
Effective Profiling of Tree Search in Constraint

Programming

by

Maxim Shishmarev

Thesis

Submitted by Maxim Shishmarev

for fulfillment of the Requirements for the Degree of

Doctor of Philosophy (0190)

Supervisor: Dr. Guido Tack

Associate Supervisors: Prof. Maria Garcia de la Banda, Dr. Christopher Mears

Faculty of Information Technology

Monash University

March, 2018

© Copyright

by

Maxim Shishmarev

2018

Contents

List of Tables . vi

List of Figures . vii

List of Abbreviations . xi

Abstract . xii

Acknowledgments . xv

1 Introduction . 1

2 Background . 9

2.1 Introduction . 9

2.2 Profiling in Imperative Programming . 9

2.3 Constraint Satisfaction Problems . 10

2.4 Tree Search . 11

2.4.1 Alternative to CP Approaches . 14

2.5 Modelling with MiniZinc . 15

2.5.1 MiniZinc Compilation Process . 17

2.6 Related Work . 19

2.6.1 Brief History of Profiling of Constraint Problems 20

2.6.2 Search Tree Visualisations . 22

2.6.3 Comparison of Executions . 27

2.6.4 Visualisation of Domains . 29

2.6.5 Constraint Visualisations . 32

2.6.6 Propagation Views . 36

2.6.7 Visualisation of Solutions . 36

2.7 Summary . 38

3 An Architecture for Profiling CP Search 39

3.1 Requirements for Effective Profiling . 39

iii

3.2 Design Decisions . 41

3.2.1 The Profiling Architecture . 42

3.2.2 Communication Protocol . 44

3.3 Development and Evaluation of a Prototype 46

3.3.1 The Protocol Specification . 46

3.3.2 Efficiency Evaluation of the Profiling System 48

3.4 Solver Integrations . 50

3.5 Related Work . 53

3.6 Summary . 55

4 Visualisation of Search Trees . 57

4.1 Traditional Search Tree Visualisation . 58

4.1.1 The State of the Art in Search Tree Visualisation 58

4.1.2 Visually Determining the Size of Subtrees 59

4.2 Overview Visualisations . 62

4.2.1 Indented Pixel Tree Plots . 62

4.2.2 Icicle Tree . 66

4.3 Navigation . 68

4.4 Summary . 71

5 Finding Recurring Patterns in Executions 73

5.1 Measuring the Similarity among Subtrees 74

5.2 Algorithms for Similar Subtree Analysis . 76

5.2.1 Similarity by Contour . 76

5.2.2 Finding Identical Subtrees . 78

5.2.3 Filtering the Results . 81

5.2.4 Eliminating Subsumed Patterns . 82

5.3 Implementation within CP-Profiler . 83

5.4 Case Study . 86

5.5 Summary . 88

6 Techniques for Comparing Executions . 89

6.1 Introduction . 89

6.2 Comparison of Executions . 89

6.2.1 Comparison Algorithm . 90

6.2.2 Performance experiments . 92

6.3 Search Replaying . 94

6.3.1 The Protocol for Replaying . 95

iv

6.3.2 The Algorithm for Recording Search 96

6.3.3 The Algorithm for Replaying . 96

6.4 Case Studies . 99

6.4.1 Case Study: The All Interval Series Problem 99

6.4.2 Case Study: The Intensity-Modulated Radiation Therapy Problem . 102

6.5 Related Work . 106

6.6 Summary . 107

7 Analysis of Learning Solvers . 109

7.1 Background on No-Good Learning . 109

7.2 The Methodology . 113

7.3 Implementation . 115

7.4 Case Studies . 115

7.4.1 First Case Study: the Free Pizza Problem 116

7.4.2 Second Case Study: the Golomb Ruler Problem 118

7.4.3 Third Case Study: the Radiation Problem 120

7.5 Summary . 124

8 Conclusions . 125

v

List of Tables

3.1 Information sent to build a simple tree. 46

3.2 Field types in the protocol. 47

3.3 Example of a correspondence between a solver and the profiler. 48

3.4 Time taken in a worst-case scenario (no propagation). 49

3.5 Time taken for the Golomb Ruler (GR) problem. 50

3.6 Time taken for the N-Queens problem. 50

5.1 Steps performed for finding identical subtrees in Example 5.2.1. 81

5.2 Similar subtree analysis performance (by contour). 85

5.3 Similar subtree analysis performance (by identity). 85

6.1 Experimental results of merging search trees. 93

6.2 All Interval Series Problem, number of failures to find all solutions. 101

6.3 Solving the Radiation problem using Gecode, Chuffed, and Gecode with
search replaying. 106

7.1 Most effective learnt clauses in the Free Pizza problem. 116

7.2 Aggregate Results for Free Pizza over a set of random instances (relative). . 119

7.3 Most effective learnt clauses for Golomb Ruler (after the first modification). 119

7.4 Most effective learnt clauses for Golomb Ruler (before the first modification).120

7.5 Golomb Ruler Results. 120

7.6 Most effective learnt clauses in radiation. 123

7.7 Adding a redundant constraint to the model for the Radiation problem. . . 123

vi

List of Figures

2.1 Golomb Ruler problem illustration. 11

2.2 Search tree for solving the Golomb ruler problem (5 marks). 12

2.3 MiniZinc Compilation Process. 18

2.4 Search-tree visualisation in Oz Explorer, taken from [Schulte, 1996]. 22

2.5 Search-tree visualisation in CHIP, taken from [Simonis et al., 2000]. 23

2.6 Christmas Tree Visualisation from OPL Studio, taken from [Bracchi et al.,
2001]. 24

2.7 Search tree visualisation in the APT Tool, taken from [Carro et al., 2000b]. 24

2.8 Pseudo-3D tree visualisation in Prolog IV Debugger, taken from [Bouvier,
2000]. 25

2.9 Search tree visualisation with alternating planes in CLPGUI, taken from [Fages
et al., 2004]. 25

2.10 Phase-line display in CHIP, taken from [Simonis et al., 2000]. 26

2.11 Node distribution per depth (left) and a tree-map (right) in CP-Viz, taken
from [Simonis et al., 2010]. 26

2.12 Traditional search tree visualisation in CP-Viz, taken from [Simonis et al.,
2010]. 27

2.13 Search tree visualisation in Gist (Gecode). 27

2.14 Side-by-side tree comparison in CHIP, taken from [Simonis et al., 2000]. . . 28

2.15 Side-by-side tree comparison in CLPGUI, taken from [Fages et al., 2004]. . 28

2.16 Side-by-side tree comparison of tree-maps in CLPGUI, taken from [Fages
et al., 2004]. 29

2.17 Variable stack in Grace, taken from [Meier, 1995]. 29

2.18 Variable update view in CHIP, taken from [Simonis et al., 2000]. 30

2.19 Evolution of variable domains in VIFID, taken from [Carro et al., 2000a]. . 30

2.20 Evolution of variable domains in TRIFID, taken from [Carro et al., 2000a]. 31

2.21 Evolution of variable domains in CLPGUI, taken from [Fages et al., 2004]. . 32

2.22 Incidence matrix in CHIP, taken from [Simonis et al., 2000]. 33

2.23 Constraint graph in VIFID, taken from [Carro et al., 2000a]. 33

2.24 Visualising a ternary constraint by enumerating Y (VIFID), taken from [Carro
et al., 2000a]. 33

vii

2.25 Constraint graphs in SATGraf for two different problem instances, taken
from [Newsham et al., 2015]. 34

2.26 Bin-packing constraint (left) and Cycle constraint (right) visualisations in
CHIP, taken from [Simonis et al., 2000]. 34

2.27 Global constraint visualisation in Comet: alldifferent (left) and bin-packing
(right), taken from [Dooms et al., 2009]. 35

2.28 S-boxes of DiSCiPl showing hierarchy of constraints, taken from [Goualard
et al., 2000]. 35

2.29 An example of a user-defined view for partial solutions in Oz Explorer,
taken from [Schulte, 1996]. 36

2.30 Solution visualisation for the warehouse location problem, taken from [Dooms
et al., 2009]. 37

2.31 The change in the objective over time in CBLS, taken from [Dooms et al.,
2009]. 37

3.1 High-Level Overview of the Profiling architecture. 43

3.2 Internal Architecture of the Profiler. 43

3.3 Profiler Components for an individual execution. 44

3.4 A simple search tree. 45

4.1 Search Tree with Collapsed Subtrees. 58

4.2 Search Tree (No Collapsing). 58

4.3 Collapsing of failed subtrees: traditional (left) and proposed (right). 61

4.4 Traditional collapsing of failed subtrees (execution with restarts). 61

4.5 Proposed collapsing of failed subtrees (execution with restarts). 62

4.6 Basic Search Tree (left) and Corresponding Pixel Tree (right). 63

4.7 An example of a pixel tree view applied for search trees. 64

4.8 Lantern tree for a problem with many solutions. 64

4.9 Golomb Ruler with 11 marks, Gecode. 66

4.10 Golomb Ruler with 11 marks, Gecode. 66

4.11 Golomb Ruler with 11 marks, Gecode. 66

4.12 The Pixel Tree with a variable profile (Radiation problem instance solved
with Chuffed). 67

4.13 Icicle Tree Visualisation. 67

4.14 Icicle tree color mapped using decision variables. 68

4.15 Pixel tree with a selected slice. 68

4.16 Distinct parts of the tree highlighted using the pixel tree. 69

4.17 A single subtree highlighted using the icicle tree. 69

4.18 Currently selected node is indicated on the icicle tree. 70

4.19 Using the icicle tree to navigate to a particular node in the tree. 70

viii

5.1 Visualisation of a basic search tree. 74

5.2 Different trees of the same contour. 75

5.3 A simple tree used for demonstrating Algorithm 4. 79

5.4 Contours of underlying subtrees can differ. 82

5.5 Viewing similar subtrees. 85

5.6 Subtrees of interest highlighted on the tree visualisation. 85

6.1 Two simple search trees used for demonstrating search merging. 90

6.2 Comparison result collapsed (left) and with pentagons expanded (right). . . 91

6.3 Sorted list of pentagons (left), which allows to locate them on the tree (right). 93

6.4 Basic search tree to replay (left) and corresponding search log (right). . . . 96

6.5 Search tree as a result of solving Golomb 10 with restarts (Gecode). 99

6.6 Intensity matrix (left) and its decomposition (right) in the Radiation problem.102

6.7 Two out of five cells are exposed to radiation using two horizontal rods. . . 102

6.8 The radiation problem solved using Chuffed. 105

6.9 The radiation problem solved using Gecode with search replaying. 105

7.1 Search tree for freepizza using Chuffed. The path to the highlighted node
is labelled. 112

7.2 Part of the implication graph for freepizza. Decision literals are double
boxed. 112

7.3 Model executed with learning (left) and the resulting search is replayed
without learning (right). 114

7.4 Two trees are merged to pinpoint the effect of no-goods. 114

7.5 Execution time of original and improved pizza models (logarithmic scale). . 118

7.6 Chuffed backjumps in the Radiation problem. 121

7.7 Gecode’s subtree repeated 240 times in the Radiation problem. 122

7.8 Gecode’s tree for the Radiation problem with similar subtrees highlighted. . 122

ix

List of Algorithms

1 Algorithm for calculating contours of subtrees [Kennedy, 1996]. 76

2 Clustering subtrees using contours. 77

3 “Less” operator for contours. 77

4 Partition refinement algorithm for subtrees. 79

5 Removing subsumed patterns . 83

6 The algorithm for merging search trees. 92

7 The procedure for comparing nodes. 92

8 The algorithm for recording search. 97

9 Outline of the search engine used for replaying. 98

10 Procedure for extracting next branching from a search log. 98

x

List of Abbreviations

1UIP First Unique Implication Point

CBLS Constraint-Based Local Search

COP Constraint Optimisation Problem

CP Constraint Programming

CPU Central Processing Unit

CSP Constraint Satisfaction Problem

GUI Graphical User Interface

IDE Integrated Development Environment

JSON JavaScript Object Notation

LCG Lazy Clause Generation

SAT Boolean Satisfiability

TCP Transmission Control Protocol

SMT Satisfiability Modulo Theories

XML Extensible Markup Language

xi

Effective Profiling of Tree Search in Constraint

Programming

Maxim Shishmarev
maxim.shishmarev@monash.edu

Monash University, 2018

Supervisor: Dr. Guido Tack
guido.tack@monash.edu

Associate Supervisors: Prof. Maria Garcia de la Banda, Dr. Christopher Mears
maria.garciadelabanda@monash.edu, chris.mears@monash.edu

Abstract

Combinatorial problems, where a set of decisions needs to be made that satisfies a set
of constraints and possibly maximises/minimises an objective function, occur frequently in
many areas of life, including transportation, emergency management, and energy distribu-
tion. Unfortunately, solving these problems is remarkably difficult due to the exponential
number of possible sets of decisions that can be made. Modern approaches to solving Com-
binatorial problems first focus on describing them in a declarative modelling language to
form models, and then solving them using general purpose solvers which search among all
possible decisions looking for high quality (or optimal) solutions. Constraint Programming
is one of the modern solving technologies that underlie these solvers, and it is the focus of
this thesis.

How fast a high quality solution can be found by a solver is largely dependent on
how the problem is described in the model. For all but the smallest problems, the initial
models rarely yield high quality solutions in a reasonable amount of time and need to be
modified. In order to know which modifications would be favourable, the modeller needs
to determine what parts of the model are responsible for the slow search, modify them,
and evaluate the effect of these modification. The above process is traditionally known as
profiling.

In imperative (rather than declarative) programming, profiling tools routinely highlight
the causes behind inefficiencies in an execution and, in doing so, identify the parts of
the program that should be modified. In Constraint Programming, which adheres to
the declarative paradigm, such profiling capabilities are not as readily available to the
programmer due to its declarative nature, which makes the link between the program
and its execution rather tenuous. The existing systems for profiling constraint programs
work reasonably well for small problems. However, they lack the means for automatically
analysing executions and effectively evaluating model modifications, something crucial
when dealing with large real-world problems, when the search for high quality solutions is
too long and complex to be analysed manually. Further, many existing systems are solver-
dependent and do not support modern solvers and their powerful search techniques.

This work aims to overcome the limitations of the current state of the art by designing
an effective profiling system and associated profiling techniques. To achieve this, in this
thesis I have designed, implemented and evaluated a profiling system that (a) is efficient

xii

and thus scales for large problems, (b) is solver-independent and thus can easily integrate
different solvers, and (c) can support modern solvers and be extended to those developed
in the future. In addition, I have designed and integrated several profiling techniques into
this system: search-tree visualisations that improve on the state of the art, and are more
suitable for large problems; a technique for automatically finding recurring patterns in
large problems that are often the reason for slow executions and can aid the modeller in
improving them; two complimentary techniques that allow modellers to evaluate model
modifications; and a technique for analysing so-called learning solvers that can aid the
modeller in discovering constraints present in the model that can be strengthened as well
as redundant constraints that can be added to the model faster executions for both learning
and traditional solvers. Together, these techniques allow modellers to find high quality
solutions faster by aiding them in making effective model modifications.

xiii

Effective Profiling of Tree Search in Constraint

Programming

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. Infor-
mation derived from the published and unpublished work of others has been acknowledged
in the text and a list of references is given.

Maxim Shishmarev
March 23, 2018

xiv

Acknowledgments

First and foremost, I owe thanks to my supervisors, Maria, Guido, and Chris, without

whom this thesis would not have been possible. In particular, I’d like to thank Maria for

providing me the opportunity to study in Australia and supporting me ever since, Guido

for providing a great deal of expertise in programming, and Chris for always being patient

and willing to explain even the most elementary concepts with enthusiasm.

I’d also like to thank my friends and colleagues at Monash, who have always been a

there to support and provide source of much-needed distraction. In no particular order,

I’d like to thank: Dora, Richard, Kevin, Steve, Tom, David, Vahan. Especially, I wish

to thank My for providing a tremendous amount of support, particularly during the final

year of this journey.

Last but not least, I’d like to thank my parents for enabling me to realise my full

potential and always believing in me, and my brother for having been a constant source

of inspiration.

Maxim Shishmarev

Monash University
March 2018

xv

xvi

Chapter 1

Introduction

Combinatorial problems, where a set of decisions needs to be made that satisfies a set of
constraints, occur frequently in many areas of our lives, including transport, emergency
management and energy distribution. Combinatorial problems are described using a set
of variables, each with an associated domain of possible values, and a set of constraints
that restricts the combinations of values the variables can take. The problem is solved
when all variables are assigned to values that satisfy all constraints. Such problems are
thus called constraint satisfaction problems. A constraint optimisation problem adds to
this an objective function whose value is to be minimised (or maximised).

Obtaining a high quality solution, that is, one where the objective value is close to its
minimum (maximum), is of great importance when, for example, one need to minimise the
damage done by radiation therapy, maximise the efficiency and reliability of food transport,
and minimise the cost and operational risk of a chemical processing plant. Unfortunately,
solving these problems is remarkably difficult due to the exponential number of possible
sets of decisions (the search space) that can be made.

In general, no efficient algorithm exists for solving large combinatorial problems. Mod-
ern approaches to solving such problems first focus on describing their variables, con-
straints and objective function (if any) in a declarative modelling language, obtaining a
model of the problem. Then, a general purpose solver is used to solve the model by
performing some form of intelligent systematic search in order to find solutions.

Solving Combinatorial Problems

Solving combinatorial problems through modelling and the use of general-purpose solvers
has several advantages over the more traditional approach, which focuses on writing ded-
icated programs with hand-crafted solving algorithms for every problem. An important
advantage is that the existing solvers are highly optimised and incorporate decades of
solver development research. As a result, writing hand-crafted solving algorithms that
can find a solution faster than a general-purpose solver is time-consuming and challeng-
ing. In contrast, modelling languages allow one to describe a problem in a relatively short
period of time and solve it taking advantage of the advanced algorithms already present
in existing solvers.

A second advantage is that it is easy, and therefore customary, to write models that can
be used to solve a whole family of similar problems by separating a problem’s description
from its data. Further, if the problem description has to change even slightly, the approach
taken by the hand-crafted solving algorithm might not be appropriate for the new problem,

1

2 CHAPTER 1. INTRODUCTION

and thus developing a whole new algorithm might be necessary. In contrast, a model can
be easily modified to fit the new problem description.

Constraint Programming

There are a number of different solving technologies that underlie the general purpose
solvers used for solving models, such as Mixed Integer Programming (Land et al., 1960,
Dakin, 1965), Boolean Satisfiability (Davis et al., 1960, Marques Silva et al., 1996, Moskewicz
et al., 2001, Biere et al., 2009), Satisfiability Modulo Theories (Nelson et al., 1979, Ar-
mando et al., 1999), and Constraint Programming (Mackworth, 1977, Rossi et al., 2008).
To appropriately limit the scope of my work, this thesis focuses on Constraint Program-
ming technology.

Constraint Programming solvers often solve problems using a combination of propaga-
tion and tree search. The propagation engine uses the constraints and the current domains
of the variables to further reduce their domains. If it detects a constraint that cannot be
met, or a variable with an empty domain, the problem is known to be unsatisfiable and the
solver reports a failure. If all variables have a single value and all constraints are satisfied,
the problem is known to be satisfiable and the solver reports a success. Otherwise, the
solver begins to search.

A typical tree search process splits the problem into two or more subproblems that
partition the search space. Each subproblem is the same as its “parent” but with an
additional constraint, which is referred to as the branching decision. The propagation
engine is run on each subproblem, and further splitting is done if necessary. In this
way, the search moves towards subproblems that can be immediately detected as being
satisfiable or unsatisfiable. This process implicitly defines a search tree rooted by the
original problem, where each node represents a branching decision, which is used as the
node’s label. In its simplest form, the tree search continues branching until either a
solution or a failure is reached. In the case of a failure, the search backtracks up the tree,
undoing previous decisions until it reaches a node where an alternative decision can be
made. In the case of a solution, the search finishes (when a single solution is sufficient),
or backtracks to search for other solutions. Additionally, if the problem is an optimisation
one, a new constraint is added after finding a solution to require new solutions to be of
better quality than the current one. When there is no alternative decision left in the entire
tree, the search finishes.

