [LaValle, 2006, Russell and Norvig, 2013]. For instance, a square mobile robot
that can rotate and translate on a 2 dimensional plane has 3 degrees of freedom whereas it has
2 degrees of freedom if rotations are not allowed. These considerations further add complexity
to the discretization problem and simplifying assumptions are often welcomed whenever the
study focus on the optimization aspects of a coverage problem rather than on the physical
implementation of the method or whenever the application allows for these simplifications.

Finally, even though the concept of a cell is more intuitive than the concept of a point in
coverage, roadmaps and cellular decompositions are not completely independent methods and
neither of the two methods is ill-suited to coverage. A grid of uniform cells may, for instance,
be seen as a roadmap where the points are uniformly distributed over the free space. The
same is true for a Voronoï diagram generated from the random points of a probabilistic map.

Map Knowledge. When the environment is known a priori, the problem may be formu-
lated as an off-line CPP problem. Otherwise, we have an on-line CPP problem where the
robot must discover the environment. On-line CPPs, along with suitable real-time (or at
least on-line) discretization methods, are often called sensor-based approaches whereas off-
line CPPs are map-based. Sensor-based approaches benefit from fast, simple heuristics rather
than on complex optimization algorithms in planning [Choset, 2001]. Map-based CPPs are
combinatorial optimization problems.

Positioning. One important assumption usually found in the literature on CPPs is the
ability of the robot to precisely know its position. The positioning capabilities of the robot
are independent of its map knowledge. A map may be known, but the robot’s position in the
environment may be uncertain. Similarly, the effectors of the robot may lead to uncertain
results [Russell and Norvig, 2013]. This may happens, for instance, in marine robotics where
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the current influences the robot’s trajectory or simply due to imprecise effectors. This is often
the practitioner, the researcher or the decision marker’s choice to take this uncertainty into
account at the path planning level or later during the execution of the coverage plan. These
considerations may lead to more complex coverage and navigation models of which [Carlone
and Lyons, 2014] is a recent and successful example incorporating mixed-integer linear op-
timization techniques and models. Uncertain map knowledge and position lead to complex
simultaneous localization and mapping (SLAM) problems, a capital and actual challenge in
robotics [Aulinas et al., 2008].

Sensing. In CPPs with perfect sensors, a cell is fully covered after a single scan and no
further visits are needed afterward. As such, this complete CPP problem is sometimes called
an area covering problem [Jimenez et al., 2007] or a region filling problem [Cao et al., 1988].
When a discretization method results in cells that are larger than the range of the sensor, a
coarse path is planned to find the global ordering of the traversed regions [Choset, 2001]. A
lawnmower pattern is often assumed inside each large cells. Such an approach is required, for
instance, when using a boustrophedon decomposition. Depending on the discretization scale
and on the range of the sensor, whether limited to its circumference, extended, or infinite,
distant cells may or may not be surveyed. Distant cells scanning is allowed, for instance,
in [Drabovich, 2008]. A small discretization scale allows for a more precise path planning. At
the same time, it leads to a larger combinatorial problem.

In a CPP with imperfect sensors it is no longer possible to guarantee a perfect coverage of the
environment. The approach is then to add a constraint on the minimal required coverage to be
achieved in each cell. The notion of imperfectness of a sensor makes a CPP closer to the search
theory field. In some cases, it even involves a similar conditional probability of detecting the
search object (i.e., the object for which we are performing the coverage operation) given that
it is present in the scanned area [Gage, 1993]. The minimal required coverage constraint along
with the conditional probability of detection (or simply imperfect coverage) lead to the need
of performing multiple overlapping passes over the environment of interest.

The expression “imperfect sensor” implies applications related to detection and search. It is,
however, general. Other interpretations of an imperfect (uncertain) coverage are possible. For
instance, an area may require multiple overlapping passes of a cleaning bot if it is known to
attract dust. In some cases, multiple visits of a cell are needed due to the optimality criterion
or to the constraint of the application. This is the case in the multirobot-controlled frequency
coverage (MRCFC) problem [Cannata and Sgorbissa, 2011]. A cell may require more than
one visit to maintain the distribution of the relative frequency of visits in the environment.

Reasoning and Optimization. There exists a large body of literature on path planning
in robotics in four general areas: navigation, coverage, localization and mapping. Algorithms
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for mobile robotics planning vary in terms of the aforementioned aspects of coverage path
planning for which we identified the following modeling questions:

• Is there any readily available map on which to perform the coverage optimization?

• Is a uniform discretization suitable to the application?

• For uniform discretization, what is the discretization scale required by the application?

• Does the robot has any positioning capabilities?

• Is the robot’s positioning perfect or can it assumed to be perfect for optimization pur-
poses?

• Is a single visit in each cell sufficient (e.g., for perfect sensors in a surveying operation
it is)?

• If multiple visits are necessary, is it due to the sensor’s imperfectness or to the application
goals?

• How to quantify the imperfectness of a sensor or the notion of imperfect coverage?

• Is it necessary to take imperfectness into account?

Further aspects of reasoning and optimization for coverage problems involve the potential
presence of multiple, and possibly heterogeneous agents (including robots), the need for com-
munication, the presence of an evasive target to retrieve by covering or decontaminating the
environment of interest, and dynamically changing environments. A thorough review of CPP
methods and path planning for navigation are found in the work of Choset [2001] and Paull
et al. [2013] respectively.

It remains that mobile robotics applications are one aspect of coverage path planning or cov-
erage problems and that many algorithms for robotic coverage planning are of a combinatorial
nature. There are, as presented in the next section, multiple facets to the coverage problem,
i.e., to the problem of viewing, surveying, traveling through, or decontaminating an entire
space under constraints (may it be a discrete or a continuous space). Many CPP algorithms
are taking their inspiration from or use simpler combinatorial optimization problems such
as: a TSP (e.g., [Fang and Anstee, 2010], the DpSweeper algorithm of Chapter 3), dynamic
programming (e.g., see Chapter 3) or a minimum spanning tree (e.g., [Gabriely and Rimon,
2001]).
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2.1.1 The Multiple Facets of the Coverage Problem

The coverage problem (in terms of path planning or not) has many formulations and a long his-
tory. It is our intent, in this section, to provide an overview of non-robotics related formalisms
and applications of coverage and some variants. The subject of coverage is of interest in many
fields related to and/or using (combinatorial) optimization. It is not rare to see algorithms for
CPP problems inspired from simpler forms of coverage. We start by reviewing simple (and
not necessarily easy) computational geometry and combinatorial coverage problems that are
often the components of algorithms that solve coverage problems with a more complex defini-
tion, notably in robotics. Then, we do an incursion in the field of pursuit-evasion and related
problems. Finally, we review interesting applications of coverage algorithms.

The Bricks to Build Algorithms. Many combinatorial optimization problems have an
elegant formulation in terms of graph theory. We described, in Chapter 1, a coverage problem
from graph theory: the Hamiltonian cycle problem (HCP) which consists in finding a tour
that visits each vertex of a graph exactly once. The straightforward extension of the HCP to
edged-valued graphs with the additional objective of minimizing the cost of the tour, i.e., the
traveling salesman problem (TSP), is another example of a graph theory coverage problem.
Even though the TSP and the HCP seem to be purely theoretical vehicle and people routing
problems, their applications range from gene mapping to program optimization [Cook, 2012].
Industrial applications of the TSP, to name only a few, include circuit boards soldering
and drilling, job scheduling and electronic chips testing [Cook, 2012]. The HCP and the TSP
received a considerable attention from the scientific community.1 Many of their extensions and
even more specific cases of these problems are proved to be NP-hard including the Euclidean
TSP (also called the Geometric TSP) where the distances between vertices are calculated in
the plane. The TSP with neighborhood, a generalization of the Euclidean TSP where the
vertices are connected regions of the plane, is particularly close to coverage in robotics. A
similar TSP generalization, the generalized TSP (which is also called the covering salesman
problem or the set TSP), partitions the set of vertices of the graph into disjoint subsets of
vertices. The goal of a generalized TSP is to find a tour of minimal cost that visits all subsets
at least once. It is also worth mentioning that the HCP on grid-graph is NP-hard [Itai et al.,
1982]. Intuitively, a grid-graph is a grid of uniform square cells with holes. In a square cell
decomposition in mobile robotics, the holes might, for instance, represent obstacles. Many
circuit planning problems have a path planning counterpart. The latter is often as hard as
the former (e.g., the Hamiltonian path problem).

Another well-know coverage problem on valued graphs is the minimum spanning tree (MST)
problem [Graham and Hell, 1985]. We mentioned the MST problem in Section 2.1 on CPP

1 Both the HCP and the TSP are fundamental combinatorial optimization problems. While the HCP is
attributed to W. R. Hamilton, the origin of the TSP is unclear. An historical treatment of the matter is
provided by [Schrijver, 2005].
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for mobile robotics [Gabriely and Rimon, 2001]. Given a valued graph G, the MST problem
consists in finding a connected subgraph T ofG that has no cycle (i.e., T is a subtree ofG), that
shares the same vertex set as G and that has a minimal cost. The MST problem is tractable
making it possible [Graham and Hell, 1985] for a robot to ensure the complete coverage
(with perfect sensor and limited detection range) of a grid of uniform cells in polynomial-
time [Gabriely and Rimon, 2001].

Similar coverage problems arise in computational geometry. The art gallery problem which
consists in positioning stationary watchmen (or cameras) inside a continuous environment
defined by a polygon with visibility-obstructing holes is one of them. There are strong links
between the art gallery problem and the discretization by visibility graph mentioned in Sec-
tion 2.1. Whenever the guards are restricted to be positioned on the vertices of the polygon,
the problem becomes a minimal dominating set problem which is a combinatorial optimiza-
tion problem from graph theory. Given a graph, the minimal dominating set problem consists
in finding a vertex set D ⊆ V (G) of minimal cardinality such that all vertices not in D are
guarded, i.e., for all x ∈ V (G) \ D there exists a vertex x ∈ D such that {d, x} is an edge of
the graph. Whereas the minimal dominating set problem consists in minimizing the cardi-
nality of set D, the decision version, i.e., the dominating set problem, consists in determining
whether or not there exists a dominating set D such that |D| ≤ k where k is a parameter
of the problem. Two interesting counterparts of the dominating set problem are the con-
nected dominating set problem [Mahalingam, 2005, Karami et al., 2012-01], which requires
any vertex in D to share an edge with at least another vertex in D, and the dominating path
problem [Faudree et al., 2014], which precisely requires that D forms a path on the graph.
The art gallery problem with a mobile watchman is called the watchman route problem [Chin
and Ntafos, 1988]. The usual objective is to find the shortest path that enables the watchman
to cover the whole environment. Both the art gallery problem and the optimum watchman
route problem are NP-hard in the general case [de Berg et al., 2008, Chin and Ntafos, 1988].
Variants involve a limited visibility range for the watchman and various constraints on the
space to survey [Ntafos, 1992]. Some specific cases, e.g., the case of simple polygons, are
tractable [Chin and Ntafos, 1988, Ntafos, 1992, Carlsson et al., 1999].

Handling Evading and Possibly Smart Targets. The coverage problem (and the CPP)
formulations considered up to this point, if taken in a target detection or a surveillance
context, were based on the assumption of a stationary target. We now provide an overview
of formalisms that deal with one or many evasive targets. From a search theory point of view
(the point of view taken in Section 2.2), problems that deal with smart objects or targets are
called search games. These include both evasive and cooperative targets. The point of view
we adopt here concerns non-cooperative targets, i.e., pursuit-evasion problems (or games).

Pursuit-evasion problems are easily viewed from a graph theoretic point of view. In a first
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variation, the pursuit-evasion problem is formulated as a game with two players: a cop and a
robber. Players take turns starting with the cop who chooses a vertex on the graph. This is her
starting position.2 The robber plays next choosing his starting vertex. The goal of the game
is for the cop to catch the robber in a finite amount of time. Then, at her/his respective turn,
the player moves along an edge from her/his current vertex to a neighbor. The original game is
played in total information. First introduced by Nowakowski and Winkler [1983] and Quilliot
[1983], the cop and robber game is not only a game but a way to characterize graphs. On some
graphs, there exists a strategy for the cop to win the game by catching the robber in finite
time. On others, the robber always wins if he plays perfectly. We might also want to consider a
fast robber who moves, in a single turn, to any accessible vertex from his position [Marcoux,
2014]. A vertex is accessible to the robber if there exists an unguarded path between his
current vertex and that vertex. We say that a path is guarded if it crosses any vertex in
the cop’s neighborhood. Other variants, relaxing the worst-case assumption on the robber’s
motion, consider an inebriated robber. The robber is now drunk [Kehagias and Prałat, 2012,
Komarov and Winkler, 2013, Simard et al., 2014, 2015] and/or invisible [Kehagias et al.,
2013] and he has a motion model which may be Markovian or totally random. The problem
of determining whether or not a cop has a winning strategy on a given graph and its k-cops
variant are tractable when the game is played in total information [Clarke and MacGillivray,
2012, Hahn and MacGillivray, 2006].

The case of an invisible evader is also taken into account in graph searching problems. The
objective, in graph searching, is to minimize the number of agents (or searchers) needed to
decontaminate (or clear) a given graph [Parsons, 1978]. To decontaminate an edge {u, v}, a
searcher standing on vertex u slides to vertex v. A recontamination of an edge {u, v} occurs
if, at any moment, it can be connected by a searcher-free path to a contaminated edge. The
graph is cleared if all edges are decontaminated. Again, variants are numerous. Parsons [1978]
formulation is called edge-search. Edge-search is NP-hard [Megiddo et al., 1988]. A recent
annotated bibliography of graph searching problems (including the cop and robber games) is
found in the work of Foming and Thilikos [2008].

A framework for coverage in mobile robotics in presence of an evasive target and using similar
“graph-searching” concepts is graph-clear [Kolling and Carpin, 2007, 2010]. In a graph-clear
problem, the edges and the vertices of the graph can be either cleared or contaminated.
Cleared vertices and edges can be recontaminated if, at any time, it can be connected by
a searcher-free path to a contaminated edge or vertex. Given a contaminated graph, the
objective is to find a strategy of minimal cost to clear the graph. A strategy associates a
number of searchers to each edge and vertex at each time step until, at some point, the graph
is cleared. The cost of a strategy is the maximum number of searchers needed at any time step

2 Without loss of generality and to avoid confusion, the cop is historically played by a woman whereas the
robber is played by a man.
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on the graph. Limited range [Kolling and Carpin, 2009b] and probabilistic detection [Kolling
and Carpin, 2009a] are considered in later versions of the framework. Graph-clear is NP-
hard [Kolling and Carpin, 2007].

Coverage and Geographic Information Systems. A common use case of a geographic
information systems (GIS) is to perform a visibility-based terrain analysis [De Floriani and
Magillo, 2003]. In surveillance for instance, it is important to know the area visible from
a set of points on a map. This visible area, taking into account terrain, obstacles, and
possibly weather conditions, is a viewshed. GIS viewshed tools are used in security monitoring
(surveillance) to know the area visible from sensors or cameras locations [Murray et al., 2007].
They are also used to position other features such as buildings or radio masts [Kim et al.,
2004]. Trying to find the optimal position of a set of sensors or features with respect to some
visibility criterion (e.g., maximizing the visibility of a fixed number of sensors, or minimizing
the number of sensors for total coverage of an area [Goodchild and Lee, 1989]) or to multiple
criteria often give birth to large instances of hard combinatorial optimization problems. All
of these are different forms of the coverage problem.

2.2 The Optimal Search Path Problem

Search problems arise in many applications related to detection. Recent examples of applica-
tions of search problems are found in search and rescue [Abi-Zeid et al., 2011b, Breivik et al.,
2012, Berger et al., 2012, 2013, Guitouni and Masri, 2014, Berger and Lo, 2015], military
surveillance [Lim and Bang, 2010], discovery of services and facilities in presence of poten-
tial disruptions [Berman et al., 2011], malicious code detection [Kranakis et al., 2007], covert
messages (violating the security policies of the system) on the Internet [Chandramouli, 2004],
locating a mobile user in a cellular network for optimal paging [Verkama, 1996], and even in
mobile robotics [Chung et al., 2011, Joho et al., 2011, Macwan, 2013, Kulich et al., 2014] we
discussed in terms of coverage problems in the previous section.

The OSP problem is a search path planning problem that emerged from search theory, an
operations research discipline. A short review of the key concepts from search theory is useful
to understand the OSP problem. Stone [2004] provides a complete introduction to the field.
An intuitive introduction to search theory is provided by Frost [1999a,b,c,d]. We provide the
necessary background to fully understand the OSP in the next section.

2.2.1 From Search Theory to Search Path Planning

During the Battle of the Atlantic (1939-1945), the Anti-Submarine Warfare Operations Re-
search Group (ASWORG) was mandated to enhance U-boats detection methodologies. They
defined the notion of search effort allocation. That is, the amount of deployed resources
in each part of an area needed to locate a search object (target). The resources spent in
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the action of searching may be of different types depending on the application (goals and
constraints of the decision maker) and the formulation (objective functions and hypotheses).
Broadly speaking, search effort is of one of three types [Stewart, 1979]:

1. an infinitely divisible search effort is continuous and may be allocated to multiple regions
subject to the problem’s specific constraints (e.g., time, amount of fuel);

2. an arbitrarily divisible search effort is discrete and may be allocated to multiple regions
subject to the problem’s specific allocation constraints (e.g., available sensor’s scans,
available aircrafts);

3. an indivisible search effort amount must be allocated to a single region (e.g., one aircraft,
one unique searcher).

The area of interest, we call the search environment, is a set of continuous sub-regions. By
allocating more or less effort to specific regions with respect to a searcher’s (or multiple
searchers) allocation constraints and resources constraints, we define a search plan. The
search plan may be either a sequence of regions, whenever the specific time of a search is
important to know (e.g., for mobile objects), or a set of regions, whenever the time does
not affect the outcome (e.g., for immobile or very slow objects). A search plan may, for
instance, be constrained to be a path such as in OSPs or it may be made of a set of non-
overlapping rectangular areas assigned to airborne search units for sweeping such as in the
multiple rectangular search areas problem [Discenza, 1979, Abi-Zeid et al., 2011b]. A common
criterion for an optimal search plan is to maximize the cumulative overall probability of success
(cos). This optimality criterion depends on the prior knowledge on the location of the object
we search for, possibly on its motion model if it is moving, and on its detectability since most
sensors used for searching are imperfect.

The object’s exact location in the search environment is a priori unknown. However, its
whereabouts are known. The whereabouts of the object are represented by a probability
distribution over the regions of the environment, i.e., the probability of containment (poc)
distribution. Searched regions often have a large area in search theory. Searching at sea
involves, for example, environments discretized by grids where the uniform cells representing
the regions have an area of several square nautical miles [Abi-Zeid and Frost, 2005]. For
that reason, the searcher is often not able to survey the entire region with a single scan and
it is assumed that the visit of each region involves sweeping that region with respect to an
assumed search pattern. The same is true for smaller regions: a thorough search intuitively
involves a sweep of the region.3 We see, in Figure 2.1, a search plan example over a search
environment discretized by a grid. The search plan we have here is a path of length 6. We

3 We can think of how we visually search (sweep) for a missing object in a room. This search action often
involves a sweep of the area even though the pattern we employ might be a random one.
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Figure 2.1: A search environment discretized by a grid along with a path-like search plan of
length 6; a given search pattern is assumed in each region. Filled regions are swept by the
sensor. The search pattern in the blue filled region is represented by a dashed line.
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Figure 2.2: An illustration of the concept of lateral range curve

might suppose, for instance, that 6 units of effort were available for searching and that each
of these effort units were allocated to different regions under path constraints. We suppose,
in this example, that the search pattern is a zigzag with uniformly spaced tracks.

In practice, the search pattern is important as it influences the probability of finding what
we are searching for. We need, to understand the implications of the search pattern on this
probability, to define the concept of detectability index (also called sweep width). Even with a
broad range sensor, the distance from the object to the sensor influences the lateral detection
probability. Each sensor is characterized by a lateral range curve. Suppose that a given sensor
travels on a straight path at a constant speed as in Figure 2.2(a). Then, we may compute,
using several passes on this track, its probability of detecting an object located at a distance
x from that track. If we do the same for all x, we obtain a curve: the right hand-side lateral
range curve of the sensor. The lateral range curve plrc(x) is the instantaneous probability
of detecting a given object under specific conditions as a function of the lateral distance
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x from the sensor to the object (−x for an object located to its left) (see Figure 2.2(b)).
From our knowledge on the lateral range curve, we compute the object’s detectability index.
The detectability index is defined as the integral of plrc(x) over x on the interval [−∞,∞],∫∞
−∞p

lrc(x) dx.

Just as the sweep width of the sensor influences detection so does the assumed search pattern
of the sensor over the continuous region. This assumption is a component of the searcher’s
detection model. It is also a key aspect used in search theory to determine what our pod
function will look like. From that search pattern follows the concept of detection law. A widely
used detection law is the exponential one [Stone, 1983]. An exponential detection law bounds
below the detection probability attainable by any other search pattern in a given region. It is a
worst-case assumption corresponding to a random search pattern. An example of exponential
detection law taking into account the amount of effort e given a sweep width ω(r) with r

being a region of the environment is the following:

pod (e, r) = 1− exp(−ω(r) · e). (2.1)

As ω(r) grows, the detection probability increases. The same is true for the amount of effort e.
It can also be seen that the probability of detection function we defined as an example follows
the law of the diminishing returns.

In practice, the detection law is used to compute the pod function, also called detection model,
we summarize as a function of:

• the effort spent over a region in the action of searching over a defined period;

• the searched region (to take into account factors such as terrain topology and vegeta-
tion); and possibly,

• the time of the search (to take into account factors such as weather and exhaustion).

The last two factors are taken into account when computing the object’s detectability index
ω which is an important parameter in the detection models of a searcher for practical search
operations. In practice, sweep width tables are computed under very specific terrain and
weather conditions to allow for an efficient search (e.g., [Koester et al., 2004]). In empirical
experiments from the literature focussing on problem solving rather than on modeling, the
sweep width is often fixed over the entire environment. Furthermore, it is not uncommon
for researchers to reduce the detection model to a single probability value (e.g., [Washburn,
1983, Lau et al., 2008, Sato and Royset, 2010]) whenever the emphasis of the study is on the
performance of a problem solving technique rather than on a novel detection model. This
practice leads to a simplified detection model in empirical experiments.
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Search theory does not limit itself to immobile objects. Moving objects are characterized by
a motion model. These models are classified in two families: models for passive objects and
models for active objects. Active objects may try to meet or to evade the searchers. In this
case, the search problem is often called a search game or a two-sided search. Passive objects
just moves around under the assumptions of the model. In this case, the search problem is
one-sided in that the object does not respond directly to the searcher’s actions. Detection
search problems with a stationary object, which is considered passive, belong to the family of
one-sided search problems.

Search games motion models are often worst-case (e.g., pursuit-evasion problems) or best-case
(e.g., rendez-vous search) scenarios where the object is assumed to have full knowledge of the
searcher’s actions. The literature on search games is vast with in-between cases involving
partial knowledge and inter-visibility. We will touch on key search games concepts only where
it is helpful to the understanding of our search problems. The OSP problem is historically
a one-sided search problem. The motion model is a known parameter of the problem. Our
primary focus is OSP problem variants where the cos is the optimality criterion.4 We limit
this review to the class of OSP problems formulated in discrete time and space with a single
object. We do not consider decentralized approaches, trajectory planning, false detections
or false targets and we restrain ourselves to the search theory literature as opposed to path
planning in the robotics literature we reviewed in Section 2.1.

2.2.2 Searching for a Stationary Object

In this section, we introduce the formalism of the OSP problem with a stationary object.
We assume that the continuous search environment is discretized by a graph. Each vertex
of the graph represents a continuous (sub-)region of the original environment. The edges of
the graph represent the searcher’s accessibility constraints. Graphs are usually understood
to be undirected and irreflexive, i.e., without loops. For the purpose of modeling the search
environment, we assume reflexive graphs. Reflexive graphs are natural in the context of
detection search problems. The loops on the vertices of a reflexive graph enable the searcher
and the object to stay at their current location instead of moving on. We assume undirected
reflexive graphs although the approach is general.

Let GA = (V (GA) , E (GA)) be the accessibility graph that represents the search environment
where V (GA) is a set of discrete regions. A vertex r is accessible from vertex s if and only
if the edge (s, r) belongs to the accessibility graph GA. Let yt ∈ V (GA) be the searcher’s
location at time t ∈ {1, . . . , T}. When yt = r, we say that vertex r is searched at time t
with an associated probability of detection. A search plan P (i.e., the sequence of searched

4Alternate terminology uses the following terms: “probability of detection” instead of “probability of
success”, “glimpse probability” instead pod and/or “whereabouts” instead of “probability of containment”.
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vertices) is determined by the searcher’s path on GA starting at location y0 ∈ V (GA):

P = [y0, y1, . . . , yT ] , (2.2)

where T is the maximal search plan length (in number of time steps). The usual search theory
definition of optimality is to obtain the search plan of maximal cos that respects the physical
and operational constraints of the searcher. An OSP makes no exception on the objective.

The unknown object’s location is characterized by a probability of containment (poc) distri-
bution over V (GA) that evolves in time due to the searcher’s knowledge updates following
unsuccessful searches. A local probability of success (pos) is associated with the searcher
being located in vertex r at time t. It is the probability of detecting the object in vertex r at
time t defined as:

post(r) = poct(r)× pod (r), (2.3)

where pod (r) is conditional to the presence of the object in r and is assumed independent of
past searches. This detection model is known a priori. For all t ∈ {1, . . . , T}, r ∈ V (GA), the
detection model is

pod (r) ∈ (0, 1] , if yt = r; (2.4)

pod (r) = 0, otherwise. (2.5)

The OSP formalism assumes that a positive detection of the object stops the search. The
probabilities of containment change in time according to the negative information collected
on the object’s presence by the searcher. Thus, for all time t ∈ {2, . . . , T}, we have that

poct(r) = poct−1(r)− post−1(r) = poct−1(r) (1− pod (r)) . (2.6)

As mentioned, the optimality criterion for a search plan P is the maximization of the global
and cumulative success probability of the operation (cos) over all vertices and time steps
defined as:

cos(P ) =
∑

t∈{1,...,T}

∑
r∈V(GA)

post(r). (2.7)

The objective value at time step t, i.e., cost, is

cost =
∑
t′≤t

∑
r∈V(GA)

post′(r). (2.8)

An optimal search plan P ∗ maximizes cosT (P ∗) we often note as cos(P ∗).

Example 2.2.1 (Searching for a stationary object). Figure 2.3(a) shows the example of an
environment with doors and stairs accessibility. The accessibility graph as illustrated on
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(a) A building map
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(b) An accessibility graph

Figure 2.3: A structured search environment with a stationary object

Table 2.1: The probability of containment of each vertex at each time step and the cumulative
overall probability of success for each time step for the search plan P ∗ of the example of
Figure 2.3.

t Probability of containment in vertex r at time t (poct(r)) cost(P ∗)

0 1 2 3 4 5 6 7 8 9 10 11 12

1 - - - - .3 .5 - .1 .1 - - - - 0
2 - - - - .3 .05 - .1 .1 - - - - .45
3 - - - - .3 .05 - .1 .1 - - - - .45
4 - - - - .3 .05 - .01 .1 - - - - .54
5 - - - - .03 .05 - .01 .1 - - - - .81

Figure 2.3(b) follows directly. Regions are numbered from 0 to 12. Suppose that we have the
following initial containment probabilities:

poc1 = [poc1(0), poc1(1), . . . , poc1(12)]

= [0, 0, 0, 0, .3, .5, 0, .1, .1, 0, 0, 0, 0] . (2.9)

The searcher, starting in vertex y0 = 3, needs to maximize her/his probability of finding the
object in T = 5 time steps. We assume that pod (yt) = 0.9 for all t ∈ {1, . . . , T} . The object
is stationary. An optimal search plan P ∗ for that task would be:

P ∗ = [y0, y1, . . . , y5] = [3, 6, 5, 6, 7, 4] . (2.10)

Using Table 2.1, we explain why search plan P ∗ is optimal. Starting from vertex 3, the
searcher first moves to vertex 6. This move enables the searcher to reach vertices 4, 5, 7
and/or 8 where the probability of containment is non-null. With 5 time steps available for
searching, it is impossible to visit all vertices with non-null probability. Vertices 4 and 5 are
the ones with the highest containment probability. The searcher goes in 5. Her/his gain in
vertex 5 is a local probability of success of .45. Whenever the searcher visits a vertex, the
probability of containment is updated. After the update, vertex 5 is no longer interesting
since its probability of containment becomes .05. The shortest path to vertex 4 is through
vertices 6 and 7. There is no gain in visiting vertex 6. There is a gain of 0.09 in vertex 7.
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Following the visit of vertex 7, its probability of containment is updated to .01. Finally, the
searcher reaches vertex 4 where her/his local probability of success is .27. The objective (cos)
value of the optimal search plan P ∗ is equal to 0.81. /

Even though the NP-hardness of the OSP problem with a stationary object is a well-known
result [Trummel and Weisinger, 1986], we should point out that the main difficulty is with
the searcher’s accessibility constraints under a limited search time constraint. If the cost of
moving between vertices is null, then the problem is solved by a greedy allocation of the
search effort over the environment. The same will be true whenever the accessibility graph
is a complete graph. This interesting observation is not completely novel. Although stated
differently, such a greedy effort allocation, called an incremental search plan [Stone, 1983],
has been proved optimal.

2.2.3 Searching for a Moving Object

Markovian motion models are widely used in the OSP literature. We restrict our overview
to this type of object’s motion models. When the object is moving according to a known
Markovian motion model, the only modification to the OSP formalism with a stationary
object is in the probabilities of containment update equation (2.6). Let Msr be the probability
of the object moving from vertex s to vertex r within one time step. With a moving object,
the probabilities of containment update equation depends on both the motion model of the
object and the negative information collected while searching. We define this update equation
as:

poct(r) =
∑

s∈V(GA)
Msr

[
poct−1(s)− post−1(s)

]
. (2.11)

Example 2.2.2 (Searching for a moving object). Figure 2.4(a) shows the example of an
environment with doors and stairs accessibility. Suppose that T = 5, y0 = 3, poc1(4) = 1.0,
and pod (yt) = 0.9 for all t ∈ {1, . . . , T}. Assuming that the object follows a Markovian motion
model uniform between accessible vertices 2.4(b), an optimal search plan P ∗ would be

P ∗ = [y0, y1, . . . , y5] = [3, 6, 7, 7, 7, 7] . (2.12)

Using Table 2.2, we explain why search plan P ∗ is optimal. Starting from vertex 3, the
searcher first moves to vertex 6 since the probability of containment is high in vertex 4.
Then, the only accessible vertex where the probability of containment is nonzero is vertex 7.
Therefore, the searcher moves from vertex 6 to vertex 7. Finally, the search plan stabilizes
in vertex 7 since it has the highest probability of containment at each subsequent time step.
The objective value is computed as follows:

• compute the local probability of success in vertex y1 at time step 1 (post(y1)) using
Equation (2.3);
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(b) An accessibility graph with a uniform Markovian
motion model (displayed for vertex 0 only)

Figure 2.4: A structured search environment with a moving object

Table 2.2: The probability of containment of each vertex at each time step and the cumulative
overall probability of success for each time step for the search plan P ∗ of the example of
Figure 2.4. The probabilities are rounded to the third decimal.

t Probability of containment in vertex r at time t (poct(r)) cost(P ∗)

0 1 2 3 4 5 6 7 8 9 10 11 12

1 - - - - 1 - - - - - - - - 0
2 - - - - .500 - - .050 - - - - - .450
3 - - - - .263 - .012 .026 .012 - - - - .686
4 .001 .001 .001 .001 .138 .001 .008 .015 .013 .001 .001 .001 .001 .817
5 .001 .001 .001 .001 .073 .001 .008 .008 .01 .002 .002 .002 .002 .889

• for all vertices r, compute the probability of containment at time step 2 (poc2(r)) using
Equation (2.11);

• apply the same process for time steps 2 to T ;

• sum all the local success probabilities obtained in time steps 1 to T to compute the
objective (cos) value of the search plan P .

The objective (cos) value of the optimal search plan P ∗ is equal to 0.889. /

As a generalization of the OSP problem with a stationary object, the OSP problem with a
moving object and a single searcher is also NP-hard [Eagle and Yee, 1990]. Prior to 1998,
most work on the single searcher OSP problem in discrete time and space involved B&B
algorithms [Washburn, 1998]. Stewart [1979] is often considered to be the first direct work
on the OSP problem in discrete time and space from a search theory perspective.5 In a
first formulation of the problem, Stewart [1979] considered a moving object and an infinitely
divisible search effort. The problem was solved to optimality using a network flow under the

5A review of previous formulations where the searcher and the object are restricted to one dimension can
be found in [Benkoski et al., 1991].
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assumption of an exponential detection law. This first formulation is not to be confused with
a single searcher OSP problem since the effort can be divided over many search paths.

In the indivisible effort case (i.e., the single searcher case), a depth-first B&B algorithm was
proposed [Stewart, 1979]. The bounding procedure involved a relaxed problem in which the
regions’ adjacency constraints are replaced by accessibility constraints. The relaxed problem
was solved using Brown’s algorithm [Brown, 1980]. As a result, the bound does not guarantee
the optimality of the B&B algorithm: Brown’s algorithm guarantees optimality only in the
infinitely divisible effort case. Eagle [1984] considered a Markovian object’s motion model
and proposed a dynamic programming approach. Eagle and Yee [1990] presented an optimal
bound for the B&B algorithm. With an object following a Markovian motion model and an
exponential probability of detection (pod ) function, their approach produced an optimal bound
by relaxing the search effort indivisibility constraint over a set of vertices while maintaining
the path constraints. The bound is computed in polynomial time. Martins [1993] proposed
the MEAN bound which is based on the maximization of the expected number of successes
in the remaining time. The bound is computed using the longest path problem on a directed
acyclic graph where the cost of each arc is a function of the remaining poc value at a specific
time. Lau et al. [2008] proposed the DMEAN bound which was derived from the MEAN
bound [Martins, 1993]. The DMEAN bound value is obtained by solving a longest path
problem similar to the one of Martins [1993] where the cost of each arc is discounted by the
last obtained pos value. Simard et al. [2014, 2015] proposed a bound based on a search game
relaxation of the OSP into a Markov decision process [Russell and Norvig, 2013] which is
inspired from the total detection (TD) heuristic we present in Chapter 4.

In the arbitrarily divisible search effort case, Stewart [1979] proposed a sequential search effort
allocation for small effort amounts and a relaxation of the effort indivisibility constraints for a
sufficiently large effort. Both the arbitrarily divisible and the infinitely divisible search effort
formulations allowed the effort to be divided among several paths. An arbitrarily divisible
effort of 3 may, for instance, allows 3 different searcher’s path. This is a form of multiple
searchers OSP problem. While the arbitrarily divisible effort case [Stewart, 1979] is an implicit
form of multiple searchers OSP model, Dell et al. [1996] extended explicitly the OSP problem
with a moving object to the multiple searchers case. Furthermore, they applied the MEAN
bound [Martins, 1993] to the case of multiple searchers. Since the complexity of the multiple
searchers OSP problem grows exponentially in the number of searchers, they developed, in
the same paper, six heuristics for the multiple searchers OSP problems. The first method
used as a benchmark involved a local search procedure with random restarts. Two heuristics
were based on the total number of expected successes. Two were genetic algorithms. The last
one was a moving horizon heuristic that solved a sequence of simplified problems with T ′ < T

time steps.

Among the recent developments linked to the generalization of the OSP problem with a single
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searcher, Lau [2007] and Lau et al. [2008] introduced the OSP problem with a non-uniform
travel time between connected regions (OSPT). In this formulation, the searcher does not
search while traversing an edge to another region. Lau et al. [2006] and Lau [2007] further
generalized the OSP model to allow detections during travel time. The DMEAN bound,
developed for the OSP, is applicable to the OSPT and to the generalized OSP. Lau [2007]
also investigated a special case of OSP problem with multiple searchers aided by scouts
where a successful detection of the object by a scout does not end the search but adds
positive information for searchers. Sato [2008] and Sato and Royset [2010] generalized the
OSP problem (they renamed the single searcher path (SSP) problem) to the case of path
dependent detection model and introduced additional resource constraints. The new problem
is called resource-constrained SSP (RSSP). New bounding techniques and heuristics based
on network reduction, on the longest path and on Lagrangian relaxation are presented for
both the SSP and the RSSP problem. They worked on the B&B algorithm to further adapt
it to the multiple searchers case as well. The OSP problem with visibility (OSPV) was also
proposed to allow distant effort allocation from a single search point in the OSP problem
formalism [Morin, 2010, Morin et al., 2009, 2010]. The cases of indivisible and arbitrarily
divisible search effort are considered from a single attribution source, i.e., a single search
path. The problem was tackled using mixed-integer linear programming [Morin et al., 2009]
and ant colony optimization [Morin, 2010, Morin et al., 2010].

2.3 Coverage and Detection Search Problems

We adopt, in this thesis, the point of view of search operations for both coverage and detection
search problems. This leads to an unified view of both families of problems that could help a
decision maker in choosing which formalism better suits the practical context of the decision
to be made. For instance, which formalism between a CPP and an OSP variant is better
suited to detect a mine? The answer is contextual and depends on both the constraints and
the goal of the decision maker.

A decision maker that has insights on the whereabouts of the mine may represent it as
a probability distribution. In this context, search theory known formalisms, models, and
algorithms already proved to be useful in practice. We can think, for example, of the use
(and birth) of search theory during World War II [Koopman, 1956a,b, 1957]. Another classic
case is that of the SS Central America. The vessel sank in 1857 with approximately 400 million
dollars of gold bars and coins on board. Years later, in 1985, search theory was applied to the
case. The wreck, lost for more than a century, was found [Stone, 1992]. Nowadays, classic
and novel models and algorithms from the theory of optimal search evolve into complete
systems of which SAROPS [Netsch, 2004] and SARPlan [Abi-Zeid and Frost, 2005] are two
successful examples. On the other hand, cases may occur where the whereabouts are totally
unknown. Replacing the knowledge on the whereabouts by a uniform distribution is a strong
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assumption. Using a uniform distribution is assuming that the mine may be anywhere with
uniform probability. Even if the approach is, under some circumstances, mathematically
correct, it does not represent the reality: the whereabouts are unknown, the probabilities are
unknown. In this context, it is better to look everywhere as fast as we can, i.e., to use a
coverage path planning formalism that minimizes the length of the path [Drabovich, 2008].

It can be seen, from our overview of the literature on both coverage and (detection) search,
that our two chosen path planning problems, namely the CPP and the OSP, are relatively
close to each other. There are, however, some welcomed differences between the two problems.
These differences are welcomed since both problems have a tendency to complete each other
rather than being clearly incompatible. As discussed in the minesweeping example, one
particular point that justifies these differences is the absence of priors on the location of the
search object in most CPPs. This is easily justified by the absence of any object to search
for in some applications of coverage path planning (e.g., for cleaning). This can be, from
a search, surveillance, or detection perspective surprising. However, it remains that this
particular point makes a CPP a method of choice when the decision maker does not have any
knowledge on the plausible location of the object which is a frequent case. This has also the
additional benefit of simplifying the formulation of the problem.

Without any prior on the location of the object it also makes sense to aim at fully covering
the environment while minimizing the expenses in which case the term “expenses” may mean,
for instance, the time spent in the action of searching the environment which time is easily
expressed in terms of path length or cost. Working under a time constraint as in an OSP
problem, instead of under a time objective, makes less sense when almost any search action will
result in the same output: a cell is covered. It is also interesting to notice how, in CPPs, the
notion of coverage acts as a constraint whereas it is not the case in an OSP problem. In OSPs,
the searcher aims at maximizing some form of coverage called the cos. This is done under
a time (expense) constraint rather than under a time (expense) criterion. Finally, coverage
problems sometimes include a notion of sensor imperfectness that makes them particularly
close to OSP problems. This is the case, for example, of the CPPIED problem we fully
describe in the next chapter.
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Chapter 3

Coverage Path Planning to Search
without Prior

This chapter is based on our original work published in [Morin et al., 2013b] and
presented at the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2013).