Debugging

Transforming a problem’s description into a model is usually a relatively easy task. For
hard to solve problems, however, the first model will often fail to deliver the desired
outcome. It is common to distinguish between two types of unsuccessful outcomes:

� those where the solver finds solutions that do not satisfy the original problem de-
scription (or fails to find the solutions expected);

� those where the solver does not find an optimal (or close to optimal) solution within
a reasonable amount of time.

The former case is associated with the correctness of the model and is the focus of correct-
ness debugging. This thesis is concerned with performance debugging, or profiling, which
focuses on the latter case of slow executions.

3

Performance Debugging

Writing an efficient model – that is, one that can be solved in a reasonable amount of
time – can be very time-consuming and challenging, often requiring considerable levels of
expertise. In the case where a solution cannot be found sufficiently quickly, a common
approach is to find a different way of describing the problem, that is, a different model.
There are, indeed, many ways to describe the same problem, and thus many possible mod-
els for a problem, each resulting in possibly very different execution times. Additionally,
many solvers can follow a given search strategy if provided in the model, thus allowing
the modeller to influence the search process. Therefore, changing the search strategy is
another way for the modeller to affect the execution. Finally, when it comes to choosing
a solver with which to execute a model, there is no clear favourite, as no single avail-
able solver consistently outperforms all other solvers. Modern modelling languages allow
switching between different solvers seamlessly, providing yet another way for the modeller
to influence the execution.

Trying all possible combinations of models, search strategies, and solvers is impractical.
It is therefore extremely important for a modeller to know which changes will lead to more
efficient executions. In particular, it is important to know:

(a) what part of the program (that is, the triplet of solver, search, and model) slows
down the execution;

(b) how a particular change in the program will affect the execution.

In procedural (rather than declarative) languages, this knowledge is usually obtained
through the process of profiling. In particular, the profilers routinely used in procedural
languages highlight the causes (e.g., lines of code, or functions) of inefficient behaviour
and, in doing so, identify for the programmer the parts of the program that should be
modified. After some modification has been applied, the programmer can see its effect
on the execution and decide if a different modification should be applied instead. The
above process is usually repeated several times until the programmer is satisfied with the
program’s performance.

In Constraint Programming such profiling capabilities are not as readily available to
the modeller due to the declarative nature of this style of programming, which makes the
link between the program and its execution rather tenuous. As a consequence, there is
no effective way to identify the causes of inefficient behaviour. Additionally, the existing
profiling systems for Constraint Programming do not provide an effective way to gain real
insight regarding the effect of model and search changes on the execution.

Further, the profiling of combinatorial problems comes with a number of new chal-
lenges. First, as already mentioned, it is not uncommon for a modeller to use different
solvers while trying to speed up the execution. Being able to evaluate the changes in
execution after a different solver is selected, requires a profiling system that supports
both solvers (in general, one that is solver-independent). There is, however, no standard
mechanism to produce the information necessary for profiling, and thus significant solver
instrumentations are usually required. This is the reason why most of the existing profil-
ing systems only targeted one solver (for example, [Schulte, 1996], [Simonis et al., 2000],
[Carro et al., 2000b]). A few other systems provided means of solver-independent profiling
([Fages et al., 2004, Bracchi et al., 2001]), but have not been integrated by many solvers,
as they required extensive solver instrumentation. The only system integrated by a large
number of solvers (more than three) is the one described in [Simonis et al., 2010].

4 CHAPTER 1. INTRODUCTION

Second, while many of the currently available solvers are similar enough to make
solver-independent profiling viable, the advancements in the area of solver development
constantly lead to new functionality being supported by some of those solvers. A profiling
system will therefore be more effective if it can adapt to these changes by supporting the
additional functionality of these solvers, while remaining backwards compatible with more
traditional ones. Most existing profiling systems that support multiple solvers have not
been designed with adaptability in mind; instead, they rely on solvers to produce large
volumes of information, some parts of which would often be unused by the profiler, but
could become necessary for new profiling techniques.

Third, the large amount of profiling information that is often produced during the
execution of large real world problems, requires exploring large trees with many variables
and constraints. As a consequence, a profiling system needs to be able to (a) process
large amounts of information in a reasonable amount of time, and (b) focus the program-
mer’s attention on those parts of the execution that are likely to lead to the discovery of
meaningful insights. The most popular way for modellers to study their program’s execu-
tion is to examine their search tree using search-tree visualisations. While some existing
systems are capable of visualising executions with many millions of nodes, their profiling
techniques do not provide any aid in the form of automated execution analysis, which can
be necessary to discover the places the modeller must focus on when dealing with large
executions of multi-million node trees.

Research Question

This work aims to overcome the above challenges by addressing the following research
question:

How can a profiler help a modeller find improvements to the program in
a way that it:

(Q1) is efficient, and thus scales for large real world problems;

(Q2) is solver independent, and thus can easily integrate different solvers;

(Q3) supports modern solver techniques and can be extended for those developed in the
future;

(Q4) provides good insight into the solving process, for example, by means of automated
analyses;

(Q5) helps the modeller evaluate the impact of changes in the model.

In these thesis I have addressed the above question by designing:

� A framework for effective profiling – one that is efficient (Q1), solver-independent
(Q2), supports modern solving techniques and is extensible (Q3), and makes it easy
to incorporate different profiling techniques.

� Several profiling techniques suitable for large executions, that help a modeller gain
insights regarding executions (Q4), as well as gain a better understanding of the
effect of the resulting model changes (Q5).

5

Contributions

In particular, this thesis provides the following contributions.

C1: An Effective Profiling System

A solver-independent (Q2) framework for profiling Constraint Programming executions has
been designed. The framework is suitable for profiling large executions (Q1), and is built
on top of a newly designed, lightweight, flexible and extendable protocol that supports
a variety of modern solver techniques (Q3). A working prototype of the framework, CP-
Profiler, has been implemented, and its capability to integrate many solvers, support
different solver techniques, and deal with large executions has been evaluated. All profiling
techniques discussed below have been implemented and integrated into this framework for
their evaluation.

C2: New Search Tree Visualisations

The visual examination of a search tree is by far the most common and familiar way of
profiling Constraint Programming executions currently employed by modellers. This the-
sis presents “lantern trees” as a way to improve the conventional way of visualising very
large search trees without losing as much structural information as previous approaches.
The resulting visualisation is demonstrated to be superior to those currently used in mod-
ern profiling systems in a number of case studies. Additionally, a few unconventional
methods for visualising search trees have been studied, and their usefulness in the context
of constraint program profiling has been demonstrated. These methods for search tree
visualisation allow modellers to see search trees in a different light, potentially enabling
them to discover new insights regarding executions (Q4).

C3: Similar Subtree Analysis

A technique capable of discovering inefficiencies in large executions has been designed –
the similar subtree analysis – which works by automatically finding repeated patterns in
the execution, something that often indicates the presence of an inefficient search. This
contribution addresses the need for automated analysis that can extract insights (Q4)
from large executions, as it allows modellers to focus on potentially interesting parts of
the search tree. Additionally, this technique has been demonstrated to lead to effective
model modifications.

C4: Search Merging

A technique for evaluating changes that leads to different executions (Q5) has been de-
signed: search merging. This technique allows the modeller to compare the search trees
of two different executions, before and after some change in the model, solver, or search
strategy, and assess the effect of that change in detail. Importantly, the comparison is
performed automatically and works for large executions.

C5: Search Replaying

A profiling technique has been designed that allows modellers to evaluate the differences
in constraint propagation between two executions (Q5): search replaying. This technique

6 CHAPTER 1. INTRODUCTION

works by having the two executions make the same search decisions, and thus isolates
the effect of changes in constraint propagation. Additionally, it works hand-in-hand with
search merging, as together they enable a more accurate comparison of two executions.
Several case studies demonstrate that the two techniques can be used to find useful insights
(Q4) regarding model modifications, which could suggest further model improvements.

C6: No-good Analysis

Recently, a new class of solvers, called learning solvers, has been defined. These powerful
solvers learn so-called no-goods while they search for solutions to the problem. No-goods
capture the reasons for failure and are used by learning solvers to avoid areas of the
search space that will lead to similar failures. This often allows learning solvers to find
solutions to hard constraint problems faster than non-learning solvers. However, for some
problems, learning solvers seem to be unable to benefit from the learning and perform
poorly compared to non-learning solvers. It is, therefore, of great importance to better
understand the behaviour of a learning solver. This work presents a technique specifically
designed for analysing the executions of such solvers (Q3): no-good analysis.

The proposed technique is built on top of the search replaying and the search merging
techniques, and adds extra functionality specific to learning solvers. In particular, the
technique allows modellers to identify those no-goods that have the most impact on the
executions, that is, that yield the largest reduction of the total amount of search.

This thesis demonstrates, by means of several case studies, how the no-good analysis
can help modellers better understand the executions of learning solvers (Q4) and aid
modellers in finding effective model modifications, capable of yielding one to two orders
of magnitude faster executions.

Publications

The contributions of this thesis have led to two publications. In particular, the profiling
system itself (C1) along with the profiling techniques associated with contributions C2–C4

have been published as [Shishmarev et al., 2016b]:

Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la
Banda, “Visual Search Tree Profiling”. Constraints, Volume 21, 2016.

The analysis of learning solvers (C5) has been published as [Shishmarev et al., 2016a]:

Maxim Shishmarev, Christopher Mears, Guido Tack, and Maria Garcia de la
Banda, “Learning from Learning Solvers”. Principles and Practice of Con-
straint Programming - 22th International Conference, CP 2016. Proceedings.

Thesis Structure

The remainder of this thesis is structured as follows. Chapter 2 first formally introduces
combinatorial problems, and describes several techniques that underlie modern solvers
with an emphasis on Constraint Programming. This is followed by an introduction to
the modelling language MiniZinc [Nethercote et al., 2007], which is used in the later
chapters to describe all problem models and their modifications. The chapter concludes
by providing a survey of existing systems for profiling combinatorial problems.

7

Chapter 3 presents contribution C1: the design of the solver-independent, efficient, and
extensible profiling framework that is at the core of this thesis. In particular, the chapter
first presents the architecture of the framework, along with the protocol that is used for
communication between the profiler and the solvers. This is followed by the evaluation of
the framework, in particular, its efficiency and ease of integration with new solvers. Note
that this framework is later used for evaluating the profiling techniques discussed in the
remaining chapters.

Chapter 4 presents contribution C2, which aims to improve the way search trees are
visualised. It starts with an overview of the traditional node-link tree visualisation, com-
monly used for displaying search trees in the literature. It then presents an improvement
on the conventional search-tree visualisation, and demonstrates how the resulting visu-
alisation is better suited for profiling. Finally, it presents two unconventional ways of
visualising search trees, and demonstrates how they can benefit the process of profiling.

Chapter 5 presents contribution C3: the similar subtree analysis, a technique for
analysing the structure of execution trees. Through a case study, it demonstrates how
this technique can be effective for finding inefficiencies in executions.

Chapter 6 presents contributions C4 and C5, associated with profiling techniques that
can help modellers compare multiple executions of a single problem. First, it presents
search merging as a technique for assessing the impact of a modification applied to a model
by comparing two executions of the original and modified models. It then introduces search
replaying, a technique for ensuring that the same search is used by multiple executions, as
a complementary way of comparing executions. The chapter concludes by demonstrating
through two case studies how these techniques can help modellers better understand the
effect of a model modification.

Chapter 7 presents contribution C6, associated with the analysis of learning solvers.
It starts by giving a brief overview of modern learning solvers. It then presents the no-
good analysis as an effective new technique for studying these solvers that takes advantage
of the profiling techniques discussed in the previous chapter. The chapter concludes by
demonstrating through three case studies how applying the no-good analysis technique can
help identify culprits of inefficient behaviour in an execution, and thus lead to significant
model improvements.

Finally, Chapter 8 provides my conclusions and discusses future work.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Introduction

This thesis investigates ways in which individual executions associated with solving con-
straint problems can be analysed, in order to speed up subsequent executions for the same
problems. This chapter provides the background necessary to understand the remaining
chapters of the thesis. In particular, it introduces constraint problems – the central con-
cept of this work. This is followed by a brief overview of modern approaches for solving
them, mainly those involving tree search, which are the focus of this work. Finally, the
chapter surveys the existing approaches commonly used for profiling the executions of
constraint problems and discusses their limitations.

Structure of the Chapter

Section 2.2 gives a brief overview of the profiling approaches that are commonly employed
for programs written in imperative programming languages. Section 2.3 introduces the
basic concept of constraint satisfaction problems and provides an illustrative example.
Section 2.4 gives a brief overview of the modern technologies used for solving such problems
with emphasis on the Constraint Programming technology, which is the focus of this work.
Section 2.5 introduces the MiniZinc modelling language, which is used in this work for
demonstrating different ways of modelling problems. Finally, Section 2.6 gives an overview
of the state of the art in profiling of constraint programs.

2.2 Profiling in Imperative Programming

When a program execution takes longer than expected, it is important for the programmer
to know which part of the execution causes the slow behaviour. This information is
usually obtained by programmers through the process of profiling. Profiling is a very
well established field in the imperative programming paradigm, where the program’s code
directly states how the problem should be solved. Tools that enable profiling (profilers)
are widely available for the programming languages that adhere to this paradigm, for
example, gprof [Graham et al., 1982], JProf [Shirazi, 2002], and Visual Studio [Johnson,
2012].

Most of these profilers work by gathering profile information and presenting it to the
programmer in an aggregated form. Profile information is usually expressed in terms of
a program’s method calls. In particular, profilers commonly gather call counts, that is,

9

10 CHAPTER 2. BACKGROUND

the number of times a given method is called, and execution times, that is, the portion
of time that the program spent executing a given method. Execution times provide a
general idea regarding the methods of the program that take the most time to process,
and thus let the user make effective modifications to the program by focusing only on
those methods. Call counts can be used for a similar purpose, but with the focus on
determining the complexity classes that algorithms (represented by methods) belong to,
and thus reasoning about the scalability of the algorithms. Additionally, profilers often
show the programmer a call graph – a directed graph, where nodes represent the program’s
methods, and edges between two nodes N1 and N2 represent invocations of method N1 by
method N2 [Ryder, 1979]. These graphs allow the programmer to better understand the
flow of the program’s execution.

The profiling techniques that are used in practice mainly differ in the way they gather
the profile information. There are two main approaches: instrumentation-based and
sampling-based. The former requires inserting special code that is responsible for gath-
ering the profile in important regions of the program. This approach is intrusive, as it
requires modifying the program, but provides accurate results. The latter approach probes
the execution by interrupting it at regular intervals to determine which method is executed
at each interval. This approach does not require program instrumentation, but it is less
accurate than the instrumentation-based one.

This thesis deals with profiling in Constraint Programming (described further below),
which adheres to the declarative, rather than imperative programming paradigm. Al-
though there are certain similarities between profiling techniques in both paradigms (for
example, they both use directed graphs to present the execution flow), profiling in Con-
straint Programming is more challenging. For example, counting and timing individual
events in a Constraint Programming execution does not reveal a great deal of insight into
the execution as these events are difficult to link to specific parts of the program. Different
profiling approaches are, therefore, needed in Constraint Programming.

2.3 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) involves finding values for a given set of vari-
ables (called decision variables) that satisfies a given set of constraints imposed on them.
Formally, a CSP is often represented as a tuple 〈X,D,C〉, where X is the set of decision
variables, D is a set of domains of variables, and C is the set of constraints. Each domain
di ∈ D corresponds to exactly one variable xi ∈ X, and represents the finite (or less often,
infinite) set of values that xi can take. A mapping xi = vi, where ∀i, xi ∈ X ′, X ′ ⊆ X,
vi ∈ di, is called an assignment to X. The assignment is called partial if X ′ ⊂ X. The
constraints in C further restrict the sets of values that one, two, or several variables can
take in the same assignments (called, respectively, unary, binary and n-ary constraints).

A constraint c ∈ C is said to be satisfied by some assignment to X if a simultaneous
assignment to all variables involved in c is not prohibited by its definition, and it is said
to be violated otherwise. Solving a CSP involves finding an assignment to X that satisfies
all constraints in C. If, additionally, an expression f(X ′′) (where X ′′ ⊆ X) is specified,
and it is required to be minimised (or maximized), the problem is said to be a constraint
optimisation problem (COP) and f(X ′′) is called the objective function.

Example 2.3.1. Consider the constraint satisfaction problem of Golomb ruler. The prob-
lem requires putting m marks in the integer positions of a ruler of length n, such that
the distances between any two pairs of marks are unique, and the distance between the

2.4. TREE SEARCH 11

left-most and the right-most marks is minimal. Figure 2.1 depicts such a ruler of length 6
with 4 marks.

Figure 2.1: Golomb Ruler problem illustration.

Formally, the positions of marks are represented by decision variables X = {x1, ..., xm}
with domains di = {0, .., n}, i ∈ 1..m. The problem requires the following constraints C
to be satisfied:

� ∀i,j : xj > xi, i, j ∈ 1..m, j > i

� xj − xi, 1 ≤ i < j ≤ m, are all distinct

The Golomb ruler problem additionally requires the objective function f(x1, xn) = xn−x1
to be minimised. In this notation, the solution to the problem depicted in Figure 2.1 can
be described as x1 = 0, x2 = 1, x3 = 4, and x4 = 6, and the value of the objective is 6.

2.4 Tree Search

The techniques for solving constraint satisfaction problems can be divided into two groups:
complete and incomplete. The difference between them lies in the way they explore the
set of all possible assignments to X, or the search space. Incomplete techniques, such
as local search, only partially explore the search space, relying on the search procedure
to select areas with high likelihood of solutions. They can be effective for a range of
problems with large search spaces. However, since incomplete techniques do not explore
the search space entirely, they cannot guarantee the optimality of solutions they find or
determine if the problem has any solutions in principle. On the other hand, complete
techniques perform systematic search of the entire search space, and thus, given enough
time, they are guaranteed to find a (optimal) solution if one exists. A common way
to perform such systematic search is to use tree search. The focus of this work is the
Constraint Programming (CP) solving technology, which is a popular form of tree search
(Mackworth, 1977, Rossi et al., 2008). Solvers that employ this technology for solving
problems are referred to as constraint solvers. The general idea behind the solving process
by tree search in Constraint Programming is briefly described below.

Tree search is often represented as the traversal of a search tree. Figure 2.2 shows an
example of a search tree that corresponds to solving the Golomb ruler problem with 5
marks (variables Xi are shown as mark i). The tree, in this case, distinguishes between
three types of nodes: blue circles, red squares, and green diamonds, which represent, re-
spectively, intermediate states, failure states, and solution states. Solution states represent
assignments to all variables in X that satisfy all constraints in C. Failure states represent
assignments (or partial assignments) to X that violate at least one constraint in C. Lastly,
states that are neither a failure state nor a solution state (or cannot be identified as such)
are intermediate states, and referred to as branch nodes in the context of a search tree.

12 CHAPTER 2. BACKGROUND

Figure 2.2: Search tree for solving the Golomb ruler problem (5 marks).

At the beginning of any execution, the tree consists of a single node, the root node,
which represents the original problem, and thus an empty assignment. In Figure 2.2 the
root is shown as the top-most node. At any branch node, including the root, the solver
performs propagation – a procedure for removing values from the domains of variables that
are inconsistent with at least one of the constraints in C. It works by reacting to variable
domain changes, which can be caused by either a search decision or by earlier propagation,
resulting in a firing of a propagation event. More precisely, a change in a variable’s domain
awakens all constraints involving this variable, that is, it puts these constraints in a queue
for processing to determine potential inconsistencies that the domain change could cause.
This procedure is repeated until no more constraints are left in the propagation queue, at
which point a fixpoint in propagation is said to be reached.