We focus, in this chapter, on the coverage path planning (CPP) problem in the context of
deploying mobile autonomous underwater vehicles (AUVs) for mine countermeasures. Our
specific application consists of planning the path of an AUV from the REMUS family of
vehicles [Nicholson and Healey, 2008], designed to swim long distances at constant speed
and altitude with infrequent turns, and with no or very little capacity to sense and avoid
obstacles [Fang and Anstee, 2010]. Our AUV is fitted with a navigation system to adjust its
position. It is also equipped with sidescan sonar to search for mines on the bottom of the
ocean [Reed et al., 2003]. Figure 3.1 presents a sidescan sonar towed by a ship. There is a
gap produced by the sonar directly under the tow vehicle. No detection occurs in this blind
spot. Without loss of generality, we assume that there are no blind spots, since the use of
“gap filler” forward looking sonars has become prevalent.

Sidescan sonars, like many sensors, are imperfect. We consider, in our formalism, no false
positives. Similarly to the search for a lost vessel [Stone, 1992], any positive detection must be
investigated in our minesweeping context. Just as in search problems from search theory, we
assume that the conditional probability of detecting a target of interest given that it is within
the sensor’s range is less than 100% [Gage, 1993]. This conditional probability of detection can
be interpreted as the degree of coverage resulting from sensor or actuator imperfectness [Gage,
1995]. While traveling on a path segment, the AUV surveys a fixed distance sideways with a
varying conditional probability of detection that depends on the seabed type of the surveyed
region (e.g., complex seabed, sand ripples, flat seabed), and on the range of the sensor. A
given minimal coverage (minimal conditional probability of detection) must be achieved over
the whole area of interest for the path to be feasible. Since the seabed map is available as a
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Figure 3.1: A sidescan sonar representation; image taken from [Wikipedia, 2013]

grid of uniform square cells, we have an off-line CPP problem where the discretization scale
is such that the side of a cell is not larger than the sonar’s range. Time to completion is an
important issue. Longer paths to cover an area take more time and are more expensive to
complete. Turning also takes more time and may increase navigational errors [Choset, 2001].
Therefore, the goal is to find a feasible path that minimizes the total traveled distance and
the total number of turns as two separate criteria and in that order.

The problem presented in this chapter differs from classical CPP problems in three ways:

• first, the sensors are imperfect;

• second, the range of detection is not limited to the location of the AUV and varies with
the distance separating it from the scanned area, and with the seabed type;

• third, we do not require perfect coverage, we rather must ensure a minimum coverage
level everywhere in the area of interest.

We call this formulation, the CPP with imperfect extended detection (CPPIED). To our knowl-
edge, the only prior work to the one we presented in [Morin et al., 2013b] is that of [Drabovich,
2008]. He presented the advantages and the disadvantages of existing coverage path planning
approaches and concluded that none of them was suitable for the imperfect extended detec-
tion in the context of underwater minesweeping operations. We further formalized the model
proposed in [Drabovich, 2008] and proposed the CPPIED formulation in [Morin et al., 2013b].

As the CPPIED problem deals with a required coverage in each cell, we also need to distin-
guish it from the multirobot-controlled frequency coverage (MRCFC) problem [Cannata and
Sgorbissa, 2011]. The two problems are similar in that many visits will be needed in each
location (cell). However, the goal of the former is to achieve the required coverage in each cell
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(a) A move from cell (1, 1) to (1, 2)

1 2
1
2

(b) A move from cell (1, 1) to (2, 1)
1 2

1
2

(c) A right turn from cell (1, 1) to (2, 1)

1 2
1
2

(d) A left turn from cell (1, 1) to (1, 1)

Figure 3.2: Feasible moves on a uniform grid

whereas the goal of the latter is to be as close as possible to the prescribed relative frequency
of visits.

The only existing approach to the novel CPPIED is known as the heterogeneous coverage
path planning (HCPP) algorithm [Drabovich, 2008]. Since practical instances of the CPPIED
involve large grid environments (the published experimental instances contain more than 21
thousand cells) the HCPP algorithm is a heuristic. However, it is highly instance dependent
as it must be fine-tuned in a trial and error fashion over each instance. We propose the
dynamic programming sweeper (DpSweeper) algorithm, a different heuristic approach which
requires minimal tuning. The experimental results on problem instances from the literature
show that DpSweeper outperforms HCPP.

This chapter is organized as follows. We formalize the CPPIED in the context of underwater
minesweeping operations in Section 3.1. Section 3.2 describes our novel hybrid algorithm
based on dynamic programming (DP) and on a traveling salesman problem (TSP) reduction.
We compare experimental results to the ones of the HCPP algorithm in Subsection 3.2.4. We
conclude in Section 3.3.

3.1 The Coverage Path Planning Problem with Imperfect
Extended Detection

Let T be the set of seabed types, for example, flat or ripple sand. The ocean is represented
by an m×n matrix O such that Oij ∈ T is the seabed type in the cell (i, j). The cell (1, 1) is
located in the upper left corner of the grid. The position of the robot is defined by ((i, j), dir)
where (i, j) is a grid cell and dir ∈ {north, south, east,west} is the direction the robot is
facing. The robot moves on the grid lines between the cells. A robot pointing north or south
in cell (i, j) is located in the middle of the vertical line between cells (i, j) and (i, j + 1). A
robot pointing east or west in cell (i, j) is located in the middle of the horizontal line between
cells (i, j) and (i + 1, j). The robot moves forward one cell at a time (see Figures 3.2(a)
and 3.2(b)). It cannot stop, backup, nor turn around on the spot. However, 90◦ turns while
moving forward are allowed (see Figures 3.2(c) and 3.2(d)). The robot scans 2rmax cells: rmax

55



1 2 3 4 5 6
1
2
3
4
5
6

(a) A path from cell (3, 1) to cell (3, 6) with
rmax = 3
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(b) A path from cell (3, 1) to cell (6, 3) with
rmax = 3

Figure 3.3: Scans on a uniform seabed; light gray shaded cells are scanned once, and dark
gray shaded cells are scanned twice.

on its left, rmax on its right. No diagonal scanning occurs while the robot is turning. However,
some cells may be scanned a second time just after the turn. Two possible paths and their
set of scanned cells are shown on Figure 3.3 for range rmax = 3.

The conditional detection probability of a sensor scan in a cell (i, j) (given that a mine is
present) is a function pscan : N+×T → [0.0, 1.0] of the distance d(x, y, i, j), in number of cells,
between the current robot’s cell (x, y) and the scanned cell (i, j), and of the seabed type Oij

of the scanned cell (i, j). We represent the pscan function as a |T |×rmax matrix. For instance,
with T = {flat (f), ripples (r), complex (c)} and rmax = 3, the sensor’s conditional detection
probabilities are expressed as:

pscan =


pscan(1, c) pscan(2, c) pscan(3, c)
pscan(1, r) pscan(2, r) pscan(3, r)
pscan(1, f) pscan(2, f) pscan(3, f)

 . (3.1)

The current coverage map of a grid environment is represented by a m × n matrix C where
Cij is the achieved conditional detection probability in the cell (i, j). The initial coverage
map is the null matrix. After a first scan of cell (i, j) from cell (x, y), the coverage in (i, j)
is Cij = pscan(d(x, y, i, j),Oij). The conditional probability of non-detection (i.e., the miss
probability, or the non-coverage) is 1 −Cij = 1 − pscan(d(x, y, i, j),Oij). Given independent
detections and following a scan in cell (i, j) from cell (x′, y′), the non-coverage in cell (i, j) is
1−C′ij = (1−Cij)(1− pscan(d(x′, y′, i, j)),Oij). Therefore, the updated coverage of cell (i, j)
is C′ij = 1− (1−Cij)(1− pscan(d(x′, y′, i, j)),Oij) leading to the update equation (3.2).

C′ij := Cij + (1−Cij)pscan(d(x′, y′, i, j),Oij). (3.2)

That is, a mine may have already been detected in (i, j) with a probability Cij , or it had not
been detected before with a probability (1−Cij) and it will be detected now from cell (x′, y′)
with a conditional probability pscan(d(x′, y′, i, j),Oij).

The required coverage is represented by an m × n matrix D such that Dij represents the
required minimum coverage that must be attained in cell (i, j). The required coverage is
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Figure 3.4: A CPPIED problem instance with T = {flat (f), ripples (r), complex (c)}, and
rmax = 1; dark gray shaded cells are complex seabed, medium gray shaded cells are ripples
seabed, light gray shaded cells are flat seabed. The required coverage is displayed in each cell.

achieved when D ≤ C. The required coverage is homogeneous when Dij is equal for all rows
i and columns j. Otherwise, it is heterogeneous. Instances from [Drabovich, 2008] feature a
homogeneous required coverage (i.e., uniform values across D) and a heterogeneous seabed
(i.e., |T | > 1).

A CPPIED problem instance is defined as a tuple:

(
T ,O,D, pscan, (iinit, jinit)

)
, (3.3)

where (iinit, jinit) is the initial location cell of the robot. The initial direction parameter is
not necessary because it may be inferred directly from the first segment of the robot’s path.
A solution is a robot’s path P along with the directions of the robot at each waypoint. The
direction of the robot along that path influences the set of visible cells. A feasible solution
respects the robot’s physical constraints while enabling it to achieve the required coverage.
This solution is entirely defined by the sequence of moves of the robot M from its starting
position. The problem, as formulated with two objectives (i.e., to minimize the distance and
to minimize the turns), is indeed a multi-objective optimization problem. Depending on the
units we use, these objectives may be incommensurable. In this case, a lexicographic ordering
of the criteria can be used for optimization purposes. This is the case in [Drabovich, 2008]
and [Morin et al., 2013b] where an optimal solution minimizes the distance first (in number
of moves) and then the number of turns.

Example 3.1.1 (Surveying the seabed to detect naval mines). Suppose that we want to
solve the CPPIED instances presented on Figure 3.4. We assume a maximal visibility range
of rmax = 1. The heterogeneous seabed of this environment is made of 3 different seabed
types:

T = {flat(f), ripples(r), complex(c)}. (3.4)
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The detection model, i.e., the pscan function, is assumed to be:

pscan =


pscan(1, c)
pscan(1, r)
pscan(1, f)

 =


0.7
0.8
0.99

 . (3.5)

The seabed matrix is:

O =



c r f f f f
c r f f r r
c r r r r r
r r r r r r
f f f f f f
f f f f f f


. (3.6)

The required coverage matrix is:

D =



.5 .5 .5 .5 .5 .5

.5 .5 .7 .7 .5 .5

.8 .8 .8 .8 .8 .8

.8 .8 .8 .8 .8 .8

.5 .5 .7 .7 .5 .5

.5 .5 .5 .5 .5 .5


. (3.7)

For the sake of simplifying the discussion, we suppose that (iinit, jinit) is just outside the grid
in the upper left corner, i.e., the robot starts in cell (0, 0). This allows the robot to travel on
the line before the first row or on the line before the first column on its first path segment.

Starting from cell (0, 0), a solution to this CPPIED instance would be entirely defined by the
following sequence of moves:

M = ( east, east, . . . , east, south, south,
west, west, . . . , west, south, south,
east, east, . . . , east, south, south,
west, west, . . . , west ) .

(3.8)

The first direction is the first robot’s move from cell (iinit, jinit), the second is its second move
and so on. Using cell (iinit, jinit) and the first move in M , it is easy to infer the best starting
direction of the robot. It is also easy to complete the robot’s path using its sequence of moves.
Figure 3.5 presents the inferred robot’s path. The achieved coverage for the entire path is:

C =



.7 .99 .99 .99 .99 .9999

.7 .8 .99 .99 .8 .96
.91 .8 .8 .8 .8 .8
.96 .8 .8 .8 .8 .8
.99 .99 .99 .99 .99 .9999
.99 .99 .99 .99 .99 .9999


. (3.9)
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Figure 3.5: A tiny example of a CPPIED solution to the instance of Figure 3.4; dark gray
shaded cells are complex seabed, medium gray shaded cells are ripples seabed, light gray
shaded cells are flat seabed. The achieved coverage after the path’s completion is displayed
in each cell.

This solution is feasible since D ≤ C (and since it is within the robot’s accessibility con-
straints). The path has 30 moves and 6 turns. It is optimal. /

3.2 The Dynamic Programming Sweeper Algorithm

The goal of the proposed algorithm is to define, in lexicographic order, a feasible shortest
path (the first objective), consisting of segments, that also minimizes the number of turns (the
second objective). A segment is a set of horizontally or vertically adjacent cells that does not
contain turns. The algorithm is composed of two main phases. In the first phase, we construct
a set S of disconnected segments such that a robot traveling along all these segments will
achieve the required coverage D. In the second phase, we use a TSP reduction to optimally
connect the segments obtained in phase 1 and form the desired path P . The segments order
of visit is enough to reconstruct a complete solution M encoded as a sequence of moves from
the starting position of the robot. Algorithm 1 outlines the DpSweeper algorithm. The first
phase is detailed in Section 3.2.1. The second phase is detailed in Section 3.2.2.

3.2.1 Coverage with Segment Sets Using Dynamic Programming

Algorihtm 1 first initializes the robot’s pathM to the empty path, the set of segments S to the
empty set, and the current coverage matrix C to the null matrix. Then, at each iteration, it
improves coverage by adding a set H∗ of horizontal segments or a set V∗ of vertical segments
to S. Some difficulties in constructing a segment set S arise due to the extended sensor’s
range since multiple detections in a given cell may arise from two different segments or more.
To overcome this difficulty, we impose, at each iteration, a 2rmax spacing constraint within
the set H∗ and the set V∗. Therefore, the rewards of the parallel segments are independent,
which allows us to use polynomial time dynamic programming algorithms to compute both
the reward of a robot traveling on a segment, and the sets of segments H∗ and V∗.

In order to compute Hij the horizontal gain in cell (i, j), let pC(i, j, k) be the updated prob-
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Function DpSweeper(CPPIED)

Input: A CPPIED instance: CPPIED =
(T ,O,D, pscan, (iinit, jinit)

)
.

Output: A feasible sequence of moves: M .
Initialize M to the empty path, S to the empty set, and C to the null matrix;
// Phase 1 (See Section 3.2.1)
while C < D do

Compute H∗ and V∗;
CH∗ ← UpdateCoverage (H∗, S ∪H∗, C, CPPIED);
CV∗ ← UpdateCoverage (V∗, S ∪ V∗, C, CPPIED);
K ← ChooseSet (H∗, V∗, CH∗ , CV∗ , CPPIED);
C ← CK;
S ← S ∪ K;

// Phase 2 (See Section 3.2.2)
TSP← ReduceToTsp (S, CPPIED);
TOUR← SolveTsp (TSP);
M ← RetrievePath (TOUR, CPPIED);
return M ;

Algorithm 1: The DpSweeper algorithm

ability of detection when a cell (i, j) is scanned from a distance of k cells:

pC(i, j, k) = Cij + (1−Cij)pscan(k,Oij). (3.10)

The gain obtained by scanning cell (i, j) from distance k can be defined as:

g(i, j, k) =

min
{

Dij , p
C(i, j, k)

}
−Cij Cij < Dij ;

−λ Cij ≥ Dij .
(3.11)

If cell (i, j) is not already covered, i.e., Cij < Dij , the gain equals the increment in detection
probability in (i, j) up to the required coverage value, i.e., min

{
Dij , p

C(i, j, k)
}
−Cij . Other-

wise, cell (i, j) is covered, i.e., Cij ≥ Dij , and we impose a small penalty λ for overcoverage.
Let G(i, j) be the sum of the gains, in probability of detection, in the cells within the range
of the robot when it is positioned horizontally in cell (i, j):

G(i, j) =
rmax∑
k=1

g(i− k + 1, j, k) +
rmax∑
k=1

g(i+ k, j, k). (3.12)

The penalty λ, attributed to a scan in a visible cell that is already covered, is chosen small
enough to avoid interfering (up to a desired decimal precision) with the gains obtained in
other visible cells. Therefore, the sum of the gains when the robot is positioned horizontally
in cell (i, j) is strictly positive as soon as there is at least one visible uncovered cell from that
position. The horizontal gain of a cell (i, j), Hij should reflect the fact that we wish to find
the shortest possible segment with the highest possible coverage. It is thus convenient to end
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the segment before the first cell (i, j) for which G(i, j) is less than or equal to zero. Therefore,
the horizontal gain of a cell (i, j), Hij , is defined as follows:

Hij =

G(i, j) G(i, j) > 0;

−∞ G(i, j) ≤ 0.
(3.13)

The endpoints a and b that define the segment hi such that the sum of its gains is maximal
are identified for each row i as follows:

K(hi) = max
a,b

b∑
j=a

Hij . (3.14)

This problem, called theMaximum subarray problem, is solvable in linear time using Kadane’s
algorithm [Bentley, 1984]. Kadane’s algorithm is a simple example of dynamic programming.

The optimal horizontal set H∗ is the subset of segments that maximizes the sum of the
horizontal gains over the rows subject to a 2rmax spacing constraint:

max
I⊂{1..m}|i,i′∈I⇒|i−i′|≥2rmax

∑
i∈I

K(hi). (3.15)

We compute the maximal horizontal gain under a 2rmax spacing constraint using the following
recurrence relation:

h∗i =

0 i < 1;

max {h∗i−1,K(hi) + h∗i−2rmax} 1 < i ≤ m,
(3.16)

where h∗i is the maximum gain achieved by a robot on the first i segments. Following
a dynamic programming approach, vector h∗ is stored in memory to exploit the optimal
substructure property (see Section 1.2.3). Just as we did for the optimal tour in our dynamic
programming TSP example of Section 1.2.3, the optimal horizontal set H∗ is computed by
backtracking in h∗ . With this technique, choosing an optimal set of segments under a 2rmax

spacing constraint is done in polynomial time. The set V∗ is computed in the same fashion
following a map rotation of 90◦. Algorithm 1 computes the updated coverage matrices CH∗

and CV∗ for sets H∗ and V∗ using Equation (3.2) (function UpdateCoverage). The set among
H∗ or V∗ providing the highest coverage is added to S. Ties are broken using the set with
the smallest cardinality (function ChooseSet). Note that there is no spacing constraint in S.

Example 3.2.1 (Constructing the segment set S). We now present an example for choosing
a segment set S by using our method on a 6×6 grid with rmax = 1. The set S is initialized to
the empty set, and the current coverage matrix is initialize to zero, i.e., C = 0. We represent
the initial grid on Figure 3.6. For clarity purposes, we indicate, in each cell of the grid,
the number of robot scans needed to achieve the required coverage D instead of the current
coverage probability matrix. This simplification is possible since r = 1. At iteration 1 (see
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Figure 3.6: An example of the initial number of scans required to cover a simple seabed map
with T = {flat (f), ripples (r), complex (c)}, and rmax = 1
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(a) Iteration 1: a set H∗ of hori-
zontal segments is generated.
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(b) Iteration 1: a set V∗ of verti-
cal segments is generated.
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(c) Iteration 1: a horizontal seg-
ment set H∗ (labeled (1)), is
added to S.
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(d) Iteration 2: a set H∗ of hori-
zontal segments is generated.
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(e) Iteration 2: a set V∗ of verti-
cal segments is generated.
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(f) Iteration 2: a vertical segment
set V∗ (labeled (2)) is added to S.
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(g) Iteration 3: a set H∗ of hori-
zontal segments is generated.
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(h) Iteration 3: a set V∗ of verti-
cal segments is generated.
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(i) Iteration 3: a vertical segment
set V∗ (labeled (3)) is added to S.

Figure 3.7: An example of the construction of the disconnected segment set on a map
with T = {flat (f), ripples (r), complex (c)}, and rmax = 1; dark gray shaded cells were
scanned three times, medium gray shaded cells were scanned twice, light gray shaded cells
were scanned once.
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Figures 3.7(a) to 3.7(c)), the procedure generates a first set H∗ of horizontal segments and a
first set V∗ of vertical segments. H∗ is then added to S (V∗ is equivalent in terms of gain, in
this case). At iteration 2 (see Figures 3.7(d) to 3.7(f)), the updated current coverage matrix
C is used to compute two new sets H∗ and V∗. The algorithm adds V∗ to S since it achieves a
higher gain. This choice is justified as follows. There are, when using the horizontal segment
set H∗, multiple cells that are already covered leading to small penalties. We also notice that
the total length of the segments in H∗ is greater than the total length in the segments of V∗.
At iteration 3 (see Figures 3.7(g) to 3.7(i)), the algorithm chooses V∗ (a single segment) and
adds it to S. This choice is justified as follows. The horizontal segment positioned in cell (3, 1)
of the horizontal segment set H∗ leads to a small penalty for overcoverage. Furthermore, the
cardinality of H∗ is greater than the cardinality of V∗. We see, on Figure 3.7(i), the completed
set of disconnected S that will be used during the second phase of the algorithm. /

3.2.2 Linking the Segments Using a Traveling Salesman Tour

In this phase, a connected path P including all the segments in S is constructed using a TSP
reduction (function ReduceToTsp of Algorithm 1). We first construct, using the segment set
S built during the first phase of the DpSweeper algorithm, a graph G on which to plan a TSP
cycle. Let V (G) be the set of nodes of a graph G, E (G) be its set of edges, and c(e) be a
cost function on E (G). The goal of the TSP is to find a cycle of minimal cost that visits each
node once. The original TSP formulation involves complete graphs whereas ours deals with
arbitrary graphs. An arbitrary graph G is easily transformed into a complete graph for the
TSP by adding an edge (u, v) of infinite cost to G for each pair of vertices u, v ∈ V (G) such
that (u, v) is a missing edge of G, i.e., (u, v) /∈ E (G). The reduction goes as follows.

For each segment si in S with endpoints ui and wi, we create three nodes in V (G): ui, wi,
and vi and two edges (ui, vi) and (vi, wi). The node vi is a dummy node used to force the
algorithm to travel over the segment between ui and wi. The cost of these two edges is null.
For every pair of segments si and sj in S, we create four edges: (ui, uj), (ui, wj), (wi, uj),
and (wi, wj). The cost of these edges corresponds to the shortest distance in the number of
robot’s moves needed to connect the endpoints. Finally, let us be the starting position of the
robot. We create a source node us connected to all endpoints of the segments with distances
given by the shortest distance in number of moves. We create a sink node ws connected to
all segments’ endpoints with a null distance. We create a dummy node vs that is connected
to us and ws by two edges of null cost.

Solving the TSP consists of finding a cycle of minimum cost that passes through each node
exactly once. Note that such a cycle would have to visit each node vi once. Since this node is
only connected to the two endpoints ui, wi, it forces the cycle to enter by one endpoint of the
segment and to leave by the other endpoint. The same principle applies for the node vs that
is only connected to the source node us and the sink node ws. Therefore, a cycle starts at
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(d) Step 4: reconstruct the path.

Figure 3.8: TSP reduction and path reconstruction for the segments set S of Figure 3.7

node ws, visits all the segments, and returns to ws through vs. Removing the node ws and vs

from the cycle yields the solution path P we are looking for. To find the lowest cost cycle, and
therefore the solution path, we chose the Concorde solver [Applegate et al., 2011] (function
SolveTsp of Algorithm 1). We chose to use Concorde instead of a TSP heuristic since it is
the state of the art. Concorde solves most TSPLIB [Reinelt, 1991] instances (sometimes with
more than 2 thousand nodes) within a few minutes. Although Concorde may consume more
time than a heuristic, it finds the optimal tour to all our instances within a few seconds. The
solution to the problem, in terms of sequence of moves M , follows directly (function Retrieve
Path of Algorithm 1).

Example 3.2.2 (Constructing the path). Figure 3.8 shows a TSP reduction and a path
reconstruction example on the segments set S of Figure 3.7. First, the reduction process
generates the nodes represented by dots on Figure 3.8(a). The robot starts in cell (1, 1).
Therefore, the source node us is positioned in (1, 1), the sink node ws and the dummy node
vs are positioned at the same place. Second, it links the segments endpoints by creating
edges. Figure 3.8(b) shows the edges added to the graph G for segments s = (u, v, w) and
s′ = (u′, v′, w′). Third, on Figure 3.8(c), the Concorde solver finds an optimal cycle that
starts from the source and goes through all the nodes before returning to the source node us

by the sink node ws then the dummy node vs. Finally, on Figure 3.8(d), the robot’s path
is reconstructed. As shown, there are no links between the last robot’s position (4, 3) and
its initial position in (1, 1): We simply ignore the sink and the dummy nodes during path
reconstruction. /
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Table 3.1: Problem instances published in [Drabovich, 2008]

No Ocean seabed Required coverage Detection probrability
O Dij (∀i, j) pscan

1 Flat seabed
Figure 3.9(a) 0.9

[
0.6 0.65 0.62
0.7 0.85 0.8
0.99 0.99 0.99

]

2 Rectangular patch
Figure 3.9(b) 0.9

[
0.7 0.8 0.75
0.99 0.99 0.99
0.91 0.95 0.92

]

3 3 rectangular patches
Figure 3.9(c) 0.9

[
0.8 0.8 0.8
0.8 0.8 0.8
0.91 0.91 0.91

]

4 Circular patch
Figure 3.9(d) 0.75

[
0.51 0.51 0.51
0.8 0.8 0.8
0.91 0.91 0.91

]

5 Fragmented circular patch
Figure 3.9(e) 0.75

[
0.51 0.51 0.51
0.8 0.8 0.8
0.99 0.99 0.99

]

6 Real map
Figure 3.9(f) 0.9

[
0.6 0.6 0.6
0.8 0.8 0.8
0.91 0.91 0.91

]

7 Random map
Figure 3.9(g) 0.85

[
0.6 0.6 0.6
0.8 0.8 0.8
0.91 0.91 0.91

]

3.2.3 Experiments

We present the results of our DpSweeper algorithm, implemented in C++, obtained on an
Intel(R) Core(TM) i7-Q740 CPU with 8 GB of RAM. The seabed maps O of the seven problem
instances used as a benchmark (see Figure 3.9) contain more than 21 thousand cells. Each cell
is made of a flat (f) seabed, of sand ripples (r), or of complex (c) seabed. The first instance,
shown in Figure 3.9(a), has a flat seabed: a lawnmower (boustrophedon) pattern consisting
of parallel segments is sufficient to cover it. The second, shown in Figure 3.9(b), is made of
a flat seabed with a rectangular complex seabed patch in the middle. The third, shown in
Figure 3.9(c), has three complex seabed patches. The fourth, shown in Figure 3.9(d), has a
circle of complex seabed in the middle. The fifth, shown in Figure 3.9(e), has a fragmented
circle of complex seabed in the middle. The sixth, shown in Figure 3.9(f), is a real map
containing three different seabed types. The seventh, shown in Figure 3.9(g), is a realistic
randomly generated map containing three different seabed types. Table 3.1 summarizes the
instances in increasing order of complexity. The robot starts in the top left corner of the grid.
The required coverage matrix D is uniform, i.e., all cells have the same required coverage
probability. We use a range rmax = 3.

3.2.4 Results and Discussion

Table 3.2 presents the results of both the HCPP and the DpSweeper algorithms. The required
coverage is attained in all cases. The first group of columns presents the results as published
in [Drabovich, 2008]. The HCPP algorithm is a parameterized heuristic which requires choos-
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(a) Instance 1 (b) Instance 2

(c) Instance 3 (d) Instance 4

(e) Instance 5 (f) Instance 6

(g) Instance 7

Figure 3.9: The maps of the instances published in [Drabovich, 2008]; dark gray shaded cells
are complex seabed, light gray shaded cells are ripples seabed, white cells are flat seabed.
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Table 3.2: Comparison of DpSweeper to HCPP [Drabovich, 2008]

No HCPP† DpSweeper

Solution Solution TSP Time (s)
Length Turns Lex. dom.‡ Length Turns Lex. dom.‡ nodes TSP Total

1 3777 40 no 3755 41 yes 66 < 1 < 1
2 4599 60 yes 4628 61 no 99 < 1 1
3 5556 82 no 5321 95 yes 144 < 1 1
4 5494 77 no 5363 75 yes 117 < 1 1
5 5119 114 yes 5151 107 no 162 1 2
6 6689 136 no 5681 270 yes 402 45 52
7 7141 137 no 5731 174 yes 273 12 15

Wins 2 5 2 5 2 5
† The solving times of the HCPP method are not published.
‡ Lexicographic dominance: Shorter is better, ties are broken on the number of turns.

ing the set of parameters that performs best given the instance to solve. This configuration,
as performed in [Drabovich, 2008], turns out to be done on a per instance fashion. For each
instance, the set of parameters leading to the minimal length is kept. Ties, among parameter
sets leading to the same path length, are broken according to the number of turns. This leads
us to consider the following lexicographic order of the criteria for evaluation purposes (see the
lexicographic dominance column of Table 3.2): minimize the length of the path in number of
moves, then minimize the number of turns. We see that the DpSweeper algorithm outper-
forms the HCPP algorithm on the first criterion in all instances except for instances 2 and
5. Following a close inspection of the figures published in [Drabovich, 2008], we noticed that
on the spot 180◦ turns were allowed. Our more restrictive assumptions (not allowing on the
spot 180◦ turns), although not a DpSweeper limitation, are closer to the physical constraints
of AUVs from the REMUS family and actually favor HCPP. This may explain the slightly
longer path we found on instances 2 and 5. For the instances 6 and 7, our solutions have
significantly more turns than HCPP. On these instances, generating more turns was neces-
sary to diminish the path length of respectively more than 15% and 20% when compared to
the HCPP. Favoring shorter paths is coherent with the lexicographic order of the minimized
objectives. It is also worth adding that the DpSweeper algorithm solved instances 1 to 4 in
one second or less and instance 5 in two seconds. The solving times of the most realistic
instances (6 and 7) are within a minute. These times include both the segment generation
process and the Concorde solver calls. It further confirms that the TSP instances resulting
from the second phase of the DpSweeper algorithm are still within the reach of a TSP solver
for the considered problem instances.

Figure 3.10 reports the solutions provided by our algorithm. The solution on instance 1 (see
Figure 3.10(a)) is a lawnmower pattern. It is easily recognizable as an optimal solution (in
terms of both objectives) on this flat seabed. On instance 2 (see Figure 3.10(b)), the only
difficulty is to come back to cover the rectangular patch of complex seabed. On instance 3 (see
Figure 3.10(c)), we see the tendency of the algorithm to generate a simple lawnmower pattern
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(a) Solution to instance 1 (b) Solution to instance 2

(c) Solution to instance 3 (d) Solution to instance 4

(e) Solution to instance 5 (f) Solution to instance 6

(g) Solution to instance 7

Figure 3.10: Solutions found by DpSweeper; complex, ripples, and flat seabed cells are re-
spectively filled with dark gray, gray, and white.
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Table 3.3: Comparison of DpSweeper to HCPP [Drabovich, 2008] as implemented in [Fruitet,
2013]

No HCPP′ with 180◦† HCPP′ without 180◦† DpSweeper

Solution Solution Solution
Length Turns Lex. dom.‡ Length Turns Lex. dom.‡ Length Turns Lex. dom.‡

1 3755 41 –– –– –– –– 3755 41 ––
2 4628 61 –– –– –– –– 4628 61 ––
3 5538 83 no 5501 101 no 5321 95 yes
4 5503 79 no 5511 85 no 5363 75 yes
5 5374 109 no 5374 109 no 5151 107 yes
6 6178 145 no 6438 151 no 5681 270 yes
7 6545 132 no 6673 192 no 5731 174 yes

Wins 0 3 0 0 0 0 5 2 5
† The solving times are irrelevant since Matlab is an interpreted language.
‡ Lexicographic dominance: Shorter is better, ties are broken on the number of turns.

that minimizes both the path length and the number of turns. It starts with a horizontal
lawnmower pattern. Then, on the third row, it follows a vertical lawnmower to cover the
complex seabed patches. Finally, it comes back to its horizontal lawnmower pattern to cover
the rest of the grid. We notice a similar behavior on instance 4 (see Figure 3.10(d)). The
circle edge adds complexity to that instance since the algorithm is forced to adapt the length
of the segments. The same is true for instance 5 (see Figure 3.10(e)). For instance 6 (see
Figure 3.10(f)), the algorithm first plans a complete lawnmower pattern. Then, it goes up
towards and over the closest ripples seabed and the complex patches. Finally, it passes over
complex seabed patches again to achieve the required coverage, and then aims for the furthest
ripples patches. It ends its course on the left hand side of the map. A similar behavior occurs
in Figure 3.10(g).

Table 3.3 compares the DpSweeper algorithm to a novel Matlab [Mathworks, 2010] imple-
mentation of the HCPP algorithm [Fruitet, 2013].1 We call this reimplementation HCPP′.
On the spot 180◦ turns were allowed in a first version of HCPP to make sure that the results
are of the same order as the ones obtained in [Drabovich, 2008]. In a second version of the
algorithm, on the spot 180◦ turns were disallowed. Instances 1 and 2 were not evaluated
for the HCPP′ algorithm without 180◦. These environments are mainly used to validate the
behavior of the algorithms. This comparison further confirms the prior results.

In addition to its superior results, the main advantage of DpSweeper over HCPP is that it
is readily applicable to a problem instance. That is, contrary to HCPP, DpSweeper does
not require lengthy instance-specific fine-tuning. Furthermore, the very short computational
time of DpSweeper makes it possible to rapidly obtain a high quality path, an important
characteristic for algorithms in practical contexts.

1 The reimplementation of the HCPP algorithm is the work of Armand Fruitet, a work realized as part of
an internship to study the problem in its bi-criteria form [Fruitet, 2013].
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3.3 Concluding Remarks

We have presented a novel algorithm (DpSweeper) for coverage path planning using imperfect
sensors with an extended detection range (CPPIED). The algorithm consists of two main
phases. First, it greedily constructs a partial path made of segments to enforce the required
coverage constraint. Then, it links the segments to create a path that is within the robot’s
physical constraints. The algorithm yields favorable results in a very short time compared
to the literature. It is flexible and can be applied to complex seabed environments. In
contrast with the only other algorithm that tackles the CPPIED problem, it does not require
customized fine-tuning for individual environments. Even though the TSP problem is NP-
hard [Garey and Johnson, 1979], the instances resulting from our real and practical CPPIED
problem instances are within the reach of the Concorde TSP solver that we used. TSP
reductions are found in the literature on coverage problems (e.g., [Fang and Anstee, 2010]).
However, most of these reductions use the TSP to find a sequence of large regions where
they assume a fixed coverage pattern. We use the TSP directly to order a sequence of path
components (segments) on the whole environment. Although our two phases approach proved
to be efficient, it can lead to overcoverage. One aspect of the method is that the first phase
does not account for the coverage occurring in the second phase. Further research could aim
at improving the interaction between both phases to minimize overcoverage.

We described the CPPIED problem and the DpSweeper algorithm in terms of a coverage path
planning problem for naval mines detection. They are, however, general. The use of the algo-
rithm and of the CPPIED problem formalism in other obstacle-free environments for coverage
is straightforward as long as the concept of independent paths is defined with respect to the
modeled sensor, i.e., paths with non-overlapping detections must be identifiable. Obstacle-
free environments appear, for instance, in aerial surveillance operations with unmanned aerial
vehicles and other aircrafts. The adaptation of the algorithm to general environments with
obstacles is also possible since it would simply require taking obstacles into account in the
TSP reduction and during the generation of disconnected segments. The approach can also
be generalized to other problems where the agent (may it be a robot) is allowed to turn at an
angle different than 90◦. This may be done by considering other grid types where the cells
have a different shape, e.g., hexagonal grids. The approach can be generalized to various dis-
tant visibility constraints of the sensor as well. We considered lateral detections with respect
to the position of the robot. Different types of visibility can be modeled and used within a
method similar to DpSweeper by refining the concept of detection-independent paths (non
overlapping detections) on graphs. This would allow for the use of fast dynamic programming
algorithms for the first phase. Finally, the principle of partial coverage of a cell, that we called
“an imperfect detection”, is present in many applications. We can think of a partially cleaned
floor (in robotic cleaning), a scanned area that was only partially visible due to the presence
of obstacles (in surveillance), or, as we did, a detection probability in search operations.
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Chapter 4

Search Path Planning with
Markovian Motion

This chapter is based on our original work published in [Morin et al., 2012] and
presented at the 18th International Conference on Principles and Practice of Con-
straint Programming (CP 2012).

We studied, in the previous chapter, the CPPIED problem, a coverage problem without any
prior on the whereabouts of a search object. In this chapter, we move on to the search
theory context. We now deal with a search path planning problem called the optimal search
path (OSP) problem where the whereabouts are modeled as a probability distribution on the
plausible location of the search object. We first present a CP model to solve the OSP problem
with a Markovian motion of the object. As a second contribution, we refine the standard OSP
problem objective function to obtain a tighter bound on the objective value of our CP model
without discarding any solution. As a third contribution, we define the total detection (TD)
heuristic which leads to a high objective value (i.e., cos) by directing the searcher towards
vertices with high total probability of detecting the object. We use and describe the TD
heuristic as a value selection heuristic for our CP model. In the first part of the experiments,
we evaluate the novel objective function. In the second part of the experiments, we show
how TD improves the results in short time. Experiments show that our model is competitive
with published results from the search theory literature which features problem-specific B&B
algorithms, e.g., [Lau et al., 2008].

We chose to tackle the OSP using CP as this is a general solving scheme for combinatorial
optimization problems. One of the advantage of staying general is the accessibility to solvers.
Solvers implement readily available state-of-the-art algorithms while staying highly customiz-
able to a specific problem and/or individual instances. As research evolves, new algorithms
are discovered and implemented in existing solvers leading to an improved performance on
novel and known models alike. On the other hand, it remains that solvers are complex machin-
ery that may require some problem-specific fine tuning on the hardest problems or instances.
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Nonetheless, even without any fine tuning, these highly efficient all-purpose algorithmic ma-
chines come with “optimality guarantee”.1 As such, part of the price of using solvers is the
price of optimality.

We chose CP among other modeling techniques because of its expressiveness. CP has a
tremendous amount of constraints that allows for models that naturally fit the definition of
a problem. CP solvers are also known to be highly customizable, a property we propose to
exploit, in this chapter, by using our novel TD heuristic for the OSP as a value selection
heuristic over the searcher’s path variables. Furthermore, CP turned out to be effective in
solving search theory problems (e.g., the multiple rectangular search areas problem [Abi-
Zeid et al., 2011b]). Finally, CP allows to find high quality solutions quickly, an interesting
property on the hardest problems and/or instances where the price of optimality is high.

The OSP problem is a path planning problem with uncertain goal (in our case search object)
location. It is a path planning problem under uncertainty. According to [Brown and Miguel,
2006], uncertainty in constraint problems may arise in two situations:

• the problem changes over time (dynamically changing problems), and

• some problem’s data or information are missing or are unclear (uncertain problems).

The OSP problem formulation as a constraint program is not uncertain in this sense since
it has a complete description. Nonetheless, the location of the search object, its detectabil-
ity, and its motion are represented by probability distributions. Our CP is not a dynamic
formulation since the searcher’s detection model, the object’s motion model, and the prior
probability distribution on its location are known a priori. More specifically, the OSP problem
is a path planning problem with a Markov Decision Process formulation that uses negative
information for updating the probabilities in the absence of detection. In the case where the
total number of plausible search object’s paths is sufficiently low, a situation that rarely oc-
curs in realistic search problems, the problem could potentially be formulated using multiple
scenarios and thus be considered a stochastic CP (e.g., [Tarim et al., 2006]) where a scenario
would correspond to a possible path of the search object. However, this is not an interesting
approach since the Markov OSP problem specialization from search theory enables us to solve
the problem without enumerating all the object’s plausible paths [Brown, 1980]. Surveys on
dealing with uncertainty in constraint problems may be found in [Brown and Miguel, 2006,
Verfaillie and Jussien, 2005].