Propagation can reduce the domain of a variable to a single value, thus making an
implicit assignment to that variable. Whenever propagation empties the domain of some
variable, that is, ∃xi ∈ X : D(xi) = ∅, the search reaches a failure. A solution state
is reached by the search whenever all variables in X are assigned either by search, or
implicitly by propagation. Finally, if the propagation procedure is not sufficient to identify
a node as a failure or a solution, the current node becomes a branch node, and the search
tree is extended with new nodes.

The nodes are added to the tree as a result of the branching process, described as
follows. At any branch node the problem p is split into k subproblems by adding branching
constraints bk, such that each node i ∈ 1..k represents an augmented problem p ∧ bi and
p ⇐⇒ ∨i∈1..k(p ∧ bi). The decision of selecting a branching constraint bi at some point
in the search is called a branching decision. The process of making branching decisions is
often referred to as labeling. The distance from the root node to the node where a decision
is made, that is, the number of decisions on the path, is referred to as the decision’s
level. Whenever a new branching decision is made, the currently examined node gets
extended with k children nodes, representing the resulting subproblems. For instance,
the first branching decision in the Golomb ruler example splits the problem into k = 2
subproblems by adding branching constraints b1 = (mark 2 = 1) and b2 = (mark 2 6= 1).

The order in which the nodes are explored during the search depends on the tree explo-
ration strategy employed by the solver. In general, there are three basic searches used for
exploring trees: depth-first search, breadth-first search, and best-first search. Depth-first
search aims to reach leaf nodes as soon as possible. It is the most commonly employed
strategy in constraint programming (also known as “chronological backtracking”), as con-
straint solvers benefit from early solution/failure encounters, and it requires a polynomial
amount of memory in terms of the problem size. In this strategy, left-most branches are
explored first until the search reaches either a solution or a failure state. In the Golomb
ruler example, the search proceeds by consecutively making three more search decisions,
until it reaches a solution state. Whenever a failure node is reached, the search proceeds

2.4. TREE SEARCH 13

by backtracking – a procedure that involves moving up in the tree to a node, undoing
previous decisions until it reaches an ancestor node, where an alternative decision can be
made. The search will discard the decisions that are not associated with the new node,
potentially restoring the values in domains previously pruned due to those decisions. The
search then proceeds to make further decisions, until the next failure is encountered.

A modification of depth-first search that is particularly important for this work is
backjumping. It is often utilised by learning solvers, wherein reasons for past failures
(called no-goods) during the search are analysed (see Chapter 7). Backjumping can be
thought of as an improvement of chronological backtracking: rather than backtracking
upon reaching a failure, this exploration strategy can perform a backjump, which involves
moving multiple levels up the tree, potentially skipping unexplored nodes. (Note that the
actual areas of search that these skipped nodes represent can contain solutions, and they
thus might need to be explored at a later point in search.) The search then effectively
makes a search decision inferred from the no-good associated with the backjump. After
that, the search resumes exploring the tree in a chronological backtracking manner until
the next backjump is reached.

Contrary to depth-first search, breadth-first search explores all nodes on the current
depth level first before proceeding to the lower levels. This property of breadth-first search
makes it encounter first solutions or failures rather late during the search, and thus it is
largely unsuitable for constraint satisfaction problems, where the goal is usually to find the
first solution as quickly as possible. Finally, best-first search determines exploration order
based on a given evaluation function for nodes: for example, in a minimisation problem
a variation of best-first search could explore nodes with the smallest lower-bound on the
objective function first. A well-known example of best-first search is A* search, which is
widely used for solving planning and pathfinding problems [Hart et al., 1968].

In addition to the basic search explorations techniques discussed above, there are cer-
tain meta-searches that can theoretically be used in conjunction with any such technique.
One is branch-and-bound search, which is commonly employed for optimisation problems.
In the context of CP, this strategy relies on propagation to determine the bounds on the
objective value at every node, that is, the smallest and the largest values from the ob-
jective’s domains. Additionally, it adds a constraint each time it reaches a solution that
requires subsequent solutions to be of higher quality. The bounds on the objective at
each node let the search determine whether the search at the node can reach a better
solution than the most recent one. For example, when the objective is to be minimised
(maximised), the search does not need to explore a node if its lower (upper) bound is
larger (smaller) than the objective value of the current solution. When the bounds on the
objective are tight, that is, the difference between the lower and the upper bound is small,
the branch-and-bound strategy can avoid exploring large portions of search without the
loss of any (good quality) solutions.

Another example of a meta-search is restart-based search, which is becoming increas-
ingly popular in optimisation problems. In a restart-based search nodes are explored
according to the selected basic search most of the time (for example, following the depth-
first search order). However, at some points during the search (e.g. when a solution is
reached) a restart is triggered, which discards all decisions on the current path and starts
a new search, effectively backtracking to the root node. In doing this, restart-based search
aims to avoid spending too much time in areas of search that are devoid of solutions, and
thus can be more robust compared to the basic searches.

Independently of which of the above tree exploration strategy is used, many solvers are
able to perform the search in parallel. In this case, different areas of the search space are

14 CHAPTER 2. BACKGROUND

explored by different search agents, each running in its own thread. Note that each such
agent can choose to perform any kind of search in the areas designated to them. However,
chronological backtracking is most commonly employed.

The fact that search strategies other than chronological backtracking exist poses the
following challenge to profiling tools: users might need to examine the order in which the
nodes have been explored, and thus there should be a way to present this information to
them. This problem will be addressed in Chapter 4, which is concerned with search tree
visualisations.

Although backtracking search is often used to achieve an exhaustive search (that is,
to explore the entire search space), this is not always necessary in practice. For example,
if the problem is a CSP, finding a single solution is often sufficient, and the exploration
can finish at that point. If a problem requires finding an optimal solution, the search
will backtrack on solution states as well, exhausting the search space in order to prove
optimality. If no solutions are found in an exhaustive search, the problem is unsatisfiable,
that is, it has no solutions in principle. If the search tree in an exhaustive search does
contain solutions, and the problem is an optimisation problem, the final solution is the
optimal one.

In addition to a tree exploration strategy, which determines the order in which nodes
are explored, the modeller can often specify a search strategy, which determines the branch-
ing decisions made during search. Most often, branching decisions are of the forms X < a,
X ≤ a, X > a, X ≥ a, X = a, X 6= a, where X is a decision variable and a is a value
from its domain. A search strategy is said to be static if the order in which the decision
variables and values are selected for branching decisions is static, that is, predetermined
before the search begins. Otherwise, a search strategy is said to be dynamic, that is, the
order in which the decision variables are selected can change during the execution.

2.4.1 Alternative to CP Approaches

Other popular techniques for solving combinatorial problems that use tree-based search are
Boolean Satisfiability, or SAT (Davis et al., 1960, Marques Silva et al., 1996, Moskewicz
et al., 2001, Biere et al., 2009), Satisfiability Modulo Theories, or SMT (Nelson et al.,
1979, Armando et al., 1999), and Mixed Integer Programming, or MIP (Land et al., 1960,
Dakin, 1965). Compared to CP, they use more restrictive modelling languages which allow
them to run more specialised algorithms.

SAT can be thought of as a subset of CP that supports only Boolean decision vari-
ables, and all constraints are described through clauses. Each clause is a disjunction of
variables or their negations (together called literals). The conjunction of such clauses,
or the formula, constitutes a problem in SAT, which is solved when an assignment to its
variables is found that turns the formula into a truthful expression. The search procedure
in SAT is similar to that in CP, however, its propagation is conceptually simpler as it
involves applying a single rule – the unit clause rule. Applying this rule involves finding
unit clauses, that is, clauses, where all but one literal evaluate to false, and assigning the
remaining literal to true.

SMT extends the language of SAT with additional expressions over variables that have
a meaning in some theory outside of SAT. One example of these expressions is those that
state inequality relations between variables following arithmetic rules, which allow many
constraint problems to be modeled more naturally. While SMT solvers have a SAT solver
at their core, usually a specialized “theory solver” is additionally employed for the purpose

2.5. MODELLING WITH MINIZINC 15

of evaluating the theory expressions with respect to the variable assignments inferred by
the SAT solver.

MIP is another tree-based technique that is commonly used for solving problems with
linear constraints and a linear objective function, that is, problems that can be expressed
as linear algebraic expressions. MIP uses branch-and-bound in conjunction with best-
first search as its search exploration strategy, but it is very different from CP in the
way it obtains bounds on the objective. In particular, it uses the well-known Simplex
method [Dantzig, 1963] to solve a linear programming relaxation (an approximation that
allows all discrete variables take continuous values) of the subproblems at every node.

MIP, SAT, and SMT can often perform better than CP on some types of combinatorial
problems, and it is as important to support profiling of their executions as it is of CP
executions. However, this work focuses on profiling of backtracking search in CP only.
Despite that, the profiling framework and many of the profiling techniques presented here
are suitable for other tree-based searches, like the ones in MIP and SAT, in principle, and
would only require instrumentation of corresponding solvers.

2.5 Modelling with MiniZinc

When a CSP or a COP is defined in a formal modelling language, it can be interpreted
and solved by a generic solving system (solver) that supports this language. Such a
specification of a problem is called a model for that problem, and the language is called a
constraint modelling language.

The usual practice when modelling a problem is to separate its conceptual descrip-
tion (the model) from its data, so that the same model can be used to solve a whole
class of similar problems. Combining a generic model with a specific data input is called
instantiation, and the resulting program is called an instance.

Many modelling languages have been used in practice. Among the most popular ones
in Constraint Programming are OPL [Van Hentenryck et al., 1999], Essence [Frisch et al.,
2007], and MiniZinc [Nethercote et al., 2007]. Because of the expertise in the MiniZinc
language available to me through my thesis advisers, I selected this modelling language for
the purpose of describing constraint problems in this work. The following briefly describes
the syntax of MiniZinc using the example of the Golomb Ruler problem introduced earlier
(see Section 2.3). The corresponding model is shown in Listing 2.1.

A typical model in MiniZinc consists of the following items:

� Parameter declarations

� Decision variable declarations specifying their domains

� Constraint declarations

� Include items

� A single solve item

Parameter values are those that remain constant throughout the execution. The MiniZinc
language requires declaring the parameter type and its name separated by the “:” symbol.
The parameter values have to be provided either in the same line as the corresponding
parameter declaration (as parameter n in line 2), or in a separate data file (as parameter
m in line 1). In this case, the only user-specified parameter m represents the number of

16 CHAPTER 2. BACKGROUND

1 int: m;
2 int: n = m*m;
3
4 array [1..m] of var 0..n: marks;
5
6 array[int] of var 0..n: differences =
7 [marks[j] - marks[i] | i in 1..m, j in i+1..m];
8
9 constraint marks [1] = 0;

10
11 constraint forall (i in 1..m-1) (marks[i] < marks[i+1]);
12
13 include "alldifferent.mzn";
14 constraint alldifferent(differences);
15
16 % Symmetry breaking
17 constraint differences [1] < differences [(m*(m-1)) div 2];
18
19 solve :: int_search(marks , input_order , indomain_min , complete)
20 minimize marks[m];

Listing 2.1: MiniZinc model of the Golomb Ruler problem.

marks on the ruler, while parameter n is defined as a function of m and serves as an upper
bound on the ruler’s length.

Decision variables can be identified by the keyword var present in their declaration
item. A single item can declare either individual decision variables, or arrays of variables,
including multidimensional arrays. The format for declaring an individual decision variable
and an array of decision variables is as follows:

var <domain >: <name >;
array[<dimensions >] of var <domain >: <name >;

For example, the item in line 4 of the Golomb ruler model declares an array of decision
variables of length m called marks (more precisely, its index set is 1..m), where each mark
is an integer decision variable with domain of 0..n for each of the marks in the problem,
denoting their positions on the ruler. Another array of (auxiliary) variables differences
is declared in line 6 using an array generator expression in line 7. Generator expressions
are similar to the list comprehension popularised by the Python programming language
and the mathematical set notation from which they originate. In this case, the expression
effectively generates an array with elements equal to the differences between the positions
of any two marks. Note that the length of the array is omitted in this case (i.e. the index
set is not provided), since it can be inferred from the expression.

Constraint items start with the keyword constraint followed by some Boolean expres-
sion, which must evaluate to “true” and usually involves at least one decision variable.
In the Golomb ruler example the constraint item in line 9 declares one of the simplest
constraints: it restricts the domain of a variable (the first element of the marks array) to
value 0, effectively assigning it to the variable. The purpose of this constraint is to fix one
of the ends of the ruler in order to avoid finding equivalent solutions: for every solution
x1 = v1, x2 = v2 ... xm = vm equivalent solutions can be trivially constructed of the form
x1 = v1 + k, x2 = v2 + k ... xm = vm + k, where k ∈ Z and (vm + k) ∈ D(xm). As we are
looking for the shortest Golomb ruler, starting the marks at 0 is an intuitive decision.

2.5. MODELLING WITH MINIZINC 17

It is a good practice to disallow such equivalent (often referred to as symmetric) so-
lutions by adding symmetry breaking constraints such as the one in line 9, as this sig-
nificantly reduces the search space. Another symmetry breaking constraint appears in
line 17, which declares a single disequality relation, stating that the difference between
the first two marks must be smaller than that of the last two marks. Note that the original
definition of the problem does not require this relationship. It is easy to show, however,
that for any given solution of the Golomb Ruler problem, another solution can always be
trivially constructed by conceptually reflecting the ruler.

A constraint item can effectively represent a conjunction of constraints. For example,
the constraint item in line 11 declares a constraint of the form marks[i] < marks[i+1]
for each of the values of i in the set 1..(m− 1).

MiniZinc additionally supports global constraints, which define some complex relation-
ship among multiple variables. For example, the alldifferent global constraint states that
no two variables from an array can hold the same value. The item in line 14 imposes such
relationship on the variables of the differences array. Although the alldifferent con-
straint is logically equivalent to its decomposition (a conjunction of pairwise disequalities
on the array’s variables), it is often beneficial to keep the higher level structure in the
model. This is due to the fact that many solvers offer propagation algorithms for global
constraints that are more efficient than those used for their decomposed versions.

Include items act as placeholders for code from a different file that should be pasted
during the compilation process (see Section 2.5.1), allowing multi-file models. The item
in line 13, for example, pulls in a standard decomposition of the alldifferent constraint in
case it is not supported by the target solver.

Lastly, each model in MiniZinc has to contain exactly one solve item, indicating
whether the problem is a COP with an objective function, or the problem is a CSP,
and thus simply requires all the constraints to be satisfied. For example, the item in
line 19 specifies that the position of the final mark should be minimised, thus indicating
that the problem is a COP.

Each item in a model can be annotated with some optional information that the target
solver might take into account. It is common, for example, to annotate the solve item with
a search annotation as shown in line 19. A solver, in this case, is instructed to perform a
complete (exhaustive) search by assigning variables from the marks array in input order,
that is, in order from its first element to its last. The indomain min option specifies that
the smallest values from the variable domains should be tried first.

2.5.1 MiniZinc Compilation Process

Users of constraint solvers (modellers) often use a high-level language to develop mod-
els. These models are then compiled into lower-level language models that solvers can
understand and solve. The presence of this compilation step allows modellers to use use-
ful abstractions and thus makes developing (complex) models easier. At the same time,
however, it hinders the modeller’s understanding of the underlying solving process: any
information that solvers can provide about their execution is generally presented in terms
of the lower-level model, which is likely to be unfamiliar to the modeller. As a consequence,
the compilation process can be problematic in profiling systems, as they ultimately need to
communicate the results of their analyses to the user. In order to show potential modifica-
tions that a model could undergo when compiled to a lower-level language, I demonstrate
the compilation process using a popular high-level modelling language MiniZinc and its
low-level counterpart FlatZinc.

18 CHAPTER 2. BACKGROUND

A FlatZinc model is a flat list of decision variables, simple constraints, and a solve
item. It does not contain loops or complex, conjoined constraints. A MiniZinc instance
can be compiled down to its FlatZinc representation, or FlatZinc model, using the MiniZinc
compiler.

Different solvers support different sets of constraints and variable types. For this
reason, FlatZinc representations of the same MiniZinc model often differ when they are
compiled for different solvers.

Figure 2.3: MiniZinc Compilation Process.

The compilation process is illustrated in Figure 2.3. As already mentioned, to increase
the reusability of a model, its parameters are often specified in a separate data file, and a
conceptual combination of them forms an instance. For each solver the MiniZinc compiler
takes a problem’s instance and creates a FlatZinc instance using the kinds of constraints
and variable types the solver is designed to deal with. Note that a single MiniZinc model
can thus be used to create a multitude of FlatZinc instances.

An example of a FlatZinc instance of the Golomb Ruler problem with 4 marks is
shown in Figure 2.2. The model in this case is compiled for Gecode, a modern constraint
solver [Schulte et al., 2016]. Note that all variables from arrays in the model have been
renamed and flattened, and as a consequence, they are indistinguishable from single vari-
ables. For example, the variables X INTRODUCED 1 , X INTRODUCED 2 , X INTRODUCED 3
(declared in lines 3 to 5) represent mark[2], mark[3], mark[4] from the MiniZinc model,
respectively, as indicated by line 10. Note, however, that mark[1] does not have an as-
sociated variable, and it is substituted with 0, instead: its value was inferred from the
constraint in line 9 from Listing 2.1 during the compilation process. Additionally, this
constraint is not present in the FlatZinc instance, as it cannot affect the execution process
any further. In larger examples, it is not uncommon for the compiler to additionally intro-
duce auxiliary variables (called introduced variables) for expressing complex relationships
between the user-defined variables.

For this particular model and solver, all constraints from the MiniZinc model are
represented by only two kinds of constraints in the FlatZinc model. One is int lin le,
which represents a linear inequality expression. For example, the expression in line 14 is
equivalent to the following expression:

X INTRODUCED 1 ≤ X INTRODUCED 2 - 1,

which states that mark[2] must be positioned closer to the beginning of the ruler than
mark[3]. A similar relation for variables mark[3] and mark[4] is stated in line 15. Note
that the two constraints together represent a single constraint item from the MiniZinc
model (line 11 in Listing 2.1).

2.6. RELATED WORK 19

Being able to describe a problem once and use the same problem description with
many solving technologies is a powerful capability that solver-independent languages like
MiniZinc enable. The convenience of using these languages, however, comes at a price:
it makes it more difficult for the modeller to reason about model executions as solvers
operate on FlatZinc models, whose relation with the original model is not very clear.

Note that this fact imposes a challenge on execution profiling (which is the focus of
this thesis) for the same reason: solvers can only produce profiling information in FlatZinc
terms, that is, its flattened variables and constraints. For example, if a search decision is
made on an introduced variable, it would require the modeller to analyse the automati-
cally generated FlatZinc instance thoroughly in order to understand the meaning of that
decision. An effective profiling system thus should be able to interpret the information
provided by the solver and relate it in MiniZinc terms for the modeller.