1 Most solvers in mathematical and constraint programming come with “optimality guarantee” if enough
resources are available. There exists, however, a growing population of different types of solvers based on local
searches and metaheuristics [Hoos and Tsang, 2006]. These solvers, although highly efficient, do not always
guarantee the optimality of a solution.
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We describe, in the first part of this chapter, our novel CP model for the OSP problem
(Section 4.1). Subsection 4.1.2 presents experiments using two different objective functions.
The TD heuristic is described in Section 4.2. The experimental results of Subsection 4.2.2
confirm that the solver achieves a superior performance when using the TD heuristic than
with CP along with general purpose heuristics. We conclude and give further research avenues
in Section 4.3.

4.1 Constraint Programming for Search Path Planning

We present, in this section, the CP model we developed for the OSP. The model uses the
following constants from the definition of the problem (see Sections 2.2.2 and 2.2.3):

• T , the number of available time steps and {1, . . . , T} the set of all time steps;

• GA = (V (GA) , E (GA)), the accessibility graph that represents the search environment;

• y0 ∈ V (GA), the initial position of the searcher;

• poc1(r), the initial probability of containment in vertex r (∀r ∈ V (GA));

• pod (r), the conditional probability of detecting the object when the position yt of the
searcher is r (∀t ∈ {1, . . . , T} , ∀r ∈ V (GA));

• Msr, the probability of an object’s move from vertex s to vertex r in one time step
(∀s, r ∈ V (GA)).

The Variables. The decision variables are the searcher’s position at each time step used
to define the search plan P :

• PATHt ∈ V (GA), the searcher’s position at time t (∀t ∈ {1, . . . , T}) with PATH0 = y0.

The domain of PATHt is the set of vertices of the graph and is therefore finite (∀t ∈
{1, . . . , T}). The probability variables are the following:

• POC1(r) = poc1(r), the probability of containment in vertex r at time 1 (∀r ∈ V (GA));

• POCt(r) ∈ [0, 1], the probability of containment in vertex r at time t (∀t ∈ {1, . . . , T} , r ∈
V (GA));

• POSt(r) ∈ [0, 1], the probability of success in vertex r at time t (∀t ∈ {1, . . . , T} , r ∈
V (GA));

• COS ∈ [0, 1], the cos criterion value, i.e., the sum of all local probabilities of success up
to time T .
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The domains of the probability variables are infinite since these variables are real. Interval-
valued domains are used to define these domains, i.e., non-enumerated domains whose values
are implicitly given by a lower bound and an upper bound.

The Constraints. Constraint (4.1) constrains the searcher to move from one vertex to
another according to the accessibility graph edges E (GA).

(PATHt−1, PATHt) ∈ E (GA) , ∀t ∈ {1, . . . , T} . (4.1)

Constraints (4.2) to (4.4) compute the probabilities required to evaluate the cos criterion. The
first two constraints, (4.2) and (4.3), compute the probabilities of success. Constraint (4.4) is
the containment update equation.

PATHt = r =⇒ POSt(r) = POCt(r)pod (r), ∀t ∈ {1, . . . , T} ,∀r ∈ V (GA) . (4.2)

PATHt 6= r =⇒ POSt(r) = 0, ∀t ∈ {1, . . . , T} ,∀r ∈ V (GA) . (4.3)

POCt(r) =
∑

s∈V(GA)
Msr [POCt−1(s)− POSt−1(s)] , ∀t ∈ {2, . . . , T} ,∀r ∈ V (GA) . (4.4)

We have experimented with two different encodings of the objective function. The first one
encodes the objective function as a sum, the second one encodes it as a max. Both encodings
are equivalent and lead to the same objective value.

The sum Objective Function. The sum encoding of Equation (4.5) consists of encoding
the objective function as it appears in Equation (2.7). It is the natural way to represent this
function.

maxCOS,

COS =
∑

t∈{1,...,T}

∑
r∈V(GA)

POSt(r). (4.5)

The max Objective Function. The sum constraint does a very poor job of filtering the
variables: the upper bound on a sum of variables is given by the sum of the upper bounds
of the domains of the variables. However, since we know that in the summation ∑r POSt(r)
only one variable is non-null, a tighter upper bound on this sum is given by the maximum
domain upper bound. A tighter upper bound on the objective variable generally leads to a
faster B&B in the solver. We therefore have implemented the objective function defined by
Equation (2.7) using the following constraints:

maxCOS,

COS =
∑

t∈{1,...,T}
max

r∈V(GA)
POSt(r). (4.6)
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Example 4.1.1 (Objective function filtering). Suppose the number of time steps is T = 2
and that the number of vertices is |V (GA)| = 2. Further assume the following domains for
the probability of success variables:

dom(POS1(1)) = [.0, .2], (4.7)

dom(POS1(2)) = [.3, .4], (4.8)

dom(POS2(1)) = [.0, .1], (4.9)

dom(POS2(2)) = [.1, .2]. (4.10)

One of the solver’s tasks is to perform a filtering of the objective function upper bounds
using its related constraints. Given the constraints of Equation (4.5), the upper bound on
the objective is the double sum of the upper bounds of the success probabilities:

COS =
∑

t∈{1,...,T}

∑
r∈V(GA)

POSt(r)

= 0.2 + 0.4 + 0.1 + 0.2 = 0.9. (4.11)

This leads to an upper bound of 0.9. Given the constraints of Equation (4.6), the upper
bound on the objective is the sum, over all time steps, of the maximal value of the upper
bounds of the success probabilities across vertices:

COS =
∑

t∈{1,...,T}
max

r∈V(GA)
POSt(r)

= max(0.2, 0.4) + max(0.1, 0.2)

= 0.4 + 0.2 = 0.6. (4.12)

This leads to an upper bound of 0.6 which is lower than the previous value of 0.9 thus leading
to a tighter upper bound on the objective. /

Domain pre-filtering. The updated probability of containment in vertex r at time t in
the absence of searches, pocMarkov

t (r), is:

pocMarkov
t (r) def=

{
poc1(r), if t = 1;∑
s∈V(GA) MsrpocMarkov

t−1 (s), otherwise.
(4.13)

The Markovian probability of containment pocMarkov is an upper bound on the probability
of containment in vertex r at time t, i.e., poct(r) ≤ pocMarkov

t (r). This is due to the fact
that an unsuccessful search in vertex r at time t decreases the probability of the object
being there at time t (from Equation (2.11)). Moreover, we observe that the probability of
success post(r) in vertex r at time t is bounded by the probability of detection in r (pod (r)),
i.e., post(r) ≤ pod (r). Both of these observations will be used to filter the domains of the
probability variables in the CP model prior to the solving process. This leads to the following
pre-filtered domains:
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Figure 4.1: The search environments

• POCt(r) ∈ [0, pocMarkov
t (r)], the probability of containment in vertex r at time t (∀t ∈

{1, . . . , T} , r ∈ V (GA)) where pocMarkov
t (r) is defined by Equation (4.13);

• POSt(r) ∈ [0, pod (r)], the probability of success in vertex r at time t (∀t ∈ {1, . . . , T} , r ∈
V (GA));

4.1.1 Experiments on the Objective Function

In the next experiments, we compare the objective functions defined in Section 4.1. We call
the model that implements the double sum objective function of Equation (4.5) OSP-SUM
and the model that implements the novel objective function of Equation (4.6) OSP-MAX .
We compare, in the first part of the experiments, the results obtained with both objec-
tive functions. We use the following static ordering of the decision variables for branching:
PATH1, PATH2, . . . , PATHT . This is the natural order for branching in an OSP. Then,
the solver is configured to apply a simple decreasing domain value selection heuristic. In
the second part of the experiments, we present additional results obtained when using the
impact-based search branching heuristic (strategy) instead of a static ordering of the path
variables. The impact-based search branching heuristic [Refalo, 2004] is a state-of-the-art
general-purpose branching heuristic for CP. We compare the performance of the OSP-SUM
model to the performance of the OSP-MAX model when both are used along with impact-
based search. The models that use impact-based search are suffixed by IB, i.e., OSP-SUM-IB
for the model of Equation (4.5) and OSP-MAX-IB for the model of Equation (4.6).

The graphs (or search environments) used in our benchmark are shown on Figure 4.1. G+ is
a reflexive 11× 11 grid where all adjacent vertices except diagonals are linked by an edge (see
Figure 4.1(a)). G∗ is a reflexive 11× 11 grid where all adjacent vertices (diagonals included)
are linked by an edge (see Figure 4.1(b)). In both grids, the searcher’s initial position y0 is
vertex 0 and the initial probability of containment distribution is such that poc1(60) = 1, i.e.,
the object is in the middle of the grid. GL is a reflexive graph generated using the Université
Laval tunnels map. It is almost a tree. The only cycle is in the middle of the graph, near
the vertex with a non-null probability of containment. The searcher starts in the upper left
corner of the graph. The object starts roughly in the middle of the graph (see Figure 4.1(c)).
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The assumed Markovian object’s motion model is

Msr =


1−ρ

deg(s)−1 , if (s, r) ∈ E (GA) ,

ρ, if s = r,
(4.14)

where deg(s) is the degree of vertex s and ρ ∈ {0.3, 0.6, 0.9} is a parameter of the instance
indicating the probability that the object stays in its current location. We tried these graphs
with three different probabilities of detection: pod (r) ∈ {0.3, 0.6, 0.9} (∀r ∈ V (GA)). The to-
tal times allowed for the searches are T ∈ {9, 11, 13, 15, 17}. Usual OSP problem experiments
use grids similar to G+ (e.g., [Eagle and Yee, 1990], [Lau et al., 2008]). Therefore, our G+

problem instances are comparable with those used in the literature. The decision space of a
G∗ instance is larger than the one of a G+ instance since the degree of each node is higher.
The GL instance is closer to a building-like environment.

All implementations were done using Choco Solver 2.1.5 [Laburthe and Jussien, 2012], a
solver developed in the Java programming language, and the Java Universal Network/Graph
(JUNG) 2.0.1 framework [O’Madadhain et al., 2010]. The probabilities of the OSP CP model
were mapped from reals in [0, 1] to integers in [0, U ]. We chose U = 104 since it allowed for
enough precision while avoiding integer overflows in Choco Solver. All tests consisted of a
single run on an instance

(
GA, T, pod (r)r∈V(GA), ρ

)
, as described above. Computations were

made on the supercomputer Colosse from Université Laval. We allowed a total number of
5,000,000 backtracks and a time limit of 10 minutes. We disabled restarts for all runs except
when using a model along with the impact-based search branching heuristic, i.e., for the OSP-
SUM-IB model and the OSP-MAX-IB model. Restarts are known to improve the performance
of impact-based search [Refalo, 2004].

4.1.2 Results and Discussion

Figure 4.2 is a comparison of the objective values obtained by the solver when using the
OSP-SUM model against the objective values obtained by the solver when using the OSP-
MAX model. The figure is composed of two subfigures. Each dot on the first subfigure (see
Figure 4.2(a)) is the comparison of the objective value of the two incumbent solutions found by
both methods on a single OSP problem instance within 10 minutes (or 5,000,000 backtracks).
A dot lying on the dashed frontier represents an instance for which the solver achieved the
same objective value with both models. A dot on the right-hand side (resp. left-hand side) of
the frontier represents an instance for which the OSP-MAX model (resp. OSP-SUM model)
outperformed the OSP-SUM model (resp. OSP-MAX model). We represent the complexity of
the instance, in terms of allowed time steps T , by a gradient from black to light blue. Light
blue dots belong to problem instances with T = 17 whereas black dots belong to problem
instances with T = 9. The subfigure on the right-hand side (see Figure 4.2(b)) enables us
to see the evolution of the objective values of the best so far incumbent solutions as the
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(a) OSP-SUM against OSP-MAX : Last incumbent
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the instance (in terms of allowed time steps T ) is rep-
resented by a gradient from black to blue.
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(b) OSP-SUM against OSP-MAX : Last incumbent
objective value in time; the higher the allowed time
is, the darker the dot is.

Figure 4.2: Comparison of the objective values obtained by the solver when using the OSP-
SUM model to the objective values obtained by the solver when using the OSP-MAX model;
each dot is a comparison of the incumbent solutions found by the compared methods on a
single OSP problem instance.

solver runs. We took a total of 10 snapshots at intervals of one minute during the solving
process. At each snapshot, we recorded the objective value of the best so far incumbent
solution. The second snapshot, for instance, records the objective value of the best so far
incumbent solution with an allowed solving time of two minutes. The darker a dot is, the
larger the allowed solving time is. We first notice the general tendency of the OSP-MAX
model to outperform the OSP-SUM model on most instances. This tendency is clear at the
beginning of the solving process (see the dots with light shading on Figure 4.2(b)). The
performance of the solver is similar with both models on simpler instances, i.e., when T is
low (Figure 4.2(a)). It is, in the majority of the cases, in favor of OSP-MAX for larger values
of T . This supports the fact that the OSP-MAX model objective function definition is an
improvement over the usual OSP objective function definition used in the OSP-SUM model.
Figure 4.3 is a comparison similar to Figure 4.2, but in presence of the impact-based search
branching heuristic. Figure 4.3 shows a tendency that is similar to the one we observed on
Figure 4.2. That is, for more complex instances and early during the solving process, the
OSP-MAX-IB model’s objective function definition tends to improve the performance of the
solver with respect to that of the OSP-SUM-IB model.
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(a) OSP-SUM-IB against OSP-MAX-IB: Last incum-
bent objective value within 10 minutes; the complex-
ity of the instance (in terms of allowed time steps T )
is represented by a gradient from black to blue.
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(b) OSP-SUM-IB against OSP-MAX-IB: Last incum-
bent objective value in time; the higher the allowed
time is, the darker the dot is.

Figure 4.3: Comparison of the objective values obtained by the solver when using the OSP-
SUM-IB model to the objective values obtained by the solver when using the OSP-MAX-IB
model; each dot is a comparison of the incumbent solutions found by the compared methods
on a single OSP problem instance.

4.2 The Total Detection Heuristic as a Value Selector

In this section we describe the TD heuristic. The idea of the TD heuristic is based on a
stochastic generalization of a graph theory pursuit-evasion problem called the cop and robber
game [Nowakowski and Winkler, 1983]. We were also inspired by a domain ordering idea
that was successfully used for the multiple rectangular search areas problem, a search theory
problem studied in [Abi-Zeid et al., 2011b]. We first published the heuristic in [Morin et al.,
2012]. Since then, it has been extended to produce a bound for the OSP [Simard et al., 2014,
2015]. We present it as it was first published in [Morin et al., 2012]. That is, as a value
selection heuristic for the searcher’s path variables.

The general idea is to simplify the probability system in the OSP problem by ignoring the
negative information received by the searcher when s/he fails to detect the object. That is,
at each time step t ∈ {1, . . . , T}, the heuristic chooses the most promising accessible vertex
based on the total probability of detecting the object in the remaining time.

Let GA = 〈V (GA) , E (GA)〉 be the accessibility graph where the searcher and the object
evolve. Let t ∈ {1, . . . , T} be a time step, y ∈ V (GA) be the position of the searcher, and
and o ∈ V (GA) be the position of the object. Let wt(y, o) be the conditional probability that
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the searcher detects the object in the time period [t, t+ 1, . . . , T ] given that, at time t, the
searcher is in y and the object in o. The function wt(y, o), which is backward recursive, is
defined as follows:

wt(y, o)
def=



pod (o), if o = y and t = T,

0, if o 6= y and t = T,

pod (o) + (1− pod (o))pt(y, o), if o = y and t < T,

pt(y, o), if o 6= y and t < T,

(4.15)

where

pt(y, o) =
∑

o′∈N (o)
Moo′ max

y′∈N (y)
wt+1(y′, o′) (4.16)

is the probability of detecting the object in the period [t+ 1, . . . , T ]. Equations (4.15) and
(4.16) have the following interpretation:

• If t = T , the searcher has a probability pod (o) of detecting the object when the searcher
and the object are co-located, i.e., o = y; otherwise, the searcher and the object are not
co-located and the probability is null.

• If t < T and o = y, then the searcher can detect the object at time t with probability
pod (o) or fail to detect it at time t with probability 1 − pod (o). If the searcher fails
to detect the object at time t, s/he may detect it during the period [t+ 1, . . . , T ].
The probability of detecting the object in the period [t+ 1, . . . , T ] is given by pt(y, o)
(Equation (4.16)) and may be interpreted as follows:

– In the case where there is only one edge leaving vertex o to vertex o′, the searcher
chooses the accessible vertex y′ that maximizes the conditional probability of de-
tecting the object in the time period [t+ 1, . . . , T ], given her/his new position y′

and the new object’s position o′, i.e., maxy′∈N (y)wt+1(y′, o′).

– In the general case where vertex o has many neighbors, pt(y, o) is the average of
all the maximal wt+1(y′, o′) weigthed by the probability Moo′ of moving from o to
o′.

This is reasonable since we do not control the object’s movements but we can move the
searcher to the vertex that has the highest probability of success.

• Finally, if the search time is not over (i.e., t < T ) and the object and the searcher are
not co-located (i.e., o 6= y), the probability of detecting the object at time t is null and
the probability of success depends entirely on the probability pt(y, o) of detecting the
object within the period [t+ 1, . . . , T ].
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A searching strategy S : {1, . . . , T}×V (GA)→ V (GA) assigns to each time step and searcher’s
position a vertex that is considered to be promising according to some heuristic. In the TD
heuristic case, the strategy sets the new searcher’s position to be the accessible vertex that
maximizes the probability of detecting the object in the remaining time:

St(PATHt)
def= argmax

y′∈dom (PATHt)

∑
o∈V(GA)

wt(y′, o)POCt(o), ∀t ∈ {1, . . . , T} . (4.17)

In order to apply this value selection heuristic, the following static ordering of the deci-
sion variables is used: PATH1, PATH2, . . . , PATHT . That is, the solver branches first on
PATH1, then on PATH2 and so on. Each time the solver branches on a new variable PATHt,
the strategy St(PATHt) is computed in polynomial time. To do so, we solve the recurrence
relation of Equation (4.15) during the generation of the model. We keep in memory a total
of T square matrices to store the TN2 required probabilities. Let W(t) be such a matrix.
Solving Equation (4.17) is now straightforward. Since the W(t) matrices are pre-computed,
the complexity of Equation (4.17) no longer depends on the time steps T .

4.2.1 Experiments on the Total Detection Heuristic

We showed, in section 4.1.1, that an objective function using Equation (4.6) triggers more
filtering than an objective function based on Equation (4.5). We thus retained the OSP-MAX
model from the experiments of Section 4.1.1. We show, in the next experiments, the benefits of
using the TD heuristic as a value selection heuristic in a CP model of the OSP problem. To do
so, we added the TD heuristic on top of the OSP-MAX model to select the next destination
of the searcher when branching. We call this model OSP-MAX-TD. We first compare the
performance of the OSP-MAX-TD model to the one of the OSP-MAX model which does not
use any problem-specific value selection heuristic but a simple decreasing domain general
heuristic. Both models branch on the path variables in their natural order, i.e., in the order
of the time steps. Second, we compare the performance of the OSP-MAX-TD model to the one
of the OSP-MAX-IB model which uses the impact-based search heuristic [Refalo, 2004]. The
experimental framework is the same as the one presented in Section 4.1.1. All tests consisted
of a single run on an instance

(
GA, T, pod (r)r∈V(GA), ρ

)
, as defined in Section 4.1.1. We

allowed a total number of 5,000,000 backtracks and a time limit of 10 minutes. Computations
were made on the supercomputer Colosse from Université Laval.

4.2.2 Results and Discussion

We compare, on Figure 4.4, the objective values of the incumbent solutions found by the
solver with and without the TD heuristic. Figure 4.4(a) is a two-by-two comparison of each
incumbent solution found within 10 minutes. Each dot compares the objective value achieved
by the solver when using the two compared methods on a single problem instance. Dots
that fall on the right-hand side of the dashed frontier belong to problem instances for which
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(b) OSP-MAX against OSP-MAX-TD: Last incum-
bent objective value in time; the higher the allowed
time is, the darker the dot is.

Figure 4.4: Comparison of the objective values obtained by the solver when using the OSP-
MAX model to the objective values obtained by the solver when using the OSP-MAX-TD
model; each dot is a comparison of the incumbent solutions found by the compared methods
on a single OSP problem instance.
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(b) OSP-MAX-IB against OSP-MAX-TD: Last incum-
bent objective value in time; the higher the allowed
time is, the darker the dot is.

Figure 4.5: Comparison of the objective values obtained by the solver when using the OSP-
MAX-IB model to the objective values obtained by the solver when using the OSP-MAX-TD
model; each dot is a comparison of the incumbent solutions found by the compared methods
on a single OSP problem instance.
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the TD heuristic improved the solver’s performance. Dots that lie on the frontier are ties
considering the allowed solving time. The bluer a dot representing an OSP problem instance
is, the larger the total number of allowed time steps for that problem instance is, i.e., the
black dots stand for the lowest value of T whereas the blue dots stand for larger values of T .
Figure 4.4(b) presents the same information at various points in time. The darker a dot is on
this figure, the larger the allowed solving time is. Similar figures are presented in Section 4.1.2
to assess the performance of the solver with respect to the choice of objective function. The
figures clearly show how much using the TD heuristic to select the next destination of the
searcher helps in finding high quality incumbent solutions quickly on the various instances of
our benchmark. There are, on Figure 4.4(b), many light gray dots on the right-hand side of
the dashed frontier meaning that the solver has found an incumbent of high quality near the
beginning of the solving process when using TD while failing to do so without the heuristic.
The benefits of the TD heuristics become clear for T large (see Figure 4.4(a)). Similar results
are obtained when comparing the objective value of the incumbent solutions obtained when
using impact-based search, i.e., with the OSP-MAX-IB model, to the one obtained when
using the TD heuristic as a value selection heuristic, i.e., with the OSP-MAX-TD model (see
Figure 4.5). We allowed the solver to use restarts when using impact-based search as it is
known to improve the performance of the heuristic [Refalo, 2004]. We disabled restarts with
the TD heuristic. Again, OSP-MAX-TD is a clear winner.

4.3 Further Discussion on the Total Detection Heuristic

In this chapter, we used the TD heuristic to select the next destination of the searcher in
a CP model. Even though we centered the discussion on CP, we found out, in additional
experiments, that the TD heuristic is efficient when used in conjunction with other solving
techniques as well. We could use it, for instance, in mixed-integer linear programming (MILP).
For this purpose, we would need to implement a MILP model similar to the one developed
in [Morin, 2010] for the OSP problem with a visibility criterion which is a generalization of
the OSP problem [Morin et al., 2009]. Using TD in a MILP could be done, for instance, by
providing the heuristic’s solution as a starting point for the MILP solver. It is also possible
to use TD as a branching heuristic directly in the solver. This second approach is similar
to what we have done in CP. Both methods showed positive results indicating that adapting
the TD heuristic to other solving techniques is not only feasible but also valuable. This is,
however, left as an open avenue for further research since we focus, in this chapter, on CP.

That being said, the benefits of using the TD heuristic as a value selection heuristic for the
OSP problem are clear. The solver finds incumbent solutions of high quality in short time
when using the TD heuristic as a value selection heuristic for the path variables. In order to
get an idea of how the TD heuristic behaves in our CP model, we can compare our results to
the ones published in the literature using an OSP specific B&B algorithm [Lau et al., 2008].
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Table 4.1: The time to last incumbent on a 11 × 11 G+ grid with pod (r) = 0.6 and ρ = 0.6
compared to the time spent by a B&B procedure to prove optimality when using various
bounds [Lau et al., 2008].

T Time to optimality (s)

Constraint Programming B&B algorithm with various bounds†

OSP-MAX-TD DMEAN MEAN PROP FABC

15 4 3 12 8 63
17 39 24 72 37 353
† The time values for the B&B algorithm are taken from [Lau et al., 2008].

After communicating with the authors of [Lau et al., 2008] we were able to validate that
our solutions for the G+ instances are optimal up to the fourth decimal notwithstanding the
mapping of the domains of the probability variables to integer bounded domains required for
implementation purposes on Choco 2.1.5 (see Section 4.1.1). Table 4.1 presents the time to last
incumbent on a 11×11 G+ grid with pod (r) = 0.6 and ρ = 0.6, and the time spent by a B&B
procedure to prove the optimality of its last incumbent solution when using various bounds
from the literature. We provided, in this chapter, a simple improvement of the definition of
the objective function to help the solver to prove the optimality of its incumbent solution
(see Equation (4.6)). The solver, however, did not prove the optimality of its last incumbent
solution for the largest values of T . A novel bound for the OSP problem is provided as part of
further research [Simard et al., 2014, 2015]. Such a bound greatly helps in pruning branches
of the B&B tree of the CP solver.

Finally, even though we used the TD heuristic to solve the OSP problem, it mainly deals with
two general notions. The first being the notion of transition probabilities defined between the
various states of a given state space. The second being the notion of a sequence of decisions
which influences the transition probabilities evolution in time and possibly a given objective
function. These decisions, in the OSP, are the constrained positions of the searcher, but
the concepts behind TD are general. Further challenges thus include the application of the
heuristic to other problems.
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Chapter 5

Markov Transition Constraint
This chapter is based on our original work published in [Morin and Quimper,
2014] and presented at the 11th International Conference on Integration of Arti-
ficial Intelligence (AI) and Operations Research (OR) Techniques in Constraint
Programming (CP-AI-OR 2014).

We present, in this chapter, a novel global Markov transition constraint (Mtc) to model
finite state space Markov processes with a finite number of steps T . Such processes arise in
many contexts including the modeling of the motion of a search object (see Section 1.4 of
Chapter 1 for an introduction to Markov chains). This chapter thus builds on the contribu-
tions of the previous one while providing a general contribution to CP. In a first study, we
discuss cases where elementary arithmetic constraints enforce bounds consistency (see Defi-
nition 1.2.19 from Section 1.2.1 of Chapter 1). We show, both theoretically and empirically,
that a set of elementary arithmetic constraints decomposing an Mtc is insufficient to enforce
bounds consistency in all cases. This justifies the need for a global filtering of Markov chains
and thus the introduction of the Mtc for both performance and modeling purposes. Apart
from a discussion on the capabilities of interval arithmetic filtering with and without implied
constraints1, we introduce two global filtering algorithms for this constraint. The first one
is based on linear optimization. The second one is inspired from a fractional knapsack algo-
rithm. Linear programming always performs bounds consistency. It is, however, an expensive
approach since a constraint solver needs to run the filtering algorithms on an exponential
number of nodes. We thus developed a filtering algorithm based on the fractional knapsack
problem. The method is proved to achieve bounds consistency when the transition matrix is
monomial and in the case of forward reasoning2. The class of filtering problems with forward

1 Implied constraints are redundant constraints. They fit the definition of the problem, but they are not
necessary. Adding such constraints to a CP model is known to improve filtering [Smith, 2006].

2 The expressions forward reasoning and backward reasoning as we use them in this chapter are not to be
confused with the forward and backward equations of a Markov chain [Cox and Miller, 1972]. In both forward
(backward) reasoning and the forward (backward) equation we compute information at step t using information
from step t′ < t (t′ > t). However, in both forward and backward reasoning we aim at computing a probability
distribution over the states whereas the backward equation deals with a notion of expected rewards.
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reasoning arises in many applications. In a second study and to conclude, we apply the Mtc
global constraint on a practical case of path planning under uncertainty: the OSP problem.

Example 5.0.1. We computed, in Example 1.4.1 (see Section 1.4 of Chapter 1), the proba-
bility distribution on a lost child’s location in a search environment made of three states: a
toys store (state 1), a candy store (state 2), and a food market (state 3). The child’s motion,
discretized on a 1 minute time scale, has been modeled as the following transition matrix:

M =


7
8

1
8 0

1
3

1
3

1
3

0 1 0

 . (5.1)

Suppose that we have no information on the child’s initial location, i.e., the probability
distribution at time 1 represented by vector x1 is uncertain or unknown. We might want to
use a uniform distribution to model the location of the child. This would be assuming that
the location probability of the child is uniform across the states at time 1. We want to avoid
such an assumption as it does not reflect our reality. Instead, we want to obtain the best
approximation on the location of the child after 1 minute, i.e., at time t = 2. The only thing
we know is that x1 is a distribution: it sums up to 1 and the probabilities are in the interval
[0, 1]. That is,

x1 = [[0, 1], [0, 1], [0, 1]] . (5.2)

The problem we want to solve is still to compute x2 by using the scalar product between x1

and M:

x2 = x1M. (5.3)

However, both x1 and x2 are vectors of interval probabilities. One simple solution is to rely
on interval arithmetic. By simply multiplying x1 by M we find that the probabilities of
locating the child in store 1, 2 or 3 are in the intervals: [0, 1], [0, 1], and

[
0, 1

3

]
respectively.

These are valid bounds, but these are not the tightest possible intervals. By relying on
linear optimization techniques or on the fractional knapsack filtering algorithm we present
in Section 5.2, we find that, the probabilities of locating the child in store 1, 2 or 3 are in
the intervals

[
0, 7

8

]
,
[

1
8 , 1
]
, and

[
0, 1

3

]
respectively. These are the tightest possible bounds

which are our best possible approximation on the location of the child. This is a solution
that interval arithmetic alone is not able to provide. Intuitively, we see, by inspection of the
transition matrix M, that the child moves to store 3 within a minute with a probability of
at most 1

3 since there is only one non-zero probability of transition to store 3. Thus, 1
3 is

the maximal probability that we locate the child in store 3 after a minute, i.e., at t = 2.
Furthermore, the child cannot be located in store 1 with a probability greater than 7

8 . The
only ways to reach store 1 is either by moving from store 2 or by staying there if we are
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already there. The former event has a probability of 1
3 while the latter has a probability of 1

8 .
The probability distribution on the location of the child at time t = 1, i.e. x1, sums to 1 by
definition. Thus, the probability that we locate the child in store 3 at time t = 2 is no more
than 7

8 which is achieved when the child is in store 1 with certainty at time t = 1 and stays
there. Finally, at t = 2 the child is in store 2 with a probability of at least 1

8 since x2 sums
up to 1 and since s/he is elsewhere with a probability of at most 7

8 . /

Clearly, filtering uncertain probability distributions (Definition 1.4.5) to the tightest possible
intervals (Example 5.0.1) is not as easy as computing the probabilities with a known probabil-
ity distribution (Example 1.4.1). Uncertainty on probability distributions arises in modeling
and problem solving due to external factors influencing the chain, imprecise data, and/or un-
certain knowledge. For instance, in the search operation model presented in Section 5.3, the
probability distributions are updated given the searcher’s actions. There is no way, without
knowing the entire searcher’s path, to compute the exact probability distribution for each
time step. Nonetheless, a CP solver needs to compute the tightest possible intervals for the
probabilities.

The rest of the chapter is organized as follows. We define the Mtc global constraint in
Section 5.1. Filtering methods for the Mtc are presented in Section 5.2. We present, in
that section, both theoretical and empirical results for the problem of filtering a single Mtc.
An application of the Mtc constraint to the OSP problem is presented in Section 5.3. We
conclude in Section 5.4.

5.1 The MTC Global Constraint Definition

We define a new constraint that encodes a single Markov transition.

Definition 5.1.1 (The Markov transition constraint). Let vector

X = [X1, . . . , XN ] (5.4)

and vector

Y = [Y1, . . . , YN ] (5.5)

be two vectors of variables that represent probability distributions over N . The domains of
the variables in vectors X and Y are:

dom(Xi) =
[
Xi, Xi

]
, ∀i ∈ N , (5.6)

where Xi and Xi are lower and upper bounds on variable Xi; and

dom(Yj) =
[
Y j , Y j

]
, ∀j ∈ N , (5.7)
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where Y j and Y j are lower and upper bounds on variable Yj . Given M, a known Markovian
transition matrix, the Mtc is defined as follows:

Mtc([Y1, . . . , YN ] , [X1, . . . , XN ] ,M)

⇔
∀j ∈ N :

∑
i∈N

XiMij = Yj ∧
∑
i∈N

Xi = 1. (5.8)

The constraint Mtc(Y,X,M) applies a transition matrix M to X and computes Y, i.e.,
Mtc(Y,X,M) states that Y = XM while maintaining ∑i∈N Xi = 1. /

Remark (Chaining Mtcs). Multiple Mtc constraints may be chained to compute a finite
Markov chain of T steps

Mtc(X2,X1,M),Mtc(X3,X2,M), . . . ,Mtc(XT ,XT−1,M), (5.9)

where vectors Xt (for t ∈ {2, . . . , T}) are vectors of CP variables representing probabilities.
This leads to the following constraint set to add to the model:

Mtc(Xt,Xt−1,M), ∀t {2, . . . , T} . (5.10)

Other constraints may be added on the Xi variables to interact with the chain. /

5.2 Domain Filtering for Markov Transitions

Since the constraint Mtc(Y,X,M) is satisfied only if X and Y represent probability distri-
butions, filtering this constraint can both be seen as an application of the theory of interval-
probability and as a linear optimization problem [de Campos et al., 1994, Weichselberger,
2000].

Remark (Uncertain distributions in CP). In our CP context, the uncertain probability distri-
butions arise from the domain of the variables. The vector

[dom(X1), . . . ,dom(XN )] =
[
[X1, X1] . . . , [XN , XN ]

]
(5.11)

is the vector of the domains of the variables representing probabilities. The first condition to
be an uncertain distribution is to have at least one of the variables that is not yet assigned.
That is, there must exists one k such that Xk < Xk. The second condition is to be a
distribution. That is, there must exists an assignment to the variables Xi that sums up to 1.
Such an assignment exists if and only if∑

i∈N
Xi ≤ 1 ≤

∑
i∈N

Xi. (5.12)

The same remark holds for vector Y. /
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We present three filtering algorithms to filter the variables Xi and Yj (∀i, j ∈ N ) subject to an
Mtc constraint. The first algorithm, denoted MTC-IA, uses the interval arithmetic [Moore,
1966] that is applied on a decomposition of the constraint. Following [Weichselberger, 2000]
who mentions that interval probability problems are linear optimization problems, the sec-
ond algorithm, denoted MTC-LP, performs a linear optimization to achieve bounds consis-
tency. The third algorithm, denoted MTC-FK, is a compromise between the two previous
approaches. It relaxes the problem into a set of fractional knapsack constraints on which it
enforces bounds consistency.

5.2.1 Interval Arithmetic Filtering

We decompose the global constraint Mtc(Y,X,M) into linear constraints as follows:∑
i∈N

XiMij = Yj , ∀j ∈ N , (5.13)
∑
i∈N

Xi = 1, (5.14)

∑
j∈N

YjM−1
ij = Xi, ∀i ∈ N , (5.15)

∑
j∈N

Yj = 1. (5.16)

Constraints (5.13) and (5.14) follow from the definition of the Mtc. Constraints (5.15)
and (5.16) are implied constraints that improve the filtering. We call MTC-IA the algorithm
that uses interval arithmetic to enforce bounds consistency on the constraints (5.13) to (5.16).
This algorithm, which is already implemented in most constraint solvers, simply enforces
bounds consistency on each constraint individually until a fixed point is reached. The implied
constraints necessitate the inverse of the transition matrix M. The inverse M−1 is computed
during the generation of the model, prior to solving the problem. This pre-solving process is
done in O(n3) where n is the size of matrix M. Implied constraints, even though they might
enhance filtering, are not always used in CP models. We call MTC-IA- the algorithm that
uses the interval arithmetic to enforce bounds consistency on the constraints (5.13) to (5.14).

We discuss specific cases where interval arithmetic enforces bounds consistency on the con-
straint Mtc. These cases require new definitions.

Definition 5.2.1 (Monomial matrix). A matrix A is monomial if and only if it has one and
only one non-null element in each column and each row. /

Proposition 1. A monomial transition matrix M is a permutation matrix.

Proof. The rows of M sums up to 1 by definition. Because M is monomial, we must have
one element set to one in every row and all other elements are null which result into a binary
matrix. Monomial binary matrices are permutation matrices.
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Proposition 2. The inverse of a monomial transition matrix M is a transition matrix.

Proof. M is a permutation matrix. The inverse of a permutation matrix is its transpose which
is also a permutation matrix.

Lemma 1. If M is monomial, then enforcing bounds consistency on the linear constraints (5.13)
and (5.14) enforces bounds consistency on Mtc(Y,X,M).

Proof. If M is monomial then it is a permutation matrix and the constraints (5.13) are
binary equalities. Suppose that constraints (5.13) and (5.14) are bounds consistent. Let x be
an interval support for (5.14) then y = xM is a permutation of x and, thanks to the equality
constraints (5.13), we have yi ∈ dom(Yi). Consequently, the upper bound and lower bounds of
the domains dom(Xi) have an interval support for Mtc(Y,X,M). Let π be the permutation
encoded by M. Since the bounds of dom(Yπ(i)) are equal to the bounds of dom(Xi), the
bounds of dom(Yi) also have an interval support for Mtc(Y,X,M).

Thanks to Proposition 2, Lemma 1 also holds when replacing constraint (5.13) by con-
straint (5.15) and/or constraint (5.14) by constraint (5.16).

5.2.2 Linear Programming Filtering

In this section, we describe our linear programming (LP) reformulation of the filtering problem
for the Mtc global constraint. Even though LP has not been applied (to our knowledge)
to the filtering of global constraints encoding a Markov chain, there exist examples in the
literature (e.g., [Bessiere et al., 2005] and [Bessiere et al., 2006]) where LP is used to filter
global constraints. These successes justify the application of the idea to Markov chains.

The LP filtering algorithm solves two linear programs per variable: one for the lower bound
and one for the upper bound. To obtain a lower bound on variable Xk, the LP minimizes Xk

(equation (5.17)) subject to the constraints (5.18) to (5.21).

minXk (5.17)

subject to∑
i∈N

MijXi = Yj , ∀j ∈ N , (5.18)
∑
i∈N

Xi = 1, (5.19)

Xi ≤ Xi ≤ Xi, ∀i ∈ N , (5.20)
Y j ≤ Yj ≤ Y j , ∀j ∈ N . (5.21)

New bounds on Xk, Y k, and Y k follow from a modification of the objective function. For
each state k ∈ N , we have the following LPs:
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• Xk = maxXk (resp. Y k = max Yk) subject to constraints (5.18) to (5.21);

• Xk = minXk (resp. Y k = minYk) subject to constraints (5.18) to (5.21).

Each of the 4N linear programs may be solved using the simplex method [Dantzig, 1949]. We
call this filtering technique based on linear optimization MTC-LP. If an exact LP method is
used (e.g., the simplex algorithm), we obtain optimal bounds on the domains of both X and
Y .

Theorem 5.2.1. MTC-LP enforces bounds consistency on Mtc(Y, X, M).

Proof. The proof is a direct consequence of using an exact method for solving the linear
programs.

5.2.3 Fractional Knapsack Filtering

The last filtering algorithm we present, denoted MTC-FK, is based on the fractional knapsack
problem and improves on the filtering done by the interval arithmetic. It is inspired from the
global knapsack constraint [Katriel et al., 2007]. We consider, for some l ∈ N , the pair of
constraints ∑i∈N Xi = 1 and ∑i∈N MilXi = Yl. To compute an upper bound on the variable
Yl, one greedily assigns the largest possible values to the variables Xi that are multiplied
by the greatest weights Mil while making sure that the constraint (5.14) is satisfied. To
compute a lower bound on the variable Yl, one needs to assign the largest values to the
variables multiplied by the smallest weights.

Algorithm 2 propagates the constraints (5.13) to (5.16) as well as the knapsack constraints∑
i∈N

XiMij = Yj ,
∑
i∈N

Xi = 1, (5.22)

and ∑
j∈N

YjM−1
ij = Xi,

∑
j∈N

Yj = 1 (5.23)

until it reaches a precision of ε. Algorithm 3 compute a lower bound on Yl (or Xl). Reversing
the order of the iterations in the for loop makes Algorithm 3 computes an upper bound on Yl
(or Xl).

Lemma 2. Let mj and mj be the greatest and smallest value in column j of the matrix M.
If
[
mj ,mj

]
⊆ dom(Yj) ∀j ∈ N then any distribution x1, . . . , xN (i.e., any assignment to the

variables of vector X that sums to one) has a support in Mtc(Y, X, M).