1 predicate all_different_int(array [int] of var int: x);
2 array [1..2] of int: X_INTRODUCED_4_ = [1,-1];
3 var 1..16: X_INTRODUCED_1_;
4 var 0..16: X_INTRODUCED_2_;
5 var 0..16: X_INTRODUCED_3_;
6 var 0..16: X_INTRODUCED_8_ :: var_is_introduced :: is_defined_var;
7 var 0..16: X_INTRODUCED_9_ :: var_is_introduced :: is_defined_var;
8 var 0..16: X_INTRODUCED_10_ :: var_is_introduced :: is_defined_var;
9 array [1..4] of var int: mark:: output_array ([1..4]) =[0, X_INTRODUCED_1_ ,

10 X_INTRODUCED_2_ ,X_INTRODUCED_3_];
11 array [1..6] of var int: differences = [X_INTRODUCED_1_ ,
12 X_INTRODUCED_2_ ,X_INTRODUCED_3_ ,X_INTRODUCED_8_ ,
13 X_INTRODUCED_9_ ,X_INTRODUCED_10_];
14 constraint int_lin_le(X_INTRODUCED_4_ ,[X_INTRODUCED_1_ ,X_INTRODUCED_2_],-1);
15 constraint int_lin_le(X_INTRODUCED_4_ ,[X_INTRODUCED_2_ ,X_INTRODUCED_3_],-1);
16 constraint all_different_int(differences);
17 constraint int_lin_le ([1,-1,1],[X_INTRODUCED_1_ ,X_INTRODUCED_3_ ,
18 X_INTRODUCED_2_],-1);
19 constraint int_lin_eq ([1,-1,-1],[X_INTRODUCED_2_ ,X_INTRODUCED_1_ ,
20 X_INTRODUCED_8_],0):: defines_var(X_INTRODUCED_8_);
21 constraint int_lin_eq ([1,-1,-1],[X_INTRODUCED_3_ ,X_INTRODUCED_1_ ,
22 X_INTRODUCED_9_],0):: defines_var(X_INTRODUCED_9_);
23 constraint int_lin_eq ([1,-1,-1],[X_INTRODUCED_3_ ,X_INTRODUCED_2_ ,
24 X_INTRODUCED_10_],0):: defines_var(X_INTRODUCED_10_);
25 solve :: int_search(mark ,input_order ,indomain_min ,complete)
26 minimize X_INTRODUCED_3_;

Listing 2.2: FlatZinc model of the Golomb Ruler problem (m=4) compiled for Gecode.

2.6 Related Work

Previous work on profiling of constraint programs can be categorized as follows: search
tree based visualisations, visualisation of variable domains, visualisation of constraints
(including specialised visualisations for global constraints), detailed views of propagation
steps, and visualisations of solutions.

This section starts by briefly outlining the evolution of profiling methodologies and
introduces the associated tools. The contributions of these tools are then summarised
based on the above categories. The examination of executions’ search trees has been
the most effective way of analysing solver executions, and it is the central theme of my
work. Many search tree visualisations have been employed in the past, and I summarise
them first. I then show the few existing techniques for comparing different executions

20 CHAPTER 2. BACKGROUND

through comparing their search trees. Finally, I briefly summarise the work related to
other categories, such as the visualisations of variable domains and constraints, in order
to give a complete picture.

2.6.1 Brief History of Profiling of Constraint Problems

One of the earlier efforts dedicated to the profiling of constraint programs was presented
in [Meier, 1995]. This work outlined some basic profiling goals and principles, such as
the fact that one should be able to compare different models and to see the effect of a
given constraint (possibly redundant) from a model. The paper additionally recognized
the importance of examining the labels on the path (from the root to the current node) as
a way of determining why a solution is not found quickly. The author demonstrated how
these goals and principles were addressed in Grace, a graphical debugger for the ECLiPS e

Constraint Programming system [Schimpf et al., 2012], which provided a basic view of
domains on the path from the root to the current node, but was lacking a search tree
visualisation as such.

Soon after, the Oz Explorer [Schulte, 1996] was developed, a debugger for the Oz
constraint solver. It was the first system to utilise a search tree visualisation for constraint
programs. The search tree was interactive and could be used to control the search, or to
inspect information on variable domains for a given node. The way the tree was visualised
in Oz Explorer had significant influence on subsequent profiling systems.

The success of these early profiling tools for constraint programs prompted the estab-
lishment of the DISCiPl project [Deransart et al., 2000], a large-scale European research
project carried out in 1996-1999. The project aimed to develop a formal methodology
for analysing constraint program executions and to build tools around it, focusing both
on performance debugging (that is, profiling) and correctness debugging. It was largely
influenced by the search tree visualisation of Oz Explorer, but additionally provided de-
tailed views on domains, variables, and constraints. The project resulted in a considerable
amount of new tools, roughly one per constraint language developed by the groups involved
in the project, including Prolog IV Visual Debugger [Bouvier, 2000], APT Tool [Carro et
al., 2000b], the profiling tool for CHIP [Simonis et al., 2000], and VIFID/TRIFID [Carro
et al., 2000a].

Systems like the APT Tool, the Prolog IV Visual Debugger and the profiling tool for
CHIP mainly focused on the search tree visualisations. The Prolog IV Visual Debugger,
for example, presented the first pseudo-3D view for search trees, while the APT Tool
experimented with adding statistical information directly to the tree, and the profiling
tool for CHIP provided alternative ways for visualising search. On the other hand, VI-
FID/TRIFID focused on visualisation of domains of variables and their evolution during
the search.

Importantly, while all of the aforementioned profiling systems developed effective tech-
niques for profiling, those systems were tightly coupled with their host platform, and thus
their usefulness was restricted to their host platform users. To some extent, this changed
with OPL Studio [Bracchi et al., 2001], which was built as an IDE for the OPL language,
and enabled profiling based on the tracing facilities provided in the ILOG Solver. While
it provided similar profiling capabilities to those of the existing systems, such as a search
tree visualisation, path visualisations and propagation views, its novelty lies in the use
of a client-server architecture. In this architecture the profiler (server) and ILOG Solver
(client) communicated via sockets, with the two components being only loosely coupled.
This made the profiling with OPL Studio available to any system that implemented the

2.6. RELATED WORK 21

same XML-based protocol. Additionally, in order to aid in integrating new systems, the
authors provided a C++ library that encapsulated the protocol and the communication
layer.

There is no evidence of other constraint systems implementing the protocol of OPL
Studio to take advantage of its profiling capabilities. However, given the high cost of
developing a profiler, it became apparent that investing in research of solver-independent
profiling could yield significant benefits. The same rational lead to the birth of OAD-
ymPPaC [Deransart, 2004], another large European project concerned with profiling of
constraint programs, which was carried out from 2001 through 2004. The authors recog-
nised the importance of solver-independent profiling as to: (a) encourage the sharing of
debugging tools between different parts of the community, and (b) enable users to more
easily switch between constraint solving systems. Indeed, one of its main contributions was
GenTra4CP [Langevine, 2005] (later defined more formally in [Deransart, 2011]), a generic
format for communicating between constraint solvers and profilers. The format is de-
signed to capture pre-defined events about search (failure, solution, backtrack/backjump,
etc) and propagation (awakening of a constraint, domain reduction, etc). A debugging/vi-
sualisation tool could choose which information to use and which to ignore, and the level
of detail provided by GenTra4CP could be changed dynamically.

As part of the project, a notable debugging tool CLPGUI [Fages et al., 2004] was
developed, which used the GenTra4CP protocol for communicating with constraint solvers.
Similarly to the OPL Studio, it employed a client-server architecture, with its components
communicating via sockets. Interestingly, the authors of CLPGUI additionally proposed
a protocol complementary to GenTra4CP for controlling executions, and used it to enable
a two-way communication between a solver and the debugger. These protocols, however,
were very detailed and complex, making integration with new constraint solvers hard. As
a consequence, GenTra4CP did not find widespread use [Deransart, 2011].

More recently, CP-Viz [Simonis et al., 2010] was proposed as another attempt at
creating a system-independent profiler, which greatly simplified the integration with the
solver. To achieve this, CP-Viz put some restrictions on its functionality; for example, it
did not support controlling the search, viewing individual propagation steps, or displaying
the constraint graph.

The system works in a post-mortem mode, that is, it can analyse executions only once
they are finished. CP-Viz requires a solver to create an XML log of an execution with the
information necessary for profiling. After the log file is completely parsed by CP-Viz, the
execution can be analysed.

Many constraint systems implemented support for CP-Viz profiling, including ECLiPS e,
G12/FD, OR-tools, and Choco. To the best of my knowledge, however, the profiling tool
of CP-Viz has not been extensively used in recent years. Partly, this could be because of
some conceptual limitations of the system, namely, its post-mortem nature: for example,
the user did not see the progress of the execution in real time, and thus, could not deter-
mine (or guess) if it should be run until completion. More importantly, the support for
comparison of executions, crucial for model improvement, was very limited in CP-Viz.

Although no profiling system for constraint programs seems to have attained widespread
use, many of the techniques developed within these systems are worth mentioning. The
following sections categorise and summarise the contributions to the profiling techniques.

22 CHAPTER 2. BACKGROUND

2.6.2 Search Tree Visualisations

Possibly the earliest mention in the literature of visualisation of search trees for (relatively
large) combinatorial problems was presented in [Held et al., 1971], where a variation of
the branch-and-bound procedure was used to solve instances of the well-known Traveling
Salesman Problem. The visualisation was not interactive and contained very little infor-
mation in addition to the general tree structure, so it could only be used for giving the
user a general idea about the search.

Figure 2.4: Search-tree visualisation in Oz Explorer, taken from [Schulte, 1996].

As mentioned earlier, the Oz Explorer [Schulte, 1996] was one of the first systems
to utilise a search tree visualisation for constraint programs (an example is shown in
Figure 2.4). The tool allowed a search tree to be built incrementally, thus visualising
the search in real time. It also utilised powerful abstractions to enable visualisations of
large search trees. One is that of a virtual canvas (possibly larger in dimensions than the
monitor screen), where the user had an option to view only part of the canvas, navigate
it by means of scrollbars, and zoom in/out when necessary. Another powerful abstraction
is the use of collapsed nodes, which represent entire subtrees, but occupy a small space
on the canvas (comparable to other, single nodes). The user had the ability to manually
collapse arbitrary subtrees (and expand them back), thus controlling which parts of the
tree to focus on. To aid the user in this, failed subtrees could be collapsed automatically
during search.

The debugger in CHIP borrowed many ideas from Oz Explorer: it similarly supported
retrieving detailed information about the solver’s state by reenacting the decisions on the
path to the node, as well as collapsing uninteresting subtrees into single nodes. The tool
additionally allowed colour-coding the nodes with a user-defined scheme, displaying, for
example, the number of alternatives in the node (see Figure 2.5). Textual information
on each node could also be configured by the user to show, for example, the name of the
variable labelled, or the current depth in the tree. For large, deep trees, the visualisation
allowed users to combine several choices into a single node with multiple children. The
trees in this case would potentially become shallower, but occupy more horizontal space.

2.6. RELATED WORK 23

Figure 2.5: Search-tree visualisation in CHIP, taken from [Simonis et al., 2000].

A very different approach was available in OPL, where the search tree is visualised
based on some statistical information about the execution, such as the number of prop-
agation steps, or the time spent in each node. Figure 2.6 shows an example of such
hybrid view (called a Christmas Tree) applied to a small problem. The visualisation uses
a common colour scheme: blue, red, and green nodes represent decision nodes, failures,
and solutions, respectively. However, different intensity levels convey additional statis-
tical information: darker (lighter) nodes in the tree indicate that the domain reduction
is large (small) at a given node. Additionally, the node’s size represents the number of
propagation events that fired at the node, giving an idea of how much time is spent in the
corresponding part of the execution.

A somewhat similar approach was employed in the APT Tool, where nodes representing
collapsed subtrees (shown as triangles in Figure 2.7) were depicted using different shades
of grey based on the size of the underlying subtrees.

A few works explored the possibility to utilise the third dimension for search tree visu-
alisations. Within the DiSCiPl project, the Prolog IV Search-Tree Visualiser extended the
Prolog IV Debugger with a search tree visualisation, such as the one shown in Figure 2.8,
where the third dimension is used to distinguish between different call levels.

The use of 3D was also employed in CLPGUI involving alternating planes as follows: if
the depth of the tree is represented by the Z axis (with orthogonal axes X, Y, and Z), the
layout procedure will position children in a line parallel to the X axis if the current decision
level is odd, and parallel to the Y axis, otherwise (see Figure 2.9). Of course, a single 2D

24 CHAPTER 2. BACKGROUND

Figure 2.6: Christmas Tree Visualisation from OPL Studio, taken from [Bracchi et al.,
2001].

Figure 2.7: Search tree visualisation in the APT Tool, taken from [Carro et al., 2000b].

projection would be insufficient for interpreting such trees, and therefore, CLPGUI allowed
the user to interactively explore the tree by rotating the view along arbitrary axes.

Radically new ways of visualising search trees have also been proposed in the literature.
One example is the phase-line display, as proposed by Simonis et al. for CHIP. While the
positions of nodes in this view are the same as they would be the traditional tree view (see
Figure 2.4), there is a difference in the meaning of edges: they connect nodes assigning
the same variables rather than depict parent-child relationships. Observing the phase-line
display, the user could get an idea of how dynamic the search is: horizontal edges would
indicate static order of variable choice, whereas crossings between edges would indicate
where this order had changed. The authors suggest using the phase-line display to compare
variable selection orders in different search heuristics. Figure 2.10, for example, shows two
search trees in a single phase-line display, with the first and the second tree occupying,
respectively, the left and the right halves of the view. In this case, the figure indicates
the same variable selection order for the first several decision levels, followed by major
differences as indicated by the skewed edges further down.

When trying to display the search tree for large executions, CP-Viz introduced another
unconventional view for search trees, based solely on statistical information about nodes in
the tree. The visualisation, which reportedly could be used to reason about the structure

2.6. RELATED WORK 25

Figure 2.8: Pseudo-3D tree visualisation in Prolog IV Debugger, taken from [Bouvier,
2000].

Figure 2.9: Search tree visualisation with alternating planes in CLPGUI, taken from [Fages
et al., 2004].

of the tree, consisted of a graph showing the number of branch and failure nodes as a
function of depth in the tree (see Figure 2.11, left). The same authors suggested using
a tree-map as a visualisation paradigm for displaying search trees, where the nodes are
shown as rectangles, and the child-parent relationship is shown through their containment
(see Figure 2.11, right). In this visualisation, the size of a given subtree is represented by
the area of the corresponding rectangle, and thus it is immediately apparent to the user.

26 CHAPTER 2. BACKGROUND

Figure 2.10: Phase-line display in CHIP, taken from [Simonis et al., 2000].

Figure 2.11: Node distribution per depth (left) and a tree-map (right) in CP-Viz, taken
from [Simonis et al., 2010].

These alternative views clearly did not convey the same amount of information as the
traditional node-link visualisations, and therefore, they were not intended to replace them.
The relatively modern profiling tool CP-Viz, for example, still provides a search tree visu-
alisation, resembling that of the pioneering Oz Explorer: note its triangle-shaped collapsed
failed subtrees in Figure 2.12. The visualisation tool in Gecode (called Gist), which is a

2.6. RELATED WORK 27

Figure 2.12: Traditional search tree visu-
alisation in CP-Viz, taken from [Simonis
et al., 2010].

Figure 2.13: Search tree visualisation in Gist
(Gecode).

modern successor of Oz Explorer, also provides search tree visualisation capabilities very
similar to those of its predecessor (see Figure 2.13).

In conclusion, the traditional node-link visualisations appear to be indispensable in
profiling of constraint problems, and prevail in modern profilers. Some ways of enhancing
them have been proposed as well, in particular, those incorporating statistical information
into the search tree visualisations. While such visualisations have clear advantages over
the traditional visualisations, they have not seen wide adoption, possibly because they are
less familiar for most users.

2.6.3 Comparison of Executions

The importance of comparing executions was already identified in the early work for
Grace [Meier, 1995]. The system allowed connecting two solver executions in such a way
that all control commands, such as the labelling of variables, would be synchronised.
During such executions, differences in variable domains could be highlighted using colour,
thus providing a simple means of comparing executions.

With search tree visualisations becoming more commonplace, some systems considered
comparing executions by drawing their trees side-by-side. Often, the two trees would be
drawn as subtrees of a larger “supertree”. For example, Figure 2.14 shows the comparison
of two different search strategies in CHIP applied to the same problem. Search trees could
be compared in a similar way in CLPGUI as shown in Figure 2.15, where the two trees
correspond to the same problem solved with and without a symmetry breaking constraint
(shown as the right and the left subtrees, respectively).

28 CHAPTER 2. BACKGROUND

Figure 2.14: Side-by-side tree comparison in CHIP, taken from [Simonis et al., 2000].

Figure 2.15: Side-by-side tree comparison in CLPGUI, taken from [Fages et al., 2004].

Interestingly, alternative search tree visualisations have been utilised for the side-by-
side comparison as well. For example, as it has already been mentioned, the phase-line
display of CHIP was mainly used for this purpose (see Section 2.6.2). CLPGUI also utilised
its alternative viusalisation of a tree-map for side-by-side comparison (see Figure 2.16).

While novel and interesting, the above techniques for comparing executions either
do not scale for large problems, or only provide a very general idea about how the two
executions differ. For example, Grace allowed one to compare domains of variables in

2.6. RELATED WORK 29

Figure 2.16: Side-by-side tree comparison of tree-maps in CLPGUI, taken from [Fages
et al., 2004].

great detail, but only for a pair of nodes at a time. On the other hand, while side-by-side
comparison allowed users to compare entire trees at once, only very general aspects of
executions could be compared. This work investigates ways in which large executions can
be compared in a higher level of detail.

2.6.4 Visualisation of Domains

Debugging for imperative languages, such as C++ or Python, usually involves inspecting
the values that variables hold at a given point in the execution. In Constraint Program-
ming, which adheres to the declarative programming paradigm, this is roughly equivalent
to inspecting variable domains (which are sets of values, rather than single values).

Figure 2.17: Variable stack in Grace, taken from [Meier, 1995].

Grace, one of the earliest debuggers for constraint programs, provided a visualisation of
the variable stack, which displayed the following information for every variable currently
labelled: the variable’s domain, the current value, the values already tried, and those
still to be tried (see Figure 2.17). A rectangle is used to abstract each domain, where
vertical slices within the rectangle represent different values (or ranges of values), and
the left-most (right-most) slices represent the smallest (greatest) values in the domain.
The different kinds of values (tried, current, or remaining) are shown in different colours,
which helps the user to identify the current position in the search space. This view is
particularly important for Grace as it did not provide a tree visualisation, only showing
the information relevant to the current path.

30 CHAPTER 2. BACKGROUND

Figure 2.18: Variable update view in CHIP, taken from [Simonis et al., 2000].

Figure 2.19: Evolution of variable domains in VIFID, taken from [Carro et al., 2000a].

In Oz Explorer, when the user double-clicked on a node, the detailed information
regarding the state of variables for that node, such as the variable domains, would be
dynamically recomputed and displayed to the user. This information, however, was con-
veyed in textual form only, and thus inspecting large domains was potentially a tedious
task. Oz Explorer, however, partially compensated for the lack of domain visualisation by
supporting user-defined views for (partial) solutions (see Section 2.6.7).

The CHIP system built on the ideas from Oz Explorer, and provided a more detailed
matrix-based visualisation of the execution state. For the path from the root to the
current node, a variable update view was available (see Figure 2.18), where all variables
were shown in the horizontal axis, and the decision levels – on the vertical axis, with
the depth increasing from bottom to top. This matrix used colour to show the evolution
of the variable: whether it is assigned (red), its domain changed (grey), etc. When
variable domains are relatively small, it is also possible to display the domain of a variable
as a horizontal rectangle and coloured according to possible values. To deal with large
executions, the visualiser in CHIP allowed users to annotate the source code to indicate
which variables/constraints should be displayed in the corresponding views.