Proof. Let Mj be the jth column of M. Since the components of X sum to one and since
none are negative, the scalar product of X and Mj is a convex combination of the elements
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Function MTC-FK([X1, . . . , XN ], [Y1, . . . , YN ],M,M−1)

Input: A vector of variables that represents the current uncertain distribution over N :
[X1, . . . , XN ]; a vector of variables that represents the resulting uncertain
distribution: [Y1, . . . , YN ]; a transition matrix and its inverse: M and M−1.

Output: The vectors of probability variables with filtered domain: [X1, . . . , XN ], and
[Y1, . . . , YN ].

repeat
for i ∈ N do xold

i ← Xi −Xi;
for i ∈ N do yold

i ← Y i − Y i;
Enforce bounds consistency on constraints (5.13) to (5.16);
foreach l ∈ N do

Y l ← Fk-FilterLowerBound ([X1, . . . , XN ],Yl,[M1l, . . . ,MNl]);
Y l ← Fk-FilterUpperBound ([X1, . . . , XN ],Yl,[M1l, . . . ,MNl]);
X l ← Fk-FilterLowerBound ([Y1, . . . , YN ],Xl,[M−1

1l , . . . ,M
−1
Nl ]);

X l ← Fk-FilterUpperBound ([Y1, . . . , YN ],Xl,[M−1
1l , . . . ,M

−1
Nl ]);

until
√∑

i∈N (xold
i −Xi +Xi)2 +

√∑
i∈N (yold

i − Y i + Y i)2 ≤ ε;
return [X1, . . . , XN ], [Y1, . . . , YN ];

Algorithm 2: The MTC-FK filtering algorithm

Function FK-FilterLowerBound([U1, . . . , UN ],V l, [t1, . . . , tN ])
Input: A vector of variables that represents an uncertain distribution over N :

[U1, . . . , UN ]; a lower bound on the variable that represents the probability that
the process is in state l after applying transitions: V l; a vector of the transition
probabilities to state l: [t1, . . . , tN ].

Output: A new lower bound on state l probability: V l.
λ← 1−∑l∈N U l;
for k ∈ N in non-decreasing order of tk do

δ ← min
(
λ,Uk − Uk

)
;

uk ← Uk + δ;
λ← λ− δ;
if λ = 0 then break;

return max (∑i∈N uiti, V l);

Algorithm 3: The FK-FilterLowerBound lower bound filtering algorithm
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in Mj . Consequently, the result lies in the convex hull of Mj and it cannot be greater nor
smaller than any element in Mj .

Lemma 3. Let mj and mj be the greatest and smallest value in column j of the matrix M. If[
mj ,mj

]
⊆ dom(Yj) ∀j ∈ N then MTC-FK enforces bounds consistency on Mtc(Y,X,M).

Proof. The algorithm MTC-FK enforces bounds consistency on the constraint ∑i∈N Xi = 1
so that the lower bounds and upper bounds of the domains of the Xi can each form an
assignment of the variables Xi that sums to one. From Lemma 2, any assignment that
sums to 1 can be extended to a support of Mtc(Y,X,M). We now need to prove that the
variables Yi are fully pruned. If a bound of dom(Yi) is modified, this bound was computed by
the Algorithm 3 which constructed a valid support for the constraint. If a bound of dom(Yi)
is not filtered, then either Algorithm 3 computed the same bound (in which case, it has a
support) or it computed a larger one. However, the second case cannot occur since, as seen
in Lemma 2, the scalar product of any distribution with a column of M leads to a value in[
mj ,mj

]
⊆ dom(Yj).

Lemma 3 is particularly useful at the beginning of the search in a problem where the domains
of the variables Yi are the intervals [0, 1].

Theorem 5.2.2. The consistency achieved by each algorithm satisfies MTC-IA ≺ MTC-FK ≺
MTC-LP.

Proof. We first prove MTC-IA � MTC-FK � MTC-LP. The MTC-FK algorithm filters the
same constraints as MTC-IA but the knapsack constraints consider pairs of constraints which
offer a filtering that is not weaker. The algorithm MTC-LP achieves bounds consistency which
is optimal. We now show two examples which prove that MTC-IA 6= MTC-FK, and that
MTC-FK 6= MTC-LP. Let N = 3. Let dom (X1) = [.3, 1], and dom (X2) = dom (X3) = [0, 1].
Let dom (Y1) = dom (Y2) = dom (Y3) = [0, 1]. Let the transition matrix be

M =


0 .4 .6
.3 .4 .3
.4 .6 0

 . (5.24)

By Lemma 2, MTC-FK enforces bounds consistency whereas MTC-IA does not. In fact,
MTC-FK sets Y 1 = 0.28 whereas MTC-IA sets Y 1 = 0.49. Suppose that dom (Y1) = [.1, 1].
By Theorem 5.2.1, MTC-LP enforces bounds consistency which is not the case of MTC-FK.
In fact, MTC-LP sets X1 = 0.75 while MTC-FK sets X1 = 0.9.

5.2.4 Experiments on the Filtering of a Single MTC

In this section, we present empirical results to compare our filtering algorithms for the Mtc.
Each filtering algorithm was implemented in Octave 3.6.4 [Eaton, 2013] (Matlab 7.10.0.499
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Table 5.1: The characteristics of the instance sets

Name N M ρ = Mii Set size

Random {2, . . . , 100} Random Random 990
Star grids {4, 9 . . . , 100} Star grids {.2, .4, .6, .8} 360
Plus grids {4, 9, . . . , 100} Plus grids {.2, .4, .6, .8} 360
Zero-one-Y {2, . . . , 100} Random Random 990
Zero-one-X {2, . . . , 100} Random Random 990

(R2010a) [Mathworks, 2010]). We used the GLPK solver [Makhorin, 2012] and the IBM
ILOG CPLEX 12.5 [IBM, 2013] solver to solve our linear programs for the MTC-LP filtering
algorithm. We tend to prefer GLPK for this particular problem as it is lightweight. However,
CPLEX benefits from a higher numerical stability. Since Octave (Matlab) is an interpreted
language, we would add that the purpose of these experiments is not to compare the algorithms
on their processing speed, but rather to have insights on the quality their filtering.

We generated random domains and transition matrices. Each pair of random domains and
transition matrix is a single instance of the problem of filtering a single Mtc. For MTC-IA, we
present the results with and without the implied constraints (5.15) and (5.16), an algorithm
we call MTC-IA-. The MTC-LP enforces bounds consistency on all instances thus providing
the optimal bounds. Let xold, xold, yold and yold be the initial bounds of the filtering problem.
Let x∗, x∗, y∗ and y∗ be the optimal bounds found by MTC-LP. Let x, x, y and y be the
bounds found by a given filtering method. We define the proportion of optimality as the ratio
of the sum of the distances traveled, in the domain space, by a filtering method to the sum
of the distances traveled by MTC-LP:

Indp =

∥∥∥x − xold
∥∥∥+

∥∥∥xold − x
∥∥∥+

∥∥∥y − yold
∥∥∥+

∥∥∥yold − y
∥∥∥

‖x∗ − xold‖+ ‖xold − x∗‖+
∥∥∥y∗ − yold

∥∥∥+ ‖yold − y∗‖
. (5.25)

Filtering problem instances for which x = x∗, x = x∗, y = y∗, and y = y∗ is obviously not
interesting since they are already solved to optimality.

We generated five sets of filtering problem instances: a transition matrix M along with random
bounds on the variables of vectors X and Y. The randomly generated bounds are feasible,
i.e., the constraint Mtc is satisfiable. The first set (random) contains randomly generated
transition matrices. The second and the third sets (star and plus grids) are made of square
grids. For these matrices, each state is located in a cell of the grid. A state is connected to
its neighbors as follows:

• in the Plus grids instance set, each state is linked to its North, South, West and East
neighbors;
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• in the Star grids instance set, each state is linked to its North, South, West and East
neighbors plus to its diagonals neighbors (NW, NE, SW, SE).

The transition matrix of a grid instance follows an OSP-like motion model. Let ρ be the
conditional probability that the process stays in state i when it is in state i for any i ∈ N ,
i.e., the probability of stationarity ρ = Mii (∀i ∈ N ). Let deg(i) be the degree of cell i (loops
included) in the adjacency matrix of the grid. The transition matrix of a grid instance is
defined as:

Mij =


1−ρ

deg(i)−1 if i 6= j;

ρ if i = j.
(5.26)

We chose ρ ∈ {.2, .4, .6, .8}. The fourth set (zero-one-Y ) contains randomly generated transi-
tion matrices, but the domains of the variables of vector Y are [0, 1]. That is, the information
about the future (i.e., the uncertain distribution of vector Y) comes from the present (i.e.,
the uncertain distribution of vector X). This is the usual way to process Markov chains in
Markov processes. The fifth set (zero-one-X) models the converse case where the information
about the present state of the process comes from the future. Our benchmark library includes
non-singular matrices only. We generated 10 different instances for each pair of state space
size N and probability of stationarity ρ in each set for a total of 3690 instances. Table 5.1
summarizes the characteristics of the sets.

5.2.5 Results and Discussion

Figures 5.1 to 5.3 show scatter plots comparing the proportion of optimality achieved by
different filtering algorithms. The higher the proportion of optimality is on a given axis,
the better the filtering algorithm performs. A value of 1 represents a bounds consistent
domain as obtained by the MTC-LP algorithm. The MTC-LP algorithm achieved bounds
consistency in all cases (either using GLPK or CPLEX). It is thus a consistent point of
comparison for the other algorithms. The dotted line is a visual frontier between the two
compared algorithms’ performance. Dots on this visual frontier belong to instances for which
both compared algorithms produce the same filtering. A dot for which the algorithm on the
x-axis (y-axis) performs better than the algorithm on the y-axis (x-axis) lies on the right
(left) hand-side of the frontier. The algorithm with the highest density of dots on its side of
the frontier tends to achieve the best overall performance. Darker blue shades are used for
instances with a larger state space size (N); lighter blue shades are used for instances with a
smaller N .

As shown on Figure 5.1, MTC-IA (x-axis) outperforms MTC-IA- (i.e., MTC-IA without
implied constraints) (y-axis) on all instance sets. While the performance of the two algorithms
is similar on some random instances (Figure 5.1(a)), the importance of implied constraints
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(a) Random instances
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(b) Plus grids instances
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(c) Star grids instances
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(d) Zero-one-Y instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

IA proportion of optimality

IA
−

 p
ro

p
o
rt

io
n

 o
f 

o
p

ti
m

a
li

ty

 

 

N

20

40

60

80

100

(e) Zero-one-X instances

Figure 5.1: Proportion of optimality achieved by MTC-IA (IA) when compared to MTC-IA
without implied constraints (IA-)
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(b) Plus grids instances
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(c) Star grids instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FK proportion of optimality

IA
 p

ro
p

o
rt

io
n

 o
f 

o
p

ti
m

a
li

ty

 

 

N

20

40

60

80

100

(d) Zero-one-Y instances
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(e) Zero-one-X instances

Figure 5.2: Proportion of optimality achieved by MTC-FK (FK) when compared to MTC-IA
(IA)
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(a) Random instances
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(b) Plus grids instances

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FK proportion of optimality

IA
−

 p
ro

p
o
rt

io
n

 o
f 

o
p

ti
m

a
li

ty

 

 

N

20

40

60

80

100

(c) Star grids instances
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(d) Zero-one-Y instances
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(e) Zero-one-X instances

Figure 5.3: Proportion of optimality achieved by MTC-FK (FK) when compared to MTC-IA
without implied constraints (IA-)
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is clear as all the dots fall on the right hand side of the frontier. The scatter plots of the
grid instance sets (Figures 5.1(b) and 5.1(c)) favors MTC-IA. Zero-one-Y instances represent
forward in time inferences using M (Figure 5.1(d)). Zero-one-X instances represent backward
in time inferences using M−1 (Figure 5.1(e)). On these instances, we see the benefits of
the interaction between a set of elementary constraints: the implied constraints enable the
algorithm to further filter the domains backward in time whenever knowledge on the future
is acquired by forward filtering. The difficulty of backward inferences is shown by the fact
that the distribution of the results on the Zero-one-Y instances (forward inference) is closer
to 1 when compared to the distribution of the results on the Zero-one-X instances (backward
inference). This is partly due to the negative values in the inverse of most transition matrices.

As shown on Figure 5.2, MTC-FK (x-axis) outperforms MTC-IA (y-axis) on all instance
sets. The performance of both algorithms is close on the Random set (Figure 5.2(a)), but
still, MTC-FK performs better. It is clear that MTC-FK outperforms MTC-IA on the grid
instances (Figures 5.2(b) and 5.2(c)). We see that the increase of performance is mostly due
to MTC-FK by comparing these results to the ones of Figures 5.1(b) and 5.1(c) that show how
close the performance of MTC-IA is from the one of MTC-IA- on grids. Furthermore, MTC-
FK enforced bounds consistency on all Zero-one-Y instances (a result of Lemma 3) whereas
this is not the case for MTC-IA. Forward inference is easier than backward inference for both
algorithms: the distribution of the optimality results is closer to 1 on the Zero-one-Y set than
on the Zero-one-X set.

We recall that MTC-IA- is the intuitive way of decomposing a Markov chain in CP. That
is, without the use of any implied constraint. We present, in Figure 5.3, the scatter plots
comparing the proportion of optimality achieved by the filtering obtained with MTC-FK to
this usual method. By comparing the scatter plots of 5.2 to the ones of 5.3, we clearly see
how implied constraints can help MTC-IA- in improving its performance. This is especially
true in the case of the hardest instance sets Random and Zero-one-X (resp. Figures 5.3(a)
and 5.3(e)) where the distribution of the results tends to be farther of the frontier compared
to the one obtained when comparing MTC-FK to MTC-IA. This comparison favor MTC-FK.
Its efficiency is clear when compared to the usual way of modeling Markov chains (MTC-IA-).

5.3 Application to Search Path Planning

We illustrate the Mtc constraint usage on an optimal search path (OSP) problem as defined
in Chapter 2, the same problem we tackled in Chapter 4 using the TD heuristic and CP. We
first formulate the problem using a split Markov chain to allow us to use Mtcs in the OSP
definition. Then we present the CP model. We say that the Markov chain is split since events
that influence the probability distribution over the state space occur between the transitions.
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1.0

Searcher

Object

(a) At time t = 1, the searcher is in the upper left
corner and the object is in the middle vertex

S

(b) At time t = 2, the searcher and the object move
to an adjacent vertex; the object follows its motion
model defined by matrix M

Figure 5.4: A search environment with a one time step motion without search

S Removed

(a) At time t = 2, the searcher searches its current
vertex; the containment probability is null in that
vertex

S

Removed

(b) At time t = 3, the searcher moves to an adjacent
location and searches again; the vertex has a non-
null containment probability and some probability
mass is displaced to the “removed” state

Figure 5.5: A search environment with a one time step motion with a search

5.3.1 The OSP as a split Markov chain

A searcher moves on a graph GA = (V (GA) , E (GA)) in order to find a lost object within T
time steps. In absence of search, the object moves from vertex to vertex according to a known
transition matrix M (Figure 5.4). The probability that a vertex r contains the object at a
time t is called the probability of containment, or poct(r). The initial distribution, i.e., poc1, is
known a priori. The searcher influences the evolution of the chain by searching the vertices and
by removing the object as soon as s/he detects it. A special “removed” state that represents
the searcher’s hands is added to the state space to take searches into account (Figure 5.5).
The probability mass in the “removed” state corresponds to the cumulative overall probability
of success, i.e., to the OSP objective function we presented in Sections 2.2.2 and 2.2.3 of
Chapter 2 (see also [Frost, 1999d, Stone, 2004]).

We redefine the problem more formally as a split Markov chain. The distribution xt over the
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states is

xt = [poct(1), . . . , poct(N), cost−1] , (5.27)

where cost, the searcher’s cumulative overall probability of success at time t, corresponds to
the probability mass in the removed state at time t (with cos0 = 0). When the searcher is
located in a given vertex r at time t, i.e., yt = r, s/he searches that vertex. Her/his known
probability of detection in a vertex r, i.e., pod (r), is conditional to the object’s presence (and
assumed independent of past searches). At a time t, the searcher sees her/his current location
only. The local success of the searcher in r at time t is thus:

post(r) =

poct(r)× pod (r) if r = yt,

0 if r 6= yt.
(5.28)

This local success probability at time t is the probability mass that we move to the removed
state at that time step. We recall that the success up to time t, i.e., the probability that the
object is in the removed state, is

cost =

post(yt) if t = 1;

cost−1 + post(yt) otherwise.
(5.29)

We split the chain by introducing a distribution x̂t that models the search:

x̂t = [poct(1)− post(1), . . . , poct(N)− post(N), cost] . (5.30)

Finally, we apply the object’s motion to the searched distribution as follows:

xt+1 = x̂t
[

M 0
0 1

]
. (5.31)

The searcher’s goal is to maximize cosT .

5.3.2 A CP model with Mtcs for the OSP

The OSP, as defined in the previous subsection, leads to a novel CP model with four sets of
interval-domain probability variables:

• the variables POSt(r) (∀t ∈ {1, . . . , T} , r ∈ V (GA)) represent the local successes:

– given t and r, the variable POSt(r) corresponds to the probability mass to remove
from the vertex r of the graph at time t;

• the variables POCt(r) and POCsearch
t (r) model the split Markov chain (∀t ∈ {1, . . . , T} ,

r ∈ V (GA)):
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– given t and r, the variable POCt(r) is the probability of containment of the object
in vertex r after a move and before the search action that occurs at time t;

– given t and r, the variable POCsearch
t (r) is the probability of containment of the

object in vertex r after the search action that occurs at time t;

• the variables COSt represent the probability of finding the object up to time t (∀t ∈
{1, . . . , T}).

A set of finite-domain variables PATHt models the searcher’s path. The domains of each path
variable is a subset of vertices, i.e., dom(PATHt) ⊆ V (GA) (∀t ∈ {1, . . . , T} ). POC1(r) =
poc1(r), and PATH0 = y0 (where y0 can be used to constraint the initial position of the
searcher) are known data. The probability of finding (removing) the object up to time t is:

COSt =
∑

1≤t′≤t
max

r∈V(GA)
POSt′(r). (5.32)

The objective is to maximize COST subject to the graph edges constraints:

(PATHt−1, PATHt) ∈ E (GA) , ∀t ∈ {1, . . . , T} ; (5.33)

the probabilities of success along the path of the searcher:

PATHt = r =⇒ POSt(r) = POCt(r)pod (r), ∀t ∈ {1, . . . , T} , ∀r ∈ V (GA) ; (5.34)

PATHt 6= r =⇒ POSt(r) = 0, ∀t ∈ {1, . . . , T} , ∀r ∈ V (GA) ; (5.35)

the effect of searching on the chain:

POCsearch
t (r) = POCt(r)− POSt(r), ∀t ∈ {1, . . . , T − 1} , ∀r ∈ V (GA) ; (5.36)

and the application of the Markovian transition matrix of the object on the split chain:

Mtc
(

Xt+1, X̂t,

[
M 0
0 1

])
, ∀t ∈ {1, . . . , T − 1} , (5.37)

where

Xt+1 = [POCt+1(1), . . . , POCt+1(N), COSt] , (5.38)

and

X̂t =
[
POCsearch

t (1), . . . , POCsearch
t (N), COSt

]
. (5.39)
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5.3.3 Experiments on the OSP Problem

We implemented two Markov chain-based models for the OSP using Choco Solver 2.1.5 [Labur-
the and Jussien, 2012]. The first, MTC-OSP-IA-, uses a standard elementary arithmetic con-
straints decomposition in the implementation of Constraint (5.37). This model is equivalent
to the OSP-MAX model presented in Section 4.1 of Chapter 4. The second, MTC-OSP-FK ,
uses fractional knapsack filtering in the implementation of Constraint (5.37). We kept the
model as close as possible to the one presented in Chapter 4 while adding the necessary vari-
ables to model the search with Mtcs. The goal of these experiments is to show the benefits
of the additional filtering triggered by the Mtc when compared to the elementary arithmetic
constraints decomposition. We first compare the results obtained by our chosen solver when
using the MTC-OSP-IA- model against the ones obtained when using the MTC-OSP-FK . In
both cases, the solver branches in the natural static order of the path variables (i.e., from
PATH1 to PATHT ) and then apply a decreasing domain heuristic to instantiate the next
variable. Second, we discuss the results obtained when using both models along with the TD
heuristic from Chapter 4. Again, the solver branches on the path variables in the order of the
time steps, but it uses the TD heuristic to select the value from the domain of the variable
to instantiate. We call these models MTC-OSP-TD-IA- and MTC-OSP-TD-FK .

We followed, for our experiments on the application of the Mtc global constraint to the OSP
problem, the experimental framework presented in Section 4.1.1 of Chapter 4. The accessi-
bility graphs (GA) of the OSP problem instances in our benchmark are the following: G+, a
11 × 11 plus grid where adjacent vertices are linked by an edge (diagonals excluded), G∗ a
11×11 grid where adjacent vertices are linked by an edge (diagonals included), and the Univer-
sité Laval tunnels map GL which is the graph we used in the example of Figure 5.4(a) (see also
Figure 4.1 in Section 4.1.1 of Chapter 4). The object starts in the middle of the graphs. The
searcher starts in the upper left corner. The total number of time steps allowed for the searches
are T ∈ {9, 11, 13, 15, 17}. For each problem instance, the detection probabilities (pod (r)) are
uniform across regions. The detection probabilities are pod (r) ∈ {0.3, 0.6, 0.9}. The motion
model of the search object, i.e., its transition matrix M, is as defined by Equation (5.26).
That is, there is a probability ρ that the object stays in place. The remaining probability
mass is distributed uniformly on the accessible positions. We chose ρ ∈ {0.3, 0.6, 0.9}.

All implementations are done using the Java programming language, the Apache Commons
Math library [Commons, 2010], the Java Universal Network/Graph (JUNG) 2.0.1 frame-
work [O’Madadhain et al., 2010], and Choco Solver 2.1.5 [Laburthe and Jussien, 2012]. We
found out that a precision of ε = 10−2 is sufficient for the Mtc to have a positive impact
on the performance of the solver in our problem instances. It should however be understood
that this value is dependent on the OSP problem instances to solve as well as on the precision
used in the domain of the probability variables. As we did in the experiments presented in
Chapter 4, we mapped the domain of the probability variables of our OSP CP models from
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(b) MTC-OSP-IA- against MTC-OSP-FK : Last in-
cumbent objective value in time; the higher the al-
lowed time is, the darker the dot is.

Figure 5.6: Comparison of the objective values obtained by the solver when using the MTC-
OSP-IA- model to the objective values obtained by the solver when using the MTC-OSP-FK
model; each dot is a comparison of the incumbent solutions found by the compared methods
on a single OSP problem instance.

reals in [0, 1] to integers in [0, U ] (with U = 104). This is required for implementation pur-
poses in Choco 2.1.5. This leads to a precision of four decimals in computations. This is an
implementation characteristic and a constraint of the chosen solver. It is not a limitation of
the Mtc filtering algorithms which would be allowed to perform at their full potential when
implemented in a solver allowing the use of real-valued variables with bounded domains of
a higher decimal precision. Computations were made on the supercomputer Colosse from
Université Laval. We allowed a total number of 5,000,000 backtracks and a time limit of 10
minutes.

5.3.4 Results and Discussion

We compare, on Figure 5.6, the objective values obtained by the solver when using the MTC-
OSP-IA- model against the objective values obtained by the solver when using the MTC-OSP-
FK model. Each dot on the subfigure on the left-hand side (see Figure 5.6(a)) is a comparison
of the objective value of two incumbent solutions of a single OSP problem instance. The first
solution is the one found by the method on the y axis and the other is the one found by the
method on the x axis. A dot on the dashed frontier represents a tie. A dot on the right-hand
side (resp. left-hand side) of the frontier is a win for the method on the x axis (resp. y
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axis). The gradient from black to blue is used to represent the total number of allowed time
steps (from T = 9, in black, to T = 17, in light blue). The subfigure on the right-hand side
(see Figure 5.6(b)) represents a similar information, but at intervals of one minute from the
beginning to the end of the solving process leading to a total of 10 snapshots in time, i.e.,
from one to ten minutes of allowed solving time. A gradient from gray (1 minute of solving
time) to black (10 minutes of solving time) identifies to which snapshot a dot corresponds.
The best so far objective value at each time interval can thus be compared. We see, from the
figures, that the supplementary filtering triggered by the Mtc global constraint when using
fractional knapsack filtering is beneficial from the beginning to the end of the solving process.
Effectively, the vast majority of the solutions found by the solver at different intervals during
the solving process are on the right-hand side of Figure 5.6(b) meaning that a more thorough
filtering leads to an improved performance.

We present a comparison of the total number of backtracks triggered by elementary constraints
filtering against the total number of backtracks triggered by fractional knapsack filtering on
Figure 5.7. These are the number of backtracks required by both methods to find their best
incumbent solution. A better or equal objective value plus a fewer number of backtracks is
better. The importance of thorough filtering for the probability variables is clear when the
solver is not using the TD heuristic (see Figure 5.7(a)). The distribution of the results on the
total number of backtracks shows that while achieving better or equal objective values in the
vast majority of the cases when using fractional knapsack filtering, the solver does so in less
backtracks compared to elementary constraints filtering.

That being said and even though we demonstrated that the theoretical consistency achieved
by the fractional knapsack algorithm is better than the one achieved by elementary constraints
(with or without implied constraints), some cases might occurs in practice where a thorough
filtering is not improving the performance of the solver. This may be due, for instance, to
the interaction between a heuristic (e.g., the TD heuristic) and the solving process. Good
heuristics do not branch on inconsistent values and thus require less filtering. This is partly
what we observed when using the Mtc along with the TD heuristic from Chapter 4, i.e.,
when comparing the MTC-OSP-TD-FK model to the MTC-OSP-TD-IA- model. The objective
value of the solutions found by both methods within 10 minutes of allowed solving time (or
5,000,000 backtracks) being similar in presence of the TD heuristic, we use the distribution
of the total number of backtracks for comparison purposes (see Figure 5.7(b)). Again, in the
vast majority of the cases, the solver benefits from the additional filtering provided by the
fractional knapsack algorithm to reduce the total number of backtracks.
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Figure 5.7: Comparison of the filtering triggered by the elementary constraints to the one
triggered by the fractional knapsack filtering algorithm for the Mtcs with and without the
TD heuristic; each dot is a comparison of the incumbent solutions found by the compared
methods on a single OSP problem instance. The complexity of the instance (in terms of
allowed time steps T ) is represented by a gradient from black to blue. Fewer backtracks is
better.

5.4 Further Thoughts on the Filtering of Markov Transitions

The development of global constraints related to Markov processes has just recently begun (see
Section 1.4.2 of Chapter 1). Given the broad interest in Markov processes and the extensive
literature on the subject, it seems clear to us that major improvements are still to come for
this type of constraints. The Markov transition constraint (Mtc) makes no exception. We
saw that linear programming is at least as hard as the problem of filtering the probability
variables of a single Mtc in the general case. That is, it always enforces bounds consistency.
We also saw that, in some specific cases, the problem of filtering an Mtc is tractable. One
possible avenue to improve the filtering of an Mtc is to explore the theory of Markov chains
to determine if there exist other cases where filtering the domains of the variables in the scope
of the constraint would be easier than solving linear programs. A filtering algorithm could
exploit these tractable cases during filtering. The generalization of the constraint to the case
of imprecise Markov Chains (see Section 1.4.3 of Chapter 1) is another promising avenue for
further research that would enhance CP expressiveness. Cases where the transition matrix M
is uncertain are of interest in practice. It could be useful, for instance, to model the searches
in an OSP. The probability mass that transits to the removed state at a given time step is
usually uncertain until a search takes place at this time step.
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Conclusion

The contributions of this thesis are in two major fields of research linked to path planning:
in coverage (a CPP problem generalized to imperfect extended detection) and in detection
search-related path planning (the OSP problem). The two problems we dealt with come from
two different communities. The CPP is a challenge in mobile robotics. The OSP is a classic
from search theory. We presented in Chapter 2 a review of both problems. We can see,
from a study of both the CPPIED problem and the OSP problem, that these formalisms are
complementary from a modeling point of view. A particularity of the CPPIED is that it really
comes close to the OSP from search theory. First, it uses the concept of detection model.
Second, coverage paths can be seen as search patterns. It has been discussed, in Chapter 2
that search theory problems usually deals with discretized environments with large sub-areas
(regions of several square nautical miles in the case of search operations at sea). In each of
these large regions, an assumption on the sensor’s search pattern is provided by the decision
maker in order to completely define the detection model of the searcher (search unit). Search
operations can easily be seen in terms of macro and micro planning. A macro planner would
attribute the search effort to large regions and then, a micro planner would find a coverage
pattern over the large region in order to guarantee that the required probability of detection
is achieved. This is only one of the possible interactions between these two problems. From
a broader decision making perspective, the two problems can also be independently seen
as two tools for search, surveillance, and detection operations. Whenever the prior on the
whereabouts of the search object are unknown, the practical problem at hand is suitable to
be a CPP variant. Whenever the prior is known, the practical problem is suitable to be an
OSP. A further interesting distinction between coverage and search is in the considered goal
(objective) and the available resources (constraints). We can see that OSPs have a tendency
to maximize the probability of finding the object (the goal) under constrained resources (e.g.,
time) whereas CPPs have a tendency to minimize expenses (e.g., time required to complete
the operation) under a coverage constraint, e.g., a minimal required probability of detecting
a search object. These comparisons are possible when adopting the point of view of searches.

Our specific contributions are the following. We presented, in Chapter 3, a generalized CPP
with imperfect extended detection (CPPIED) where the robot (or agent) is allowed to survey
cells sideways from a distance. The sensor is modeled by using conditional detection probabil-
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ities for the scans [Gage, 1993]. This concept is similar to that of probability of detection (or
detection model) found in search theory for the optimal search path (OSP) problem [Stone,
2004]. Since that perfect coverage in presence of imperfect sensor is not possible, the goal
in the CPPIED is to guarantee that a minimal required coverage is achieved by the robot.
Following [Drabovich, 2008], we consider that an efficient path is of minimal length while
also minimizing the number of turns as our tie breaking criterion. We positioned our re-
search with respect to applications in coverage for underwater minesweeping operations. For
the discretized seabed maps involved in these coverage problems are made of more than 21
thousands cells and thus involve a huge combinatorial space, we chose to develop a heuristic
algorithm. It turned out that our heuristic, we called the dynamic programming sweeper (or
simply DpSweeper) outperformed the existing technique from the literature [Drabovich, 2008]
by providing short coverage path within a minute or so even on the hardest problem instances
in our benchmark. Since a cell by cell (move by move) path planning algorithm is likely to
be inefficient on very large maps, our algorithm uses a decomposition of the problem in two
phases. During the first phase of the algorithm, we greedily construct a partial path made
of disconnected segments. A robot traversing all these disconnected segments is guaranteed
to achieve the minimal required coverage. The first subproblem to solve when creating the
required set of disconnected segments is to choose, for a given row or column of the seabed
grid, a plausible segment of optimal length. This problem, when solved independently for
each row (column), is the maximal subarray problem which is solvable in polynomial time
using Kadane’s algorithm [Bentley, 1984], an example of dynamic programming. The second
subproblem to solve is to choose a set made of disconnected segments to add to the partial
path. Distant sensor scans render the coverage problem much more difficult since detections
may easily overlap. Overlapping detections are required to solve many CPPIED problem
instances due to the imperfectness of the sensor. We chose to select a set of disconnected
segments with non overlapping detection at a time to add it to the disconnected partial path.
While enabling the use of dynamic programming (segments with non overlapping detections
do not interfere with each other), the algorithm has a tendency to produce parallel segments
which is an intuitive form of coverage pattern. Sets of disconnected segments with non over-
lapping detection are added to the partial path until the point where the required coverage is
achieved in each cell of the seabed map. The second phase of the problem consists in recon-
necting the segments of the partial path. This is done by using a traveling salesman problem
(TSP) reduction we developed. We used, to solve the TSP problem instance of the second
phase, the Concorde TSP solver [Applegate et al., 2011], a solver capable of closing many
instances (some of which having more than 2 thousands nodes) of TSPLIB [Reinelt, 1991]
within a few minutes. We also discussed the applicability of the CPPIED problem and of our
heuristic algorithm in a context more general than the one of underwater minesweeping op-
erations and concluded that the use of both in obstacle-free environments is straightforward.
The case of environments with obstacles would require adapting the algorithm and the model
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so that the generated segments and the TSP reduction consider the obstacles. This would be
a generalization of the problem.

In Chapters 4 and 5, we dealt with a different, but related, problem from search theory: the
OSP problem. We presented, in Chapter 4, a novel CP model to solve the OSP problem. We
first improved on using the intuitive objective function found in the problem definition. Our
novel objective function, involving a single modification of the operators used to compute the
probability of success of a search, leads to a stronger filtering of the probability variables used
in the model to represent the whereabouts of a search object during the operation. While
being useful, this proved to be insufficient to drastically improve the CP solver performance.
We thus developed a novel heuristic based on search games from graph theory. We called
this heuristic the total detection (TD) heuristic in that it computes the total probability of
detecting the search object in the remaining time. Our experiments first showed that the
heuristic, when used to select the next destination of the searcher in our CP model of the
OSP, improves on the objective value found by the solver. Furthermore, it proved to improve
on the performance of the solver compared to impact-based search [Refalo, 2004], an efficient
general purpose heuristic in CP. We presented the heuristic in a CP context to select, at
each time step, the next destination of the searcher. However, we consider it as a general
heuristic for the OSP problem that is applicable to solving techniques such as mixed-integer
programming or local search.

In Chapter 5, we went further on with the study of the OSP in CP. The main contribution of
this chapter is, nonetheless, general. We developed the Markov transition constraint (Mtc).
The Mtc, a novel global constraint, is a useful tool to filter CP models with probability
variables involved in a Markov chain. Markov chains are a widely used modeling tool. We
provided, by introducing the Mtc, an accessible way to model Markov chains in CP. We
proved, both empirically and theoretically, that interval arithmetic is insufficient to enforce
bounds consistency of a single Mtc. It turns out that interval arithmetic is the only algorithm
available to a solver when we decompose the Mtc into individual arithmetic constraints.
We developed, for the purpose of enforcing bounds consistency on the probability variables
of an Mtc, a filtering algorithm based on linear programming. We also provided, as an
in-between solution improving on the filtering of interval arithmetic, a fractional knapsack
filtering heuristic. The fractional knapsack filtering algorithm for the Mtc enforces bounds
consistency in the case of forward reasoning, the usual way of solving a Markov chain. We
applied the Mtc to a CP model of the OSP. We showed that the novel global constraint
improved on the filtering performance of the solver on that problem.

That being said, even though we adopted the point of view of search and coverage opera-
tions thorough this thesis, the developed tools are meaningful in other contexts as well. Our
formalisms deal with general notions found in Markov chains. There are, in these models, de-
cisions taken at different points in time that influence the chain. The proposed formalisms and

109



the solutions to such issues, while being highly applicable to search and coverage problems,
are far from being single purpose solutions. It can be seen, from the myriad of applications
related to the matter found in the literature (see Chapter 2) that coverage is of capital im-
portance. Even the simplest coverage problems in terms of definition (such as the TSP) have
applications ranging from art to circuit boards soldering [Cook, 2012]. We can also think of
the applicability of search theory to a myriad of cases including the ones that are farther from
being purely a search operation such as medical diagnosis [Iida, 1992]. Not surprisingly, the
idea of allocating “search effort” is even found in combinatorial optimization [Tsang et al.,
1999]. Is it not exactly what the solver does when searching for solutions? A solver’s, or more
generally an algorithm’s, sole aim is often to efficiently cover or search a decision space, a
concept notably exploited by Russell and Norvig [2013] in their book on artificial intelligence.
Outside the combinatorial world of computers, artificial intelligence and problems solving, it
remains that coverage and search problems have important humanitarian applications from
search and rescue to minesweeping. All in all, clever algorithms and solutions should ulti-
mately aim at supporting such important decisions from various domains which remains an
on-going and day-to-day challenge in research.
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Appendix A

List of Symbols

COS A cos constraint programming variable 73–75, 102
cos The cumulative overall probability of success of a search

plan has different flavors depending on the search the-
ory problem to solve. For an OSP problem, the cos up
to a time t is defined as cost = ∑

t′≤t
∑
r∈V(GA) post′(r).

42, 45–49, 52, 71, 73,
74, 101

dom The domain of a variable is the set of plausible values
to which that variable can be instantiated.

11–18, 20, 28, 75, 81,
87, 88, 90, 91, 93, 102,
112, 114

FSET Given a combinatorial optimization problem instance,
the feasible solution set is the set of all solutions that
satisfy the constraints of the problem instance, i.e., the
set of all candidate solutions.

10, 25

H∗,V∗ In the DpSweeper algorithm context, H∗ (resp. V∗) is
the subset of segments that maximizes the sum of the
horizontal (resp. vertical) gains over the rows (resp.
columns) subject to a non-overlapping detection con-
straint.

59–63

M A Markovian transition matrix 26–28, 48, 73–75, 77,
80, 86, 88–95, 99–103,
106

N The state space of a Markov chain 26, 28, 87–93, 95
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O The seabed map matrix in a CPPIED problem 55–58, 60, 65

POC search A poc constraint programming variable that takes
searches into account.

101, 102

POC A poc constraint programming variable 73, 74, 76, 81, 101, 102
poc The probability of containment distribution that car-

ries the knowledge on the whereabouts of a search
object. In an OSP problem, the evolution of the
whereabouts is subject to the motion of the search
object and to the searches. We have that poct(r) =∑
s∈V(GA) Msr

[
poct−1(s)− post−1(s)

]
.

42, 46–50, 73, 75, 76,
100–102

pod The probability of detection definition varies with re-
spect to the considered search theory problem. In an
OSP, it is the probability of detecting the object when
both the searcher and the object are co-located.

44–48, 50, 73–77, 80,
81, 84, 101–103

POS A pos constraint programming variable 73–76, 101, 102
pos In an OSP problem, the (local) probability of success

in a region (vertex) r at a time t is defined as post(r) =
poct(r)× pod(r).

46, 48, 50, 75, 101

pscan The conditional detection probability of a sensor scan
is the detection model of the searcher (robot or agent)
in a CPPIED problem. It is defined by a |T | × rmax

matrix with the seabed types on rows and the lateral
distances in number of cells on columns.

56–58, 60, 65

rmax The maximal lateral range of a sidescan sonar in num-
ber of cells in a CPPIED problem.

55–57, 59–62, 65

S In the DpSweeper algorithm context, S is the set of
disconnected segments used to construct the path of
the searcher (robot, agent) so that the required cover-
age D is achieved.

59–64

T The set of seabed types in the CPPIED problem 55–57, 60, 62

X The upper bound of the domain of a constraint pro-
gramming variable X is X = maxx∈dom(X) x.

12, 16, 17, 87, 88, 90–
92, 94

X The lower bound of the domain of a constraint pro-
gramming variable X is X = minx∈dom(X) x.

12, 16, 17, 75, 87, 88,
90–94
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Appendix B

Complement to Domain Filtering
Examples in Constraint
Programming

We presented, in Section 1.2.1 of Chapter 1, two examples of search trees for a CP model
of the HCP problem over the graph G reproduced here on Figure B.1. In the first example,
Example 1.2.3, we assume a solver that branches in a depth-first fashion as it explores the
search space of the tour variables. The solver backtracks 15 times when using this strategy.
In the second example, Example 1.2.4, we assume that the solver implements filtering algo-
rithms for the constraints used in the model. The solver does not backtrack when using this
strategy on this problem instance which is an improvement over using a depth-first search
with backtracking and without filtering. Table B.1 completes Example 1.2.4 by providing
details on the solver’s actions. Values are selected in the lexicographic order they appear in
the domain of the tour variables.

Figure B.1: The HCP instance of Examples 1.2.3 and 1.2.4 of Section 1.2.1 of Chapter 1
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