2.6. RELATED WORK 31

Carro et al. investigated techniques for visualising data evolution in constraint program
executions, and demonstrated their implementation within the VIFID/TRIFID tool. Sim-
ilarly to CHIP, VIFID/TRIFID uses a row of coloured cells to represent a domain of a
given finite domain variable. Stacking such rows could display the evolution of a given
variable. Figure 2.19 shows an example of such view for a problem with 9 variables, where
rows from top to bottom show how the domain of each variable changes with each level
of decision during execution. Although this view only displays evolution on the current
path, the user can get a sense of the current position in the tree looking at the small
curved arrows on the left, which indicate points of backtracking. For large domains the
tool provided several abstractions. One is that of a domain size, a scalar value that repre-
sents a whole domain. Using this abstraction the authors proposed a 3D visualisation for
displaying the change in the domains of variables over time: the variables and time were
shown along two of the axes, while the remaining axis represented the domain size.

Figure 2.20: Evolution of variable domains in TRIFID, taken from [Carro et al., 2000a].

An example is shown in Figure 2.20, where variables are shown along the X axis, the
time is shown along the Z axis, and the number of values left in the corresponding domains
is shown along the Y axis. Although the actual values in the domains are hidden in this
visualisation, it was still able to provide useful insights. The user could, for example,
notice similar patterns in the domain change of some variables, and thus, conclude that
the variables are highly related. A similar view (see Figure 2.21) was later integrated into
CLPGUI.

Visualisation techniques for variable domains have been extensively studied, and pro-
filing systems could benefit from many of the results. At this stage, the 2D matrix-based
visualisations seem to be most prevalent and effective, however, with the advancement
in 3D rendering and virtual reality technology becoming more commonplace, various 3D
visualisation are likely to become as viable. While making further improvements in this
area are out of scope of my work, I aim to ensure that these and future techniques for
visualising variable domains can be easily integrated into my profiling framework.

32 CHAPTER 2. BACKGROUND

Figure 2.21: Evolution of variable domains in CLPGUI, taken from [Fages et al., 2004].

2.6.5 Constraint Visualisations

Matrix-based approaches have been the most commonly used for visualising constraints.
For example, CHIP allowed users to view constraints via an incidence matrix (Figure 2.22),
where the variables involved are shown along the X axis, and all constraints along the
Y axis. The purpose of this view was to give the user an idea about the structure of
the problem at hand. Additionally, constraints and variables could be colour coded to
distinguish between, for example, different kinds of constraints, or to indicate whether
a given variable has been assigned. Another matrix-based view on constraints in CHIP
allowed users to see the evolution of constraints on the path from the root to the current
node by representing the decision level in the tree as rows, and the constraints in the
problem as columns. Different colours on the intersection of a given row and column could
display the status of a constraint (whether it is woken, caused some domain update, etc.)
on the corresponding level.

The work of Carro et al. for VIFID further investigated techniques for visualising
constraints. A binary constraint could be visualised as a 2D-matrix, where the colour
of cells indicates values that the constraint allows for the two variables involved. The
authors recognise the difficulties involved in visualising n-ary constraints in the same way,
and suggest a simplification that involves a series of 2D-matrices. Rows in the matrices
represent variables, and columns represent values from their domains. For a selected
variable, the values from its domain are evaluated (the said matrices representing each of
the values), and rows for the remaining variables reflect how a given assignment changes
their domains. An example of such view is displayed in Figure 2.24, where for a ternary
constraint (involving variables X, Y, and Z with domains of 1..6), the matrices show how
assigning Y to values from its domain affects other variables.

2.6. RELATED WORK 33

Figure 2.22: Incidence matrix in CHIP, taken from [Simonis et al., 2000].

Figure 2.23: Constraint graph in VIFID,
taken from [Carro et al., 2000a].

Figure 2.24: Visualising a ternary
constraint by enumerating Y (VI-
FID), taken from [Carro et al.,
2000a].

VIFID supported another way of visualising constraints: the constraint graph, where
variables are represented as nodes, and the nodes are connected via an edge if their cor-
responding variables are connected via a constraint (an example is shown in Figure 2.23).
Edges could be visually tagged with additional information (via the line thickness, colour,
or length), such as: the number of times there had been propagation between the corre-
sponding variables, or the actual number of constraints between them. The purpose of
this view is to help the user find tightly connected variables in the problem, which could
be used to discover good variable selection strategies.

34 CHAPTER 2. BACKGROUND

Figure 2.25: Constraint graphs in SATGraf for two different problem instances, taken
from [Newsham et al., 2015].

Figure 2.26: Bin-packing constraint (left) and Cycle constraint (right) visualisations in
CHIP, taken from [Simonis et al., 2000].

The idea of a constraint graph view was also employed for Boolean satisfiability prob-
lems (SAT) in DPVis [Sinz et al., 2005], where clauses in a Boolean formula (along with
learnt clauses) play the role of constraints. This has been inspired by studies showing
that industrial problems (in contrast to randomly generated problems) tend to contain
inherent structure, and modern SAT solvers can take advantage of this structure.

SATGraf [Newsham et al., 2015] built further on this idea by adding functionality to
automatically identify groups of tightly connected variables, or communities, as well as to
show the evolution of the constraint graph: how the communities morph into one another
as new clauses get added, and other clauses get deleted. The authors indicate that when
different communities are highlighted in different colours, as in Figure 2.25, the differences
in the structure of several problems can become apparent.

Specialised visualisations have also been proposed in CHIP for problems involving
global constraints, which provided the user with a set of common views. For a given
constraint, the user would specify through an annotation which views should be used. For
example, the 2-dimensional view shown in Figure 2.26 on the left could be used for the
bin-packing constraint, which requires that n items of known size si be distributed among

2.6. RELATED WORK 35

Figure 2.27: Global constraint visualisation in Comet: alldifferent (left) and bin-packing
(right), taken from [Dooms et al., 2009].

Figure 2.28: S-boxes of DiSCiPl showing hierarchy of constraints, taken from [Goualard
et al., 2000].

m bins of capacity C. In this view, the m different bins are drawn along the X axis, and
their capacity, as well as the amount of space occupied by the corresponding items, is
shown along the Y axis. As another example, a node-link diagram would be appropriate
for the cycle constraint, which allows one to define cycles in a directed graph.

A view similar to the one depicted in Figure 2.27 (right) has been employed in the
Comet constraint system [Dooms et al., 2009], which additionally shows how the constraint
is violated using rectangles outlined in red. Another view developed for Comet is well-
suited for visualising the alldifferent global constraint constraint (Figure 2.27, left) by
means of a bipartite graph, where each black node (variable) is connected to exactly
one red node (value) representing assignments to variables. Similarly, violations of this
constraint are highlighted: edges leading to the same value node are shown in red.

In order to deal with a large number of constraints and variables, the S-box abstraction
was proposed within the DiSCiPl project [Goualard et al., 2000], which represents a group
of logically related constraints. S-boxes can be shown as rectangles enclosing their cor-
responding constraints (see Figure 2.28). Additionally, they could contain other S-boxes,
forming a hierarchy of constraints. The user could thus see the interactions between the
S-boxes, and optionally zoom in on the appropriate level in the hierarchy.

In the area of constraint visualisation, matrix-based and graph-based approaches seem
to be the most widely used. The existing matrix-based visualisations, for example, the
incidence matrix in CHIP, can be effective for a small number a variables, but might not be
viable for large problems. Graph-based approaches are mainly represented by constraint

36 CHAPTER 2. BACKGROUND

Figure 2.29: An example of a user-defined view for partial solutions in Oz Explorer, taken
from [Schulte, 1996].

graphs, displaying variables as nodes and showing their constraint relationships through
edges. These approaches seem to scale better for large problems (as demonstrated by
SATGraf), but the insights they provide are quite coarse and do not seem to readily
suggest model improvements. Contributing to the area of constraint visualisation is out
of scope of my work, however, similar to the variable domain visualisations, I will aim to
design a framework that could integrate these visualisations easily.

2.6.6 Propagation Views

The constraint system of CHIP introduced the idea of presenting detailed information
about propagation to the user via matrix-based views. A matrix in such a view consists
of rows representing propagation steps and columns for every variable involved, with cells
indicating updates in variables as a result of propagation at the corresponding steps.

Enabling propagation visualisations clearly requires deep integration into the system,
or a very detailed protocol, such as GenTra4CP. This level of detail is arguably too low
for most users, and perhaps useful only for educational purposes or for propagation algo-
rithm developers for correctness debugging. For these reasons, my work will not focus on
displaying detailed propagation views.

2.6.7 Visualisation of Solutions

User-defined views for solutions, as well as for partial solutions, were already available
in Oz Explorer. Figure 2.29, for example, shows a visualisation of a partial solution for
the “Photo” problem, which requires arranging five people (Alice, Bert, Chris, Deb, and
Evan) in a sequence according to their preferences. The problem in this case is modeled
with five variables representing each person’s position with the domains of 1..5. The
visualisation in Figure 2.29 shows the assigned values for two variables (Alice and Bert),
and the remaining values in the domains of unassigned variables (Chris, Deb, and Evan)
using arrows. Although the same information could be conveyed as clearly in a textual
form, in larger problems, visual problem-specific representation of domains is arguably
more suitable than textual representation.

Visualisations of complete assignments, or solutions, have also been explored in the
context of constraint-based local search (CBLS). The work in [Dooms et al., 2009] presents
a compositional and extendable framework for declaratively visualising solutions. These
visualisations are reminiscent of global constraint visualisations (like those available in
CHIP) and often can be viewed as a combination of them. The authors used mainly two
familiar paradigms: matrix-based and graph-based visualisation. For instance, the graph-
based visualisation in Figure 2.30 shows a solution to the warehouse location problem,
which involves finding the optimal location for warehouses given a set of customers on a

2.6. RELATED WORK 37

Figure 2.30: Solution visualisation for the warehouse location problem, taken from [Dooms
et al., 2009].

Figure 2.31: The change in the objective over time in CBLS, taken from [Dooms et al.,
2009].

map. Visualisations of the objective value were also available within the same system.
One example is displayed in Figure 2.31, which shows the change in the objective’s value
over time.

Solution visualisations are certainly valuable for both correctness and performance
debugging, especially in large problems, and it is important for a profiling system to
support them in principle. Contributing to this area of research falls outside the scope of
my work, but I will aim to ensure that solution visualisation can be easily integrated into
my framework.

38 CHAPTER 2. BACKGROUND

2.7 Summary

Many profiling techniques proposed in the past have shown to be able to provide valuable
insights into CP solver executions. However, most of these techniques have been imple-
mented as part of solver-specific profiling systems (CHIP, Oz Explorer, APT Tool, Prolog
IV Visual Debugger etc), and thus, the sharing of such profiling techniques among the
systems was quite limited as it required significant amount of work. As a consequence,
if the user wanted to use a specific profiling technique, they were limited to only those
solvers that provided support for that technique. A few solver-independent tools, such as
CLPGUI, aimed to support multiple solvers, but haven’t received wide acceptance due to
the complexity of their communication protocol and, as a consequence, the large amount
of work required to instrument solvers.

CP-Viz proposed a much simpler protocol for debugging, which allowed it to be in-
tegrated with many solvers. However, to the best of my knowledge, it has not been
extensively used in recent years. One reason for that could be some limitation of its
design, namely, its post-mortem nature, which restricted users to profiling only finished
executions.

More importantly, the existing profiling systems lacked support for analysing execu-
tions automatically, which appears to be necessary for large executions. In particular, one
of the fundamental requirements for effective profiling: being able to compare executions
before and after some model modifications, was hardly achieved.

Additionally, many modern paradigms for solving constraint problems, like the use of
clause learning or restart-based search, are becoming commonplace. However, there is
no mention in the literature of profiling for them.

This work aims to design a framework that is solver-independent and supports these
modern solving paradigms. It then explores the possibility of analysing executions auto-
matically to aid the user in examining large executions, and thus, addresses some of the
above limitations in the state of the art.

Chapter 3

An Architecture for Profiling CP
Search

The extent to which a profiling system can be useful is largely determined by the early,
architectural decisions put into its design. This chapter first discusses the requirements
that such a system will need to adhere to, and argue why each of them is necessary
for effective profiling. Section 3.2 then discusses the design decisions that help achieve
the said requirements as part of a complete architecture. Then, the protocol designed
for communicating between the system and constraint solvers is described in detail in
Section 3.2.2. Section 3.3 evaluates the system in terms of the overhead that it imposes
compared to solver executions without profiling. Section 3.4 shows the solver modifications
required for integrating a new solver into the system, and demonstrates the ease of such
integration on the example of the popular solver Choco. Existing solver-independent
profiling systems are summarised in Section 3.5 and compared with the system presented
here. Finally, Section 3.6 summarises the chapter.

3.1 Requirements for Effective Profiling

The first requirement (R1) for an effective profiling system is to provide a search tree
visualisation. The most popular and familiar way of analysing executions discussed in the
literature is through observing and exploring visualisations of their search trees. They are
often used to control other profiling modules, such as domain or solution visualisations,
by letting the user specify to which nodes to apply these visualisations. Additionally, a
search tree visualisation – or more precisely the structure of the search tree – is necessary
for a range of effective automated analysis techniques, which I introduce in later chapters.

The second requirement (R2) for an effective profiling system is to be efficient. Large,
real-world problems tend to require traversing search trees with many millions of nodes.
It is with these hard to solve problems that profiling is often necessary. Enabling efficient
profiling, that is, one that is capable of dealing with large, real world problems, is, there-
fore, of great importance and one of the goals that I aim to achieve in my work. It is
at the same time challenging, as it involves being able to visualise, quickly navigate, and
analyse large, multi-million node search trees. Some existing profiling systems, such as the
search visualiser in Gecode, supported multi-million node search trees, and thus achieved
this requirement.

39

40 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

The third requirement (R3) for an effective profiling system is to be solver-independent.
A great number of solvers are available to the users of Constraint Programming technol-
ogy (for example, Gecode, Choco [Prud’homme et al., 2017], Oscar [OscaR Team, 2012],
Chuffed [Chu, 2011] etc). While some of them are more suitable for a given problem than
others, it is rather difficult to know beforehand which solvers will perform best (in terms
of solving time, for example) for the problem at hand. Because of that, trying a variety of
solvers when tackling a large problem is often part of the modelling process. To be able to
analyse solver executions even when multiple solvers are used, requires solver-independent
profiling. Further, some solvers with small, easy to understand code bases exist solely for
learning purposes (e.g. [Hartert, 2017]). It can be beneficial to pair such solver with, for
example, a search visualiser in order to improve the learning experience. However, such
solvers will rarely be used for solving large, real world problems, since they cannot compete
with state-of-the-art solvers such as Gecode or Choco. As a consequence, there is little
incentive to develop dedicated profiling tools for them, and thus, such solvers would also
benefit from a solver-independent profiler. Finally, a solver independent profiler would
aid the development of new solvers, as it would save the time of developing dedicated
debugging tools for them. As discussed in the previous chapter, very few existing profil-
ing systems achieved the requirement of solver-independence. The only system that fully
utilised its solver-independence is CP-Viz, which integrated many constraint solvers. Al-
though other profiling systems, namely, OPL-Studio and CLPGUI were decoupled from
the solver, they were difficult to integrate, and thus they have not been widely used with
solvers other than those developed by the same groups of developers.

The fourth requirement (R4) for an effective profiling system is to be able to visualise
executions in real time. This is in contrast to post-mortem systems, which only allow
one to visualise and analyse executions once they are finished. The only advantage of the
post-mortem approach over real-time profiling is its relative ease of implementation, which
is outweighed by its disadvantages. For example, post-mortem profiling does not allow the
user to estimate the amount of search space already explored, and thus determine whether
the execution should be run until completion or be interrupted earlier. On the contrary,
real-time profiling allows the user to make such predictions (albeit not always accurately)
based on the number of unexplored nodes and their depth in the tree. Additionally, when
an execution is visualised in real time, the user can identify early if the search is not
behaving as expected, and thus interrupt the execution and change it accordingly. For
instance, the user could see that restarts are too infrequent in a restart-based execution,
and change the restart policy, that is, the conditions for performing a restart during
search. Among the previously developed profiling systems working in real-time are Grace,
Oz Explorer, OPL Studio, and Gist (see Chapter 2).

The fifth requirement (R5) for an effective profiling system is search-independence.
In addition to using different solvers, users can often select from a variety of search tree
exploration techniques. In particular, in addition to the regular depth-first search, more
advanced techniques are becoming commonplace, including: restart-based search, parallel
search, and large neighbourhood search. To be search-independent, that is, to be able to
support modern and popular techniques, is clearly desirable for profiling. To an extent, a
few existing systems meet this requirement by supporting arbitrary order for adding nodes
to the tree ([Simonis et al., 2010], [Fages et al., 2004] etc).

The sixth requirement (R6) for an effective profiling system is to be extensible. It is
important for the profiling system to be easily adaptable to the advancements in solver
design, and thus, to be able to support the new profiling techniques that they might require.
For example, one modern solver technology – Lazy Clause Generation – is becoming
increasingly popular as utilising it often results in significant performance gains on some

3.2. DESIGN DECISIONS 41

classes of problems. Understanding why some solver technology is effective (or ineffective)
for a given model can often lead to model improvements, but is likely to require special
purpose profiling. A profiling system thus needs to be extensible, that is, be able to adapt
to new technologies in modern (or, indeed, future) solvers while remaining backwards-
compatible with traditional solvers.

A solver-specific profiler can always be extended to the needs of its host solver. The
challenge is in extending a solver-independent profiler, as all the supported solvers would
need to be taken into account when a change, for example, in the protocol is made. In
order to cover the needs of any profiling functionality that could be added in the future,
systems like CLPGUI relied on the verbosity of their protocols and the ability of solvers
to ignore some messages. Extending such protocols was, in theory, possible, as new types
of messages could be added to them.

Finally, the effective profiling system needs to be able to effectively compare executions
(R7). When an execution is slow, the modeller often aims to improve its performance by
either modifying the model, changing the search, or trying a different solver. Evaluating
how such modifications affect the execution is necessary to know which of them to keep as
well as which further modifications should be applied. Although an effect of a modification
could simply be evaluated by comparing execution times, that approach requires that
two executions finish in a reasonable time (and thus, might not need profiling). More
importantly, the comparison of execution times is too coarse an approach that provides
very little insight. As previously mentioned (see Chapter 2), the only means for comparing
executions existing profiling systems provide is the visual (that is, manual) side-by-side
comparison of the corresponding search trees. I show in Chapter 7 how a more fine-grained
comparison can be an indispensable component of an effective profiling methodology.

In summary, I argue that effective profiling demands an architecture that meets the
following requirements:

� (R1) provides a search-tree visualisation;

� (R2) efficient, i.e. it scales for large real world problems;

� (R3) solver-independent, i.e. it can easily integrate different solvers;

� (R4) search-independent, i.e. it supports different search exploration techniques;

� (R5) real-time;

� (R6) extensible;

� (R7) supports effective comparison of executions;

3.2 Design Decisions

This section discusses architectural decisions that aim to enable effective profiling as de-
fined above. In order to evaluate these decisions, and later, evaluate the profiling method-
ologies discussed in the following chapters, I have implemented a working prototype of
the system – a set of tools capable of visualising and analysing the process of solving in
Constraint Programming. I will refer to them collectively as CP-Profiler, or the profiler
for short.

Clearly, separating the profiler from any solver executable is necessary (albeit not
enough on its own) to achieve the property of being solver-independent (R3). However,

42 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

there are further advantages to this design choice. For example, this is a more natu-
ral design choice for profiling distributed parallel executions, where the “solver” can be
comprised of independent processes running across multiple computers. Additionally, this
decoupling enables comparison of executions from different solvers (R7).

The decoupling of the profiler and solvers requires some form of interprocess communi-
cation. A common approach involves writing a log (or “trace”) of the solver execution to
a file and letting the profiler read the file. The above approach has both advantages and
disadvantages. In terms of disadvantages, writing to a file incurs unnecessary overhead,
especially if its sole purpose is to enable communication rather than being used at some
point in the future. Further, it often results in post-mortem behaviour, as the reading
from a file would usually be performed once the trace recording is finished. In terms of
advantages, it can be convenient to have the file as a persistent representation of an exe-
cution that can be replayed multiple times, or shared with other users. For example, if the
execution is non-deterministic (that is, it depends on random or unpredictable events),
which is the case, for example, in parallel search, this is the only practical way to repro-
duce the same results. Additionally, if there is a need to profile the same execution for a
second time, reading it from a file is often much faster than than re-executing the model,
and thus, a significant amount of the user’s time can be saved.

The approach used in CP-Profiler is to omit the intermediary in a form of a file and
communicate over sockets in a direct TCP connection between the solver and the profiling
system. This approach is similar to those used in a few other existing systems, such as
OPL Studio and CLPGUI. Note that the TCP stream can still be written to a file (which,
in turn, can be read and re-sent to the profiler) with little effort, thus having the benefits
of a persistent representation when it is desirable. CP-Profiler, for instance, provides that
functionality via the “Search Logger” and the “ Search Reader” tools.

3.2.1 The Profiling Architecture

The high-level architecture is shown in Figure 3.1. The profiler listens for messages from
executions on a TCP socket. Solver executions are depicted on the left, where “Execution
I” denotes a regular, single-threaded execution, and “Execution II” a parallel execution.
(There is no real limit on the number of executions, but only two are shown here for
simplicity.) To enable profiling, an execution simply needs to send relevant information
(following the protocol described in Section 3.2.2) to the port on which the profiler is
listening. In case of a parallel execution, the search tree is explored by multiple workers,
each of them running in a separate thread or process and establishing their own connection
to the profiler. Note that the profiling information could be sent to the “Search Logger”
tool instead, which can record it to a file. At any point in the future, the “Search Reader”
tool can be used to open the file and send the information to the profiler, mimicking the
work of the solver.

As discussed earlier, the choice of a direct TCP connection encourages real-time pro-
cessing of profiling information, and thus enables instant feedback as the executions could
then be observed in real-time (R5). The use of socket-based communication also allows
the solver and the profiler to run on different computers, so that the profiler need not
contend for resources with the solver.

Independently of how the communication is performed, a good choice of a protocol
is essential. An important requirement for the protocol is to reduce the amount of bytes
communicated as much as possible, since the size of each message will affect the overhead

3.2. DESIGN DECISIONS 43

Figure 3.1: High-Level Overview of the Profiling architecture.

Figure 3.2: Internal Architecture of the Profiler.

incurred by the communication (R2). This is especially important in the case of dis-
tributed search, where the bandwidth of the network can be a significant limiting factor.
Additionally, when an execution is recorded to the file system, the choice of the protocol
will determine the size of the resulting file. Another requirement on the protocol is to be
flexible and extensible (R6). A protocol is flexible if it allows optional fields to be commu-
nicated alongside the required fields. While required fields are necessary to represent the
basic structure of the search tree, other information regarding the state of the solver at
each search node can also be recorded, such as variable domains, the amount of domain
reduction caused by constraint propagation, or the actual solution in the case of solution
leaf nodes etc. A protocol is extensible, if it remains backwards compatible, even when it
is augmented with new, optional fields. This property is important as it allows the profiler
to adapt to new kinds of information that modern solvers can provide, while at the same
time being compatible with more standard solvers. I designed a protocol that achieves
these goals, and present it in detail in Section 3.2.2.

The architecture of the profiler itself is outlined in Figure 3.2. Different execution rep-
resentations, which encapsulate necessary execution-specific information for one individual
execution each, are shown as part of the “Execution Store” component. The Execution
Conductor receives information that comes to the TCP Server and forwards it to the cor-
responding execution representation among the possibly many executions being profiled

44 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

Figure 3.3: Profiler Components for an individual execution.

by the user. It is additionally responsible for determining whether a new execution repre-
sentation needs to be created within the profiler by means of the Start message described
later in Section 3.2.2. The functionality of the various analysis techniques, such as the ones
discussed in the following chapters, is provided in the form of separate modules. These
modules can query the conductor for the information necessary for the analysis, whether
they work on a single execution or across multiple ones.

Each individual execution has four components: Receiver, Builder, Data, and Tree,
whose interactions are shown in Figure 3.3. The Tree component is responsible for vi-
sualising the search tree of an execution (R1). The job of the Receiver is to listen to all
communications forwarded from the Conductor as relevant to its execution. In the process,
it populates the data structures, represented as the Data component. The information
stored by the Data component can be of two kinds: information necessary for constructing
the tree, or additional information that can be queried at any point in time by one of the
analysis modules. The information relevant for constructing the tree is constantly being
observed by the Tree Builder component, which reacts to the changes and uses the newly
arrived bits of information to construct the corresponding part of the tree.

Note that process of receiving information from a solver and the process of building
the tree are only loosely coupled, and thus, they can be easily parallelised. Indeed, in my
implementation the Receiver and the Tree Builder run in parallel to each other and to the
GUI thread, thus taking advantage of modern multi-processor systems and allowing the
tree visualisation to be interactive even during the solving process.

The following section describes the protocol that a solver needs to follow in order to
communicate information to the profiler.

3.2.2 Communication Protocol

The proposed protocol distinguishes between the following types of messages: Start,
Restart, Done, and Node.

The Start message is sent only once per worker in a solver execution – as the first
message. In addition to instructing the profiler to create a new execution representation (if
one has not been created by a different worker), it allows the solver to specify as parameters
the name of the execution and its execution id, along with any other information relevant
to the entire execution. The execution id is a globally unique identifier, and it is used

3.2. DESIGN DECISIONS 45

internally by the profiler to differentiate between different executions, while the name is
used as the execution’s descriptor to be presented to the user. For example, the name of
the model file with a time stamp (the solver’s starting time) can be used as the name.
Once the execution id is obtained by the profiler, all subsequent messages communicated
via the same TCP connection will be associated with the corresponding execution. Note
that, although the profiler could generate a new unique identifier for every new connection
(and not require solvers to do it), this approach would not work with parallel executions,
which most likely require multiple connections with the profiler).

The Restart message is sent when a solver performs a restart, and thus, it is relevant
for restart-based executions only. Its purpose is to tell the profiler that the following node
messages correspond to a new tree, and thus, they should be handled accordingly.

The Done message simply tells the profiler that no further nodes should be expected
(for example, the search was finished or interrupted by the user), and thus the execution
can be finalised. This can involve, for example, releasing limited machine resources: sockets
and memory are only needed until the tree is fully built. Note that, while the end of the
execution can be inferred, for example, when there are no open nodes expecting children,
the same does not hold for incomplete searches or executions with restarts.

Finally, the Node messages represent solver states right after all propagation is finished
and communicate, among other things, the information directly required for building the
search tree. Node messages have both required and optional fields. A minimal Node
message contains (1) the node’s identifier, (2) the identifier of the node’s parent and (3)
the node’s position relative to its siblings, (4) the number of children, and (5) the node’s
status. The latter distinguishes, for example, nodes corresponding to failures from those
corresponding to solutions, and can hold the following values (represented as numbers
internally): branch, solution, failure, and skipped. It can be shown that this required
information is sufficient to reconstruct a search tree.

Example 3.2.1. Consider the basic tree depicted in Figure 3.4. The information required
to build this tree according to the protocol above (omitting the Start and the Done com-
mand messages) is presented in Table 3.1. The node ids (1) are unique for the execution,
and thus allow the profiler to distinguish between different nodes. The Parent Id field
(2) specifies how the node should be connected by communicating the unique id of its
parent. For example, nodes labelled “Failed” and “Solution” have Parent Id = 0, and
thus they are children of the node with Id = 0, which is the “Root” node in this case.
The Alternative field (3) distinguishes between siblings, i.e. nodes with the same parent,
and thus the same Parent Id. For the left-most child node the value of the Alternative
field is 0, for the second left-most it is 1 etc. Note that the “Root” node has a sentinel
value of -1 for both Parent Id and Alternative to indicate that it has no parent. Finally,
the Number of Children (4) field gives the number of children nodes, i.e. the number
of alternative branching decisions made at that node. In the common case of the binary
branching that number is 2 for all nodes except the leaves, where the number is 0.

Figure 3.4: A simple search tree.

Note that knowing the number of children would not be necessary in a complete search,
as it can be recovered by counting the number of nodes with a specific Parent Id. However,

46 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

Label Id (1) Parent Id (2) Alternative (3)
Number of

Status (5)
Children (4)

Root 0 -1 -1 2 BRANCH
Failure 1 0 0 0 FAILED
Solution 2 0 1 0 SOLVED

Table 3.1: Information sent to build a simple tree.

in order to accurately represent the state of the search half way through its execution (or
when the execution was interrupted), it is helpful to see parts of the search space not yet
explored.

It is important to note that the protocol makes it possible for nodes to be sent in
any arbitrary order. The only requirement is that a node is created after its parent,
which is naturally the case in any constraint solver. This property is important as it does
not restrict solvers to any one search exploration strategy, thus allowing for profiling of
restart-based search, parallel search and clause learning solvers that involve backjumping
(see Chapter 7). The architecture thus meets the requirement of being search-independent
R4 defined above.

The information defined by the above protocol is sent in binary form in order to ensure
the size of each message in bytes is small. The exact format specification is provided in
the following section.

Note that implementing the above design decisions in a profiling system enables the
discussed requirements for effective profiling R1–R7. Therefore, the proposed profiling
system CP-Profiler is based on these design decisions.

3.3 Development and Evaluation of a Prototype

A working prototype of the system, CP-Profiler, has been implemented for the purpose of
evaluating the system itself, as well as the profiling techniques discussed in the subsequent
chapters. The search tree visualisation component of CP-Profiler is based on the visualisa-
tion module Gist from the Gecode solver [Schulte et al., 2016] (mentioned in the previous
chapter), extended with additional functionality (see Chapter 4). All other components
of the system have been developed from scratch.

CP-Profiler is currently undergoing an integration process with the MiniZinc IDE1, an
environment that enhances the experience of modelling and executing constraint programs.
However, a standalone version is also being maintained, and its full implementation is
available under an open-source license at https://github.com/cp-profiler.

3.3.1 The Protocol Specification

In the protocol used by CP-Profiler each message starts with a four-byte integer encoding
the size of the remainder of the message in bytes. This information is followed by a single
byte, which encodes the type of the message. The corresponding values are: Node: 0,
Done: 1, Start: 2, Restart: 3. Then, if the message is of a Node type, the following fields
are added in order: id, pid, alt, children, and status. These fields correspond to the

1http://www.minizinc.org/ide/

https://github.com/cp-profiler

3.3. DEVELOPMENT AND EVALUATION OF A PROTOTYPE 47

required information about each node, as discussed previously: the node’s Id, its parent’s
Id, which alternative the node is, the number of children it has, and its status, respectively.

All multi-byte integer values are encoded using the two’s complement notation in the
big-endian order, that is, with the most significant byte written first. The node identifiers
id and pid are represented as a pair of four byte integers each: one integer is used for
identifying a node within the thread it is created by (each thread represents one of the
parallel workers in a parallel search), and one for identifying the thread itself. The alt
and children fields are represented by a single four byte integer each. The status field
is represented by a single byte. Its possible values are: SOLVED: 0, FAILED: 1, BRANCH: 2,
SKIPPED: 3. All five fields are required, it can thus be assumed that they are present and
have static positions within a message. All other fields are optional and can come in any
order.

The binary representation of each optional field starts with a byte identifying the
field. The optional fields currently used are: label, no-good, and info, which correspond
to a branching decision, a no-good representation (relevant for a learning solver), and
arbitrary information, respectively). Other fields could be added in the future without
breaking backward compatibility. Since the number of bytes that each field takes up is
predetermined by the protocol, the number of bytes remaining for that field is also known
once the field is identified. The exceptions are the fields of textual format (for example,
label, solution etc.), which can significantly vary in size. For such textual fields the size is
encoded in the four leading bytes as a four-byte integer. Field identifiers and their sizes
in bytes are shown in Table 3.2.

field name field id size (in bytes) field name field id size (in bytes)

id n/a 8 label 0 unk.
pid n/a 8 no-good 1 unk.
alt n/a 4 info 2 unk.

children n/a 4
status n/a 1

Table 3.2: Field types in the protocol.

Example 3.3.1. Consider an execution represented by a tree with a single node labelled
”Root”. A possible correspondence between a solver and the profiler in that execution is
shown in Table 3.3, where the order in which different fields arrive is shown from top to
bottom, and the rows are numbered for convenience.

The table shows that three messages are communicated in total. The first message is
represented by rows 1 to 5 and contains the command to initiate profiling, and additionally
provides the execution’s descriptor. The first row shows the first four bytes representing
the number 33, which is the size of the remainder of the message in bytes. The next byte
(row 2) encodes the message type, which is START in this case. As the message represents
a command, rather than a node, it only contains optional fields rather than those required
to create a node. The next byte (row 3) encodes the type of the optional field provided. In
this case it is the info field, which is used for communicating arbitrary information in the
JSON2 format. Being a string-based field, its representation starts with a four-byte integer
(row 4) encoding the size of the following string (27 bytes). The following 27 bytes (row 5)
encode the string “{"name": "minimal example"}”, which communicates the execution’s
descriptor as the value associated with the key “name”. By this point, all 33 bytes have
been interpreted, thus the subsequent bytes correspond to a new message.

2https://www.json.org/

48 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

Row Number Bytes Interpretation

1 00 00 00 21 message size (33)

2 02 message type (START)

3 02 field (info)

4 00 00 00 1B string size (27)

7b 22 6e 61 6d 65 22 3a 20 “{"name": ”
5 22 6d 69 6e 69 6d 61 6c 20 “"minimal ”

65 78 61 6d 70 6c 65 22 7d “example"}”
6 00 00 00 23 message size (35)

7 00 message type (NODE)

8 00 00 00 00 node id (0)

9 FF FF FF FF node thread id (-1)

10 FF FF FF FF parent id (-1)

11 FF FF FF FF parent thread id (-1)

12 FF FF FF FF alternative (-1)

13 00 00 00 02 children (2)

14 02 node status (BRANCH)

15 00 field (label)

16 00 00 00 04 string size (4)

17 52 6f 6f 74 “Root”

18 00 00 00 01 string size (1)

19 01 message type (DONE)

Table 3.3: Example of a correspondence between a solver and the profiler.

The second message is represented by rows 6 to 17 and contains information relevant
for creation of the single (root) node of the search tree in the execution. Similar to the first
message, the bytes in rows 6 and 7 represent the message size (35) and its type (NODE).
Fields shown in rows 8 through 14 represent the required node related information in
the following order: node id and the id of its thread, parent id and the id of its thread,
alternative, number of children, and the node’s status. The bytes shown in rows 15
through 17 represent the optional “label” field (row 15), which is a string of size 4 (row 16)
and content “Root” (row 17). Finally, the last message is represented by rows 18 to 19
and contains the DONE command, which finalizes the execution.

Note in making decisions regarding the protocol for CP-Profiler, I have considered
taking advantage of protocol generators, namely, the Protocol Buffers serialisation li-
brary [Google, 2015], which is the industry standard for constructing binary messages of
dynamic size and content. However, the dedicated protocol was selected in favour of the
one generated by Protocol Buffers, as the latter would either require a run-time depen-
dency (associated with its dynamic library) or a large code base to be included along with
integration library.

3.3.2 Efficiency Evaluation of the Profiling System

Visualising the search explored during a solver execution inevitably introduces overheads
resulting from the need to (a) store the relevant information in memory, (b) draw the
tree, and (c) update the tree as the search progresses in case the visualisation is a real-
time one. Additionally, if the visualisation is decoupled from the solver, which is the
case in the solver-independent CP-Profiler, the communication between the solver and the

3.3. DEVELOPMENT AND EVALUATION OF A PROTOTYPE 49

visualiser (d) can slow down the process even further. How much these extra operations
will affect the execution time depends on how much time the solver spends in processing the
nodes. The overhead for communication is roughly constant per node (assuming that the
messages are of similar size); therefore, the smaller the solving time per node, the bigger
the communication overhead. To measure the overhead in a worst-case scenario, I built a
simple model (see Listing 3.1) for which virtually no propagation can be done, and thus,
the solver spends very little time in processing each node. In that model, line 1 declares
parameter n, which determines the size of the array of decision variables y (declared in
line 2), and thus allows one to control the size of the search space. An additional array of
variables is declared in line 3, whose values are restricted by the unsatisfiable constraint
declared in line 4. The search item in line 5 ensures that the values for the y array are
assigned first, resulting in a large search tree.

1 int: n;
2 array [1..n] of var 1..2: y;
3 array [1..3] of var 1..2: x;
4 constraint forall (i,j in 1..3 where i<j) (x[i]!=x[j]);
5 solve :: int_search(y++x, input_order , indomain , complete) satisfy;

Listing 3.1: MiniZinc model with virtually no propagation.

Due to the small processing time required by this model for each node, it can be used
to obtain an upper bound to the overhead introduced by the profiler. Note that, while
one could use a model with no constraints and require a solver to produce all solutions
to the problem instead, such an execution would not be representative of a regular solver
execution: in a typical execution, there are much fewer solution nodes than other types of
nodes. In fact, processing a solution node often requires more time (for example, in the
Gecode solver) than processing a branch or a failure node, even when a small amount of
propagation is necessary for those nodes.

Table 3.4 shows the execution times (wall-clock time in seconds) needed to solve differ-
ent instances of this model with no visualisation, visualising using Gist (which incurs over-
heads from tasks a, b, and c as discussed above), and visualising using CP-Profiler (which
incurs overheads from all a, b, c, and d). As expected, both Gist and CP-Profiler intro-
duce significant overhead for this case, with CP-Profiler being approximately 7 times slower
than the original execution. Nonetheless, the results also show that a solver-independent
visualisation of multi-million node search trees can be obtained at a reasonable cost. Of
course, on more realistic constraint models most of the time is spent on propagation. For
example, Table 3.5 and Table 3.6 show the results on the Golomb Ruler problem and the
well-known N-Queens problem, respectively, with profiling taking approximately 70–80%
longer than the original execution.

n
Size

(nodes)
No visual.

Gecode Gist
(solver-
specific
visual.)

CP-Profiler
(solver-

independent
visual.)

Overhead
(CP-Profiler

over
“No visual.”)

19 2.1M 0.64s 2.84s 4.68s 625.8%
20 4.2M 1.32s 5.75s 9.07s 585.2%
21 8.4M 2.68s 11.07s 18.13s 575.9%
22 16.8M 5.39s 22.78s 38.36s 611.4%
23 33.6M 11.09s 46.71s 73.24s 560.7%

Table 3.4: Time taken in a worst-case scenario (no propagation).

50 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

Instance (size) No visual.

Gecode Gist
(solver-

specific visual.)

CP-Profiler
(solver-

independent
visual.)

Overhead
(CP-Profiler

over
“No visual.”)

10 marks (0.1M) 0.91s 1.10s 1.25s 38.0%
11 marks (1.7M) 16.23s 20.44s 28.61s 76.2%

12 marks (13.2M) 156.61s 192.97s 284.09s 81.4%

Table 3.5: Time taken for the Golomb Ruler (GR) problem.

Instance (size) No visual.

Gecode Gist
(solver-

specific visual.)

CP-Profiler
(solver-

independent
visual.)

Overhead
(CP-Profiler

over
“No visual.”)

35 queens (0.3M) 2.46s 2.87s 3.81s 55.3%
36 queens (0.8M) 6.86s 8.01s 11.27s 64.3%
37 queens (3.9M) 34.72s 38.87s 57.64s 66.0%

Table 3.6: Time taken for the N-Queens problem.

Note that the current implementation of CP-Profiler is a prototype, and thus there are
many opportunities to further improve its performance and reduce the overhead.

3.4 Solver Integrations

Similar to other profiling systems, my approach to profiling requires some solver instru-
mentation in order to produce the information necessary for profiling. In principle, any
solver implementing the protocol defined above can be used with CP-Profiler. In addition,
I have developed libraries for C++ and Java that encapsulate the protocol and network-
related routines, and thus lessen the work required to integrate a solver. An example of
a simple use of the C++ library is presented in Listing 3.2, where the program creates a
tree as depicted in Figure 3.4.

Communication and node creation are encapsulated within an instance of the Connec-
tor class, which is created in line 4 and receives as argument the port number the profiler
is listening on (its network address defaults to localhost). Between the calls to connect
and disconnect (lines 5 and 19, respectively) that handle the network connection, the
program first initiates a new execution on the profiler side by calling start in line 7 with
the name of the execution as an optional parameter. It then creates three nodes and sends
them to the profiler in lines 10 through 16. In this example the thread ids are omitted for
all nodes, as the execution is single-threaded, and thus these fields can take default values
(-1). Note that the required fields are always present by construction. At the same time,
optional fields (such as labels, which normally indicate branching decisions in search) can
be set via a builder pattern, which allows the user to chain methods and thus construct
and send a node in a single line.

Thanks to the integration library, adding support for new solvers should not be an
onerous task. For example, adding the profiling capabilities to Gecode and CPX (the two
have similar architecture) required only about ten lines of code for each of their search
engines. The integration of Choco (a solver whose source code I was unfamiliar with) for

3.4. SOLVER INTEGRATIONS 51

1 int main() {
2 using Profiling :: NodeStatus;
3
4 Profiling :: Connector c(6565);
5 c.connect ();
6
7 c.start("minimal␣example");
8
9 /// SEND ROOT NODE

10 c.createNode (0,-1,-1,2, NodeStatus :: BRANCH). set_label("Root").send ();
11
12 // SEND LEFT CHILD
13 c.createNode (1,0,0,0, NodeStatus :: FAILED). set_label("Failure").send ();
14
15 // SEND RIGHT CHILD
16 c.createNode (2,0,1,0, NodeStatus :: SOLVED). set_label("Solution").send ();
17
18 c.done ();
19 c.disconnect ();
20 }

Listing 3.2: Simple use of the integration library in C++.

most non-advanced profiling capabilities required adding about 30 lines of code, and took
about 5 hours of work. Note, however, that most of that time I spent on familiarising myself
with the source code. The exact code modifications applied to Choco for its integration
are shown in Listing 3.3 and Listing 3.4, where the added lines are shown in green colour.

Apart from the two import statements (lines 1 and 2), all the modifications were done
inside the SearchLoop class, which is responsible for the search tree exploration in Choco.
Lines 6 through 9 extend the class with additional members. Line 6 initialises an instance
of the Connector. Line 7 initialises a node counter (nc), which is used for generating
node identifiers as the search progresses. Lines 8 and 9 initialise two stacks, which are
necessary for keeping track of the node identifiers during the search tree traversal: parent
id (pid stack) and the id of the currently explored branch (alt stack).

Lines 11 through 47 instrument the loop method. Line 13 notifies the profiler of a
new solver execution. Lines 19 and 20 correspond to the start of the search, and initialise
the aforementioned stacks with values for the root node. Lines 26 and 27 correspond to
advancing to a new decision level, and extend the parent id stack with the identifier of the
previous node. Note that the two “push” calls correspond to the two new children nodes
(left-hand-side and right-hand-side) created in that case (binary branching is assumed).
Line 28 increments the node counter for the left-hand-side node, and line 29 extends
alt stack with 0, indicating that the left-hand-side node is being explored. Similarly,
lines 33 and 34 correspond to the exploration of the right-hand-side node. This time,
however, alt stack is extended with 1, indicating that the current node is the second
alternative, or the right-hand side node in this case. Lines 38 through 40 correspond to
search backtracking and, accordingly, remove the latest values from the stacks. Finally,
lines 44 and 45 tell the profiler that the search is done and close the connection.

In Choco, certain procedures are taken out from the main search loop into separate
methods. One is openNode, which is called for every new node in the search tree. My
modifications to this method are as follows. Lines 52 and 53 are called when a new
decision node is created, and send the required information about this node. Lines 56
through 64 are called when a solution is found: first, a textual representation of the
solution is created in lines 56 through 60. Then, in lines 61 through 64, the solution node

52 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

1 import cpprofiler.Connector;
2 import cpprofiler.NodeStatus;
3
4 public class SearchLoop implements ISearchLoop {
5 ...
6 Connector c = new Connector(6565);
7 int nc = 0;
8 Stack pid stack = new Stack();
9 Stack alt stack = new Stack();

10
11 private void loop() {
12 ...
13 c.start();
14
15 while(alive) {
16 switch (nextState) {
17
18 case INIT:
19 alt stack.push(-1);
20 pid stack.push(-1);
21 ...
22 case OPEN_NODE:
23 openNode ();
24 ...
25 case DOWN_LEFT_BRANCH:
26 pid stack.push(nc);
27 pid stack.push(nc);
28 nc++;
29 alt stack.push(0);
30 downBranch ();
31 ...
32 case DOWN_RIGHT_BRANCH:
33 nc++;
34 alt stack.push(1);
35 downBranch ();
36 ...
37 case UP_BRANCH:
38 pid stack.pop();
39 alt stack.pop();
40 alt stack.pop();
41 ...
42 }
43 }
44 c.done();
45 c.disconnect();
46 ...
47 }

Listing 3.3: The use of the integration library in the Choco solver (part 1 of 2).

is sent to the profiler. Note that the optional info field is used in this case to store the
solution representation.

The last modified method is downBranch, which is responsible for applying a new
decision in the search. The added lines are 74 through 77, which send a node to the profiler
that represents a failure. The optional info field in this case is used to communicate the
reason of the failure, as provided by Choco.

3.5. RELATED WORK 53

48 private void openNode () {
49 ...
50 if (decision != null) {
51 ...
52 c.createNode(nc, pid stack.lastElement(), alt stack.pop(), 2,
53 NodeStatus.BRANCH).setLabel(decision.toString()).send();
54 } else {
55 ...
56 Variable[] vars = solver.getStrategy().getVariables();
57 StringBuilder solution = new StringBuilder(32);
58 for (Variable v : vars) {
59 solution.append(v).append(’ ’);
60 }
61 c.createNode(nc, pid stack.lastElement(), alt stack.pop(), 0,
62 NodeStatus.SOLVED)
63 .setLabel(decision.toString())
64 .setInfo("solution:" + solution.toString() + "").send();
65 }
66 }
67
68 private void downBranch () {
69 try {
70 decision.buildNext ();
71 ...
72 } catch (ContradictionException e) {
73 ...
74 c.createNode(nc, pid stack.lastElement(), alt stack.pop(), 0,
75 NodeStatus.FAILED)
76 .setLabel(decision.toString())
77 .setInfo("reason:" + e.toString() + "").send();
78 }
79 }
80 }

Listing 3.4: The use of the integration library in the Choco solver (part 2 of 2).

3.5 Related Work

As already mentioned in the previous chapter, a few existing profiling systems were de-
coupled from a solver, and thus, could be used for solver-independent profiling. One such
system is OPL Studio [Bracchi et al., 2001], which uses a client-server architecture, where
the profiler (server) and ILOG Solver (client) communicate via an XML-based protocol
over TCP sockets. Although the decoupling of the profiler from the solver allows other
solvers to be profiled in principle, an integration library (encapsulating the protocol and
the communication layer) is only available for ILOG-based C++ applications. In par-
ticular, instrumentation of such applications requires instantiating ILOG-specific classes
IlcSolverDebugger and IloSolver. The former provides a means of controlling the pro-
filer through a set of commands, while the latter is responsible for generating the search
and propagation events as defined by ILOG Solver.

Among the commands that the OPL Studio supports are, for example the
displayResult command for visualising solutions, the sendConsole command for sending
arbitrary information to be displayed in the profiler’s console, and the newSearchTreeView
command for starting a new tree visualisation. Note that OPL Studio additionally allows
users to specify the constraints to be communicated to the profiler through commands
such as registerVariable and registerConstraint, which specify which variables and
constraints should be tracked, respectively. In addition, conditional breakpoints can be

54 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

specified through, for example, breakIfBound command, which will activate when a spec-
ified variable is assigned a specified value. Despite its profiling capabilities, OPL Studio
has been solely used by ILOG-based applications due to the lack of an integration library
for them.

CLPGUI [Fages et al., 2004] was another solver-independent profiling system that,
similarly to OPL Studio, used a client-server architecture. For communication between a
solver and CLPGUI the protocol GenTra4CP was used, which was specifically designed
for profiling of constraint executions. This protocol is XML-based, although its binary
variant WBXML could alternatively be used in order to reduce the size of each message.

Solvers communicated to the system through a sequence of pre-defined events: nine
for describing search, and six for describing propagation. Among the propagation events
are those notifying of a domain reduction, awakening of a constraint, and unsatisfiability
of a constraint. The search events relevant to this thesis are those indicating solution,
failure and branch nodes, as well as the “back-to” event, which indicated the event of re-
visiting some previously created node during, for example, backtracking or backjumping.
Additionally, CLPGUI allowed users to control solvers during execution. For example,
one could dynamically add constraints or recompute the solver state of a given node to
obtain extra information about the state.

Compared to CP-Profiler, CLPGUI supported more functionality in the form of pro-
filing constraints and controlling the solver. However, despite its use of the “back-to”
event to enable an arbitrary exploration order for nodes, CLPGUI did not support paral-
lel search as the system relied on the notion of a “current node” and could not distinguish
between different parallel threads. Additionally, the integration of solvers for profiling
with CLPGUI required significant amount of work, and as a consequence, few solvers were
integrated with the system.

The architecture of CP-Viz [Simonis et al., 2010] is different to the previously discussed
solver-independent systems: due to its post-mortem nature, CP-Viz does not require a
direct communication between a solver and the system, and thus uses file-based commu-
nication instead. In particular, solvers that support CP-Viz are required to create two
XML-based log files per execution: one for the structure of the search tree, and another
for detailed information about constraints and variables.

The structure of the search tree is represented by a list of node items. Each such item
contains the node id, the id of its parent, the name of the variable in the search decision
represented by the node, the size of that variable’s domain, and the decision in a string
form. In order for solvers to generate the log files required by CP-Viz, a communication
interface has been proposed. The following are some of the methods used for recording
the structure of the search tree in that interface:

1 addRootNode(int id)
2 addSuccessNode(int id, int parentId , String varName , int size , String choice)
3 addFailureNode(int id, int parentId , String varName , int size , String choice)

Listing 3.5: A few methods from the communication interface by CP-Viz.

The root node is created using the method in line 1, and success (solution) and failure
nodes are created using the methods in lines 2 and 3, respectively. Note that the infor-
mation recorded per node for CP-Viz is similar to the protocol used in CP-Profiler. One
notable difference is the absence of the total number of children and the field to identify
the position of the node relative to its parent (alt) in CP-Viz. Although the protocol
in CP-Viz allows nodes to come in arbitrary order, the absence of these fields suggests
that unexplored nodes cannot be shown in that system (and neither can skipped nodes).

3.6. SUMMARY 55

Another difference is the absence of thread identifiers, suggesting that parallel search is
not supported: although it is possible to maintain unique node identifiers across different
threads, that would be inefficient, and the user would not be able to see the distribution
of work among threads.

3.6 Summary

In this chapter I have proposed an architecture for profiling of CP executions that meets the
requirements for effective profiling as defined in the beginning of this chapter. In particular,
this architecture supports real-time search tree visualisation of large executions (R1, R2,
R5), which was demonstrated in Section 3.3.2. The efficiency of the system was achieved
thanks to the use of a lightweight binary protocol, direct interprocess communication, and
a modular, parallel architecture that takes advantage of modern multiprocessor computers.

While solver instrumentation will always be necessary to enable profiling, the proposed
system is nonetheless solver-independent (R3), as integrating new solvers is a relatively
easy task due to the choice of a flexible protocol and the availability of integration libraries
for popular languages (C++ and Java). The ease of integrating a new solver has been
demonstrated (using the Choco solver as an example) in Section 3.4.

Additionally, the protocol is designed to support a range of modern search exploration
strategies (R4) and to be extensible (R6), and thus it can be used with modern (or indeed,
future) solvers, allowing them to communicate new information, potentially specific to
them. This property of the system will be demonstrated in the following chapters using
the examples of restart-based search (Chapters 4 and 6) and backjump search associated
with modern learning solvers (Chapter 7).

56 CHAPTER 3. AN ARCHITECTURE FOR PROFILING CP SEARCH

Chapter 4

Visualisation of Search Trees

Whenever the execution of a program takes longer than expected, the programmer would
like to analyse it and determine what undesired behaviour, if any, is the reason for the slow
execution. Most solvers provide some form of coarse statistical information, or aggregate
measures, about their executions. Such information often includes the number of different
types of nodes in the search tree (e.g. solution nodes, failure nodes, branch nodes), the
maximal or average depth in the tree, and the average propagation time. One could, for
instance, see if propagation is taking too long, and it should be weakened in favour of
exploring more of the search space. Alternatively, one could use the depth of the search
tree and the number of unexplored nodes to roughly estimate which portion of the search
space has been explored.

Coarse statistical information, while valuable, rarely allows a modeller to make a con-
crete decision on how to improve the execution of a model. A more common and, arguably,
more effective approach is to use visual abstractions, since they are believed to be cog-
nitively easier for a human brain to process than text, making the presentation of more
detailed information viable. Common visual abstractions used for combinatorial problems
include node-link diagrams for visualising search trees, constraint graphs for visualising
connections between constraints, colored matrices for visualising the domains of variables,
and line graphs for visualising how scalar values, such as the objective, change over time.

Perhaps the most successful use of visual abstractions in the literature is the interactive
visualisation of search trees. Such visualisations allow users to examine the search tree of
an execution in order to determine which parts of the search could correspond to some
undesired behaviour and, hopefully, determine which changes to the program might remove
that behaviour, thus speeding up the execution.

Traditionally, search trees are drawn as node-link diagrams, where each node represents
a propagation step (a fixpoint) and each link represents a search decision. Such diagrams
are relatively easy for humans to comprehend for a small number of nodes, for example, by
following individual search decisions and examining individual nodes. Node-link diagrams,
however, tend to become less effective fairly quickly as the number of nodes increases,
and large, multi-million node trees are very difficult to comprehend and navigate. Such
diagrams have poor cognitive scalability: while there exist fast algorithms for laying out
and drawing large trees with many thousands or even millions of nodes, such trees are
nearly impossible to examine by a human eye. As a consequence, a tree may contain the
information we seek, but it is often so large that we struggle to find the interesting parts
of the tree.

57

58 CHAPTER 4. VISUALISATION OF SEARCH TREES

Figure 4.1: Search Tree with Collapsed
Subtrees.

Figure 4.2: Search Tree (No Collapsing).

Various techniques for tackling the problem of scalability of tree visualisations have
been considered in the literature. These techniques span from enabling interactivity in the
traditional search-tree visualisation to designing whole new, unconventional ways of dis-
playing the search (e.g., [Schulte, 1996], [Simonis et al., 2000], [Fages et al., 2004], [Bracchi
et al., 2001], [Simonis et al., 2010]). While many of these techniques improve the user’s
experience of exploring the tree, dealing with large trees still remains a challenging task.
This chapter first investigates how the traditional search tree visualisation can be fur-
ther improved, making large search trees easier to comprehend. This is followed by a
study of two unconventional ways of visualising search trees, which enhance the user’s
understanding of the search.

4.1 Traditional Search Tree Visualisation

4.1.1 The State of the Art in Search Tree Visualisation

One of the earliest works in drawing search trees in the context of Constraint Programming
was available in Oz Explorer [Schulte, 1996]. To make the best use of the screen space, the
visualisation utilised a space efficient layout algorithm that was first proposed in [Kennedy,
1996] and is suitable for rooted trees of equal size nodes.

Further, Oz Explorer reduced the visual complexity of a tree by allowing the user to
collapse entire subtrees and focus on more interesting regions of search. Subtrees with no
solutions (i.e., failed subtrees) could be collapsed automatically during search, resulting
in a view similar to the one displayed in Figure 4.1, where the original, uncollapsed tree is
displayed next to it, in Figure 4.2. As mentioned in Chapter 2, search tree visualisations
often distinguish between three types of nodes: branch nodes, failure nodes, and solution
nodes. In Figures 4.2 and 4.1 these nodes are depicted as blue circles, red squares, and
green diamonds, respectively.

4.1. TRADITIONAL SEARCH TREE VISUALISATION 59

The space efficiency, clarity and collapsing capabilities of Oz Explorer have made
it the most popular method to display search trees, with modern CP systems like CP-
Viz profiler and the modern CP solver Gecode still using its approach. In fact, Gecode
directly inherited its search tree visualisation (now called Gist) from Schulte’s system, and
it represents the state of the art in search tree visualisation.

Other visualisations have been proposed in the literature, both of the node-link kind
([Bracchi et al., 2001], [Fages et al., 2004], [Simonis et al., 2000]), as well as more uncon-
ventional visualisations ([Simonis et al., 2000]). Notably, both the APT Tool and OPL
Studio made attempts at incorporating statistical information into the way node-link trees
were drawn (see Section 2.6.2). It is not clear, however, whether the existing visualisations
were superior to that in Oz Explorer, and, to the best of my knowledge, they have not
received much traction.

For the reasons above, I have selected Gist as the baseline visualisation in my work.
Indeed, the prototype of CP-Profiler reuses a substantial part of Gecode’s source code
related to tree visualisation by decoupling it from the solver proper.

4.1.2 Visually Determining the Size of Subtrees

Unfortunately, the way in which existing in CP techniques automatically collapse failed
subtrees makes the collapsed subtrees indistinguishable from one another. This is the
case, for example, in Gecode and CP-Viz, where collapsed subtrees are displayed as red
triangles of equal size. Therefore, the collapsed nodes do not readily convey any infor-
mation regarding their contents and, in particular, regarding the amount of search effort
they represent. One subtree with, say, three nodes would look no different from another
subtree with three thousand.

While detailed information about subtrees, such as their size, might be available in
existing systems, one is required to manually query this information for every node indi-
vidually. In Gecode, for example, the user can select a node of interest to show a dialog
window with statistical information about the node and the underlying subtree.

A better approach is to provide the user with the ability to estimate the amount
of nodes at a glance. In fact, the visualisation in the APT Tool (see Chapter 2) could
draw collapsed subtrees as triangles using different shades of grey in order to convey their
size. However, this way of visualising collapsed subtrees has not been adopted in modern
systems, as colours are difficult for a human eye to interpret and compare. Further, the
APT Tool did not provide a way to collapse subtrees with a given granularity, and thus
required users to expand collapsed nodes manually, which is impractical for large trees.

In this section I propose an alternative way for collapsing subtrees that is aimed to
attain the property of conveying the amount of search performed in each subtree in a more
effective way.

Lantern Tree Visualisation

One challenge when collapsing subtrees is that the size of the resulting subtrees is difficult
to control with high precision: very few subtrees will have exactly the desired number
of nodes. It is, however, possible to guarantee that the number of nodes of collapsed
subtrees does not exceed a certain amount. The new technique for collapsing subtrees is
based on that idea: it only collapses subtrees that contain as many nodes as possible, but
fewer than N , where N is a user-defined parameter. Note that this approach allows the
user to control the amount of detail shown in the visualisation by means of adjusting the

60 CHAPTER 4. VISUALISATION OF SEARCH TREES

parameter N . This is an improvement over the existing approaches for subtree collapsing
used in Gecode and CP-Viz, as the amount of detail shown in them is determined by the
presence and distribution of solutions nodes in the tree. As a consequence, they cannot
effectively visualise a tree with either no solutions or a large number of solutions, as in
those cases the user would be required to manually collapse/uncollapse a large number of
nodes to achieve the desired level of detail.

The collapsed nodes can be visualised as a special “lantern” node, which can be seen as
a triangle extended with a rectangular section at the bottom. The triangle part resembles
failed triangle nodes commonly used for failed subtrees. The rectangular section, unlike
the triangle, is dynamic in size: its height indicates the number of underlying nodes in the
corresponding subtree.

If the user-defined N (the maximal number of nodes in a subtree) is small, it can
directly determine the subtree size, for example, as the rectangle’s height in pixels. Larger
subtrees, containing thousands or millions of nodes require a different approach to be
practical. A solution is to rescale the height, such that the largest collapsed subtrees –
subtrees of size N – do not exceed some practical maximum M for such nodes.

Formally, given M as the maximum node height, the height of a node representing
subtrees with n nodes can be easily calculated as follows:

height(n) =

{
n, N ≤M

n · M
N , N > M.

Note that there is a reason not to scale the height for smaller values of N : doing so
will result in a misleading visualisation, where small subtrees in a small tree appear large.

In the implementation within CP-Profiler the maximal height for a lantern node M is
set to 127, which I found to be a reasonable compromise between the high “resolution” of a
lantern node (that is, the number of different lantern nodes one could distinguish between
in principle) and the compactness of the resulting visualisation. Additionally, subtrees
that would be collapsed into the smallest lantern node (with height = 1), are chosen to
be presented in their original uncollapsed form. This is important, for example, for single
nodes whose siblings represent large subtrees, such as those created as a result of a “deep
dive” in the search – a behaviour that can be useful to identify visually.

Example 4.1.1. Consider the search tree in Figure 4.3 visualised in two different ways.
The visualisation on the left is the traditional node-link visualisation, where failed trees
are collapsed entirely and displayed, in this case, as large red triangles labelled as “A”,
“B”, “C”, and “D”. Note that it is unclear what portion of the search each of such triangles
represents, that is, how many nodes they contain.

On the right, the same tree is visualised using the lantern tree visualisation, with the
node limit N set to 1600. Labelled nodes correspond to those on the left view. The
subtrees are highlighted using grey background to make it easier to identify which nodes
belong to them. The lantern tree makes it easy to visually determine that subtree “A”
is substantially larger than “B”, while subtree “C” contains, perhaps, six times fewer
nodes than “B”. Further, subtree “D” is trivial, containing only two failure nodes. The
visualisation on the left does not have this information readily available: subtrees “A”,
“B”, “C”, and “D” are visually indistinguishable from each other.

4.1. TRADITIONAL SEARCH TREE VISUALISATION 61

Figure 4.3: Collapsing of failed subtrees: traditional (left) and proposed (right).

Example 4.1.2. Consider a restart-based execution of the Golomb Ruler problem (intro-
duced in Chapter 2) with 9 marks. Figure 4.4 shows its search tree with failed subtrees
collapsed in the traditional way. Each restart branch, associated with one of the direct
children of the root node, finds one solution. The exception is the last branch, where the
proof of optimality is obtained.

Figure 4.4: Traditional collapsing of failed subtrees (execution with restarts).

62 CHAPTER 4. VISUALISATION OF SEARCH TREES

It is easy for a user to believe that most of the search is spent finding those solutions.
The tree visualised in Figure 4.5 shows this is not the case. This figure shows the same
tree visualised using the lantern tree technique, where the node limit is set to 5000 nodes.
The visualisation clearly indicates that finding the first few solutions is trivial. Proving
optimality required by far the most search effort: the last restart branch (highlighted)
occupies the most space.

Figure 4.5: Proposed collapsing of failed subtrees (execution with restarts).

4.2 Overview Visualisations

As argued in [Schulte, 1996], two of the important insights that can be gained from a
search tree visualisation are the amount of work performed by a solver before the first
solution is found, and how the solutions are distributed in the tree. A potential way to
facilitate these insights for large search trees is to provide users with an alternative search-
tree visualisation with a good overview property, which would not necessarily replace the
traditional node-link visualisation, but rather complement its functionality.

While there have been very few visualisations of this kind, a notable one was the phase-
line display (seen in Chapter 2.6) implemented in CHIP, wherein the meaning of edges,
normally representing node-parent relationships, was altered: instead, they connected
nodes assigning the same variables. Such a view is not suitable for inspecting, for example,
sequences of search decisions, since the order in which nodes are explored is not as clear
as in the traditional visualisation. It could, however, give users a general idea about how
dynamic the search of a given execution is in terms of the variable assignment order.

This section explores other ways in which alternative, or unconventional, visualisations
can enhance the user’s experience in viewing search trees. In particular, it investigates
whether two tree visualisation techniques – Indented Pixel Tree Plots [Burch et al., 2010]
and Icicle Plots [Kruskal et al., 1983] – can help provide a good overview of large search
trees (and thus help users gain insights regarding the distribution of solutions) and allow
users to navigate trees more effectively.

4.2.1 Indented Pixel Tree Plots

An Indented Pixel Tree Plot [Burch et al., 2010], or a Pixel Tree, is a visualisation technique
for hierarchical structures, designed to clearly represent their major components, sizes
and depths, while scaling up to millions of elements. As demonstrated in [Burch et al.,

4.2. OVERVIEW VISUALISATIONS 63

Figure 4.6: Basic Search Tree (left) and Corresponding Pixel Tree (right).

2010], the resulting plots can be easily scaled vertically and horizontally, can incorporate
additional information using different colours, and they are easy to interact with (expand,
collapse, filter etc). Importantly, even when trees are large, they allow users to perform
tasks such as visually detecting similar subtrees and estimating which of two subtrees is
larger.

Pixel trees represent nodes as single square objects, or pixels, while edges between
nodes are represented only implicitly through the indentation between the nodes: parent
nodes are placed directly above and immediately to the left of their left-most children
nodes, and sibling nodes can be identified as nodes on the same depth level sharing the
same parent. Figure 4.6 provides an example of a simple search tree visualised both in the
traditional way (left) and as a pixel tree (right). For each node from the tree on the left,
there is a corresponding pixel, or a square, in the pixel-tree on the right. For illustration,
I have scaled the pixels up, and nodes and pixel with the same label represent the same
entity.

Note that pixel trees preserve the vertical position, or depth, of a node. For example,
node “2” lies on the second level in the search tree, and so does the corresponding node
on the pixel tree. However, the horizontal positions of nodes on the pixel-tree represent
depth-first-search exploration order: node “2” is positioned to the right of its parent “1”.
The same is not the case in the traditional tree visualisation on the left: in the tree on
the left, for example, node “1” is explored before node “2”, but it is closer to the right.
Nevertheless, the hierarchical structure is still preserved in the pixel tree. For example,
the parent of node “3” can always be found as the closest node to the left of node “3”
that lies one level above (node “1” in this case).

While pixel trees are not as familiar and easy to interpret as traditional trees, they
have two particularly important properties:

(a) they show very clearly the relationship between node exploration and time (i.e. a
node is guaranteed to have been explored prior to all the nodes to its right);

(b) they scale well horizontally without losing much information regarding time progres-
sion, which is crucial for showing large trees.

The scalability of a pixel tree is achieved by compressing horizontally adjacent nodes
to form vertical lines of pixels. Note that this might lead to some nodes being collapsed
into a single pixel if they also incidentally belong to the same depth level. As a result
of this node overlapping, compressed pixel trees can convey less information than the
original tree. The necessary information loss due to collapsed pixels, however, can be
partly compensated by colouring pixels, so that the intensity of the colour represents the
node “density”, or how many nodes it contains.

64 CHAPTER 4. VISUALISATION OF SEARCH TREES

Figure 4.7: An example of a pixel tree view applied for search trees.

Figure 4.8: Lantern tree for a problem with many solutions.

Pixel Tree Implementation in CP-Profiler

The implementation of the pixel tree within CP-Profiler indeed takes advantage of the
above properties: scalability and connection to time progression of the pixel tree. The
benefit of the better scalability is clear, as it can help address one of the main short-
comings of the traditional tree visualisation: node-link diagrams take up a lot of space
and commonly used techniques for collapsing traditional search trees lose all the structure
behind collapsed nodes, leading to visualisations that do not provide a good overview of
the whole tree, and can be misleading. In contrast, when the pixel tree visualisation is
applied to a large search tree produced by a CP solver, it can convey some information
about the structure of the search, even when it is compressed to fit in a single computer
screen. I have additionally extended this visualisation to highlight the location of each
solution with a vertical green line. This allows for a clear representation of the amount
of effort between solutions, and can be used to immediately identify different patterns of
behaviour.

Further, the clear correspondence between node and time allows pixel trees to display
various statistical measures, and their change over time, in a way that their association
with the part of the tree explored is clear. In CP-Profiler, for example, this is done
through histogram-like views, where the height of a histogram bar associated with some
point in time, represents the value of some measure at that point in time in the execution.
Note that traditional tree visualisations are not suited for this task, as they sacrifice the
node-time relationship in favour of the node’s ancestry relationships. The examples below
illustrate the benefits of using a pixel tree for visualising search.

Example 4.2.1. Consider the pixel tree visualisation in Figure 4.7, which represents the
search tree, obtained as the result of running a model to find all solutions in a satisfaction
problem. (This model is available as wolf goat cabbage.mzn from the official MiniZinc
distribution1.) To get an overview of the execution, the presented tree is compressed, such
that the whole execution fits in one screen (the compression factor is 1,000 in this case).
Note that due to the solution highlighting it is easy to see the contrast between regions of
search rich in solutions and regions with no solutions at all. It also appears that regions
with no solutions tend to require more search: the pixel tree is deeper in those regions,
indicating a large amount of search decisions before backtracking. This observation is most
prominent on the right-most region with no solutions, which is also the largest, indicating

1https://github.com/MiniZinc/libminizinc/blob/master/tests/examples/wolf goat cabbage.mzn

4.2. OVERVIEW VISUALISATIONS 65

it took the search a very long time to find new solutions – something the modeller might
want to take into account to modify the model.

Note that traditional search tree visualisations do not consider collapsing solution
nodes, which makes them impractical for problems with a large numbers of solutions, like
the one discussed here. On the other hand, the lantern tree visualisation introduced earlier
in this chapter can easily handle such trees. The result of applying it to the same search
is presented in Figure 4.8. Note its resemblance to the pixel tree: large areas with no
solutions closely match large failed subtrees of the lantern tree. The perception of time,
however, is not as clear in the lantern tree as it is in the pixel tree, where the number of
nodes per vertical slice is user-defined and equals to the compression factor. Figure 4.7
illustrates how that property can be exploited: in addition to the pixel tree itself, the figure
depicts a histogram underneath, indicating the average solver time per node. Looking at
the histogram, it can be noted, for example, that propagation in the nodes appearing in
the last region with no solutions is relatively inexpensive, compared to the rest of the tree.

Example 4.2.2. Consider the three visualisations displayed in Figures 4.9, 4.10, and 4.11,
which correspond to three different views of the search tree obtained by solving the Golomb
Ruler (introduced in Chapter 2) problem with 11 marks using the Gecode solver: the pixel
tree, the traditional visualisation, and the lantern tree visualisation, respectively. Clearly
the pixel tree view in Figure 4.9 depicts a very different search behaviour to that, for
example, in Figure 4.7: the pixel tree of the Golomb Ruler resembles a fractal-like pattern
– a behaviour that I believe can be potentially attributed to a generate-and-test-style
search due to lack of propagation.

The same behaviour is apparent in the lantern tree (Figure 4.11), but not in the
traditional search tree visualisation (Figure 4.10) due to the way failure trees are collapsed
without regard for their size. In fact, the traditional visualisation is misleading, as it seems
to suggest that the solutions are spread out almost uniformly in time, which is, as the
pixel tree shows, clearly not the case.

Example 4.2.3. Figure 4.12 depicts a pixel tree for the Radiation problem (described
in detail in Section 6.4.2) solved with the CP solver Chuffed. This time, a different kind
of information is displayed under the pixel tree: the variable profile. In this view, pixels
indicate both through their color and through their vertical positions, which variables
correspond to the decisions made in a given part of the tree.

The way the color and the position is assigned to a variable is as follows. First, a list of
all decision variables is obtained by, for example, traversing the entire tree and extracting
variables from corresponding search decisions. The list is then sorted alphabetically. This
way of sorting often leads to positioning related variables (for example, variables from
the same array) with similar vertical coordinates and similar colour, thus forming groups
(however, the boundaries between groups are not always clear). Note that other assign-
ments could be implemented: for example, it could be left up to the user to select which
variables to highlight in which colour.

The pixel tree in Figure 4.12 clearly displays different regions of search. This is espe-
cially prominent with the second half of the search, where the tree is substantially deeper.
The variable profile reinforces this observation by indicating that the different regions also
differ in the range of variables that get assigned. At the beginning of the search (on the
left in the pixel tree), a less prominent “stairway” pattern on the variable profile also
suggests different regions of search associated with different groups of variables.

My implementation of the pixel tree within CP-Profiler is interactive to allow the user
to investigate patterns identified visually in more detail. For example, one can hover the
mouse over the pixel elements in order to see the actual variable names. In this particular

66 CHAPTER 4. VISUALISATION OF SEARCH TREES

Figure 4.9: Golomb Ruler with 11 marks, Gecode.

Figure 4.10: Golomb Ruler with 11 marks, Gecode.

Figure 4.11: Golomb Ruler with 11 marks, Gecode.

case, it could be confirmed that the different regions can be associated with the search
progressing by making decisions for different arrays (or rows in a matrix, to be precise)
of decision variables, which were not involved in the search until that point in time. The
interactivity of the pixel tree additionally allows users to navigate from the pixel tree to
the traditional search tree visualisation, where the search can be studied in more detail.
This property is explored in detail in Section 4.3.

4.2.2 Icicle Tree

Similarly to pixel trees, icicle trees [Kruskal et al., 1983] do not draw edges. However, they
differ from pixel trees in the way child-parent relations are realised: in icicle trees parent
nodes are positioned strictly above their children, that is, they span horizontally over
the same space as their children nodes. Intermediate nodes, therefore, take a rectangular
shape where the width is equal to the sum of all of its underlying leaves. This often
results in very wide intermediate nodes, particularly for those nodes that are closer to the
root. Despite this, icicle trees are twice as compact as pixel trees when uncompressed,
since leaf nodes have the same vertical coordinates as their ancestors. More importantly,
this property allows users to quickly find a node’s ancestry and determine the size of any
subtree at a glance.

A reasonable approach for compressing an icicle tree is to cut off its leaves, so that
the corresponding parent nodes become the new leaf nodes. Doing so in a binary tree, for
example, reduces the display area required for the visualisation by a factor of two. Note

4.2. OVERVIEW VISUALISATIONS 67

Figure 4.12: The Pixel Tree with a variable profile (Radiation problem instance solved
with Chuffed).

that no matter how many of such compression steps are performed, one invariant is always
maintained: for a given node its underlying subtree is displayed directly below and takes
up exactly the width of that node. This fact makes intermediate nodes good candidates
for representing subtree structure even in a compressed form.

This is in contrast to a pixel tree, where the focus is mostly on the temporal informa-
tion, and the depiction of the search tree structure is not as clear. This is especially the
case when a pixel tree is compressed and its visual elements, or pixels, cease to convey
most of the structural meaning. For example, a pixel (square) in a compressed pixel tree
can represent multiple nodes that happen to be located at the same level in the search
and explored roughly in the same time window, but otherwise unrelated. Likewise, while
a vertical slice of a compressed pixel tree corresponds to nodes explored in the same time
window, these nodes can rarely form a single subtree.

Figure 4.13: Icicle Tree Visualisation.

For consistency, we can colour the elements of the icicle tree visualisation – rectangles
and squares – in a similar way to that of the traditional node-link visualisation. For
example, in the Icicle Tree view shown in Figure 4.13, the elements colored in blue, red
and green represent the internal nodes, failure nodes and solution nodes, respectively, of
the traditional visualisation in Figure 4.2, which depicts the same search tree. However, as
Figure 4.13 clearly shows, internal nodes, while comprising only half of the tree in terms

68 CHAPTER 4. VISUALISATION OF SEARCH TREES

of number of nodes (in a binary search), dominate the amount of space they require in
the Icicle Tree visualisation. As a result, most of the space would be coloured in blue, and
thus can be used to represent other kinds of interesting information without a significant
loss of information. This, combined with the fact that the icicle tree is easy to compress,
makes the icicle tree a very useful tool for conveying statistical information about the
search. For example, internal nodes can be colour-coded based on the time it took the
solver to explore each subtree, and that information will be valid even for a compressed
tree.

Figure 4.14: Icicle tree color mapped using decision variables.

Figure 4.14 shows an example of an icicle tree of the Radiation problem, colour-mapped
based on decision variables in a way similar to that used in the pixel tree of Figure 4.12.
As in the pixel tree, one can recognise distinct regions in search in this view: one on
the left, at the beginning of the search – and one comprising the rest of the tree, with
deep branches involving new decision variables (colored in a spectrum of green). Note,
however, that the region on the left in this view appears small, which is misleading. This
is due to the way the icicle tree is compressed: it cuts off fewer nodes from deep branches,
making them appear larger in the resulting compressed view.

Another example of a potential use of iclcle-trees with colour-mapping is to display the
node exploration order whenever it differs from depth-first search order: in this case the
nodes could be coloured, for instance, based on the time at which they have been received
from the solver.

4.3 Navigation

Importantly, the alternative visualisations discussed above are not intended to replace the
traditional visualisation, but rather to complement it by providing an alternative view that
might provide better insight on issues related to the structure of large trees. In addition,
my study of pixel trees and icicle trees in the context of Constraint Programming led to a
realisation that these overview visualisations can be very useful in driving the navigation
of the corresponding traditional tree view. In CP-Profiler, this is achieved in pixel trees
by selecting a time windows on a pixel tree, which will then highlight the corresponding
part of the traditional tree and place it in the center.

4.3. NAVIGATION 69

Figure 4.15: Pixel tree with a selected slice.

For example, consider the pixel tree depicted in Figure 4.15, which shows a certain area
of the tree highlighted in pink. The figure was obtained as the result of selecting a region
of the tree of interest by performing the common task of moving the mouse cursor while
holding the left mouse button. This action caused the traditional visualisation to navigate
to the corresponding region in the search and highlight the nodes from that region, which
is demonstrated in Figure 4.16. Highlighting in the node-link diagram is performed by
both drawing the corresponding nodes with a thicker outline and changing the background
of the two subtrees they belong to. Note that some of the nodes in the highlighted subtree
on the right do not have the thick outline. This is due to the fact that a given slice in a
compressed pixel tree rarely correspond to nodes that can form a subtree.

Figure 4.16: Distinct parts of the tree highlighted using the pixel tree.

70 CHAPTER 4. VISUALISATION OF SEARCH TREES

Figure 4.17: A single subtree highlighted using the icicle tree.

In contrast, the visual elements of the icicle tree always correspond to subtrees, and
thus can be more meaningful than the slices in the pixel tree. This enables a more intuitive
two-way mapping between both views: the position of the currently selected node on the
traditional node-link visualisation can be highlighted on the icicle tree and vice versa.
For example, one could select the root of the largest highlighted subtree depicted in the
middle in Figure 4.16 (the selected node is colored in yellow) and see the corresponding
element on the icicle tree highlighted (shown in Figure 4.18). Using the icicle tree, it
becomes apparent that the selected node is only part of a larger entirely failed subtree:
there is a node five levels above in the selected node’s ancestry representing a subtree
with no solutions. One could select the corresponding visual element on the icicle tree as
in Figure 4.19 to highlight the corresponding subtree (navigate to it, if necessary) in the
traditional visualisation.

Figure 4.18: Currently selected node is indicated on the icicle tree.

Figure 4.19: Using the icicle tree to navigate to a particular node in the tree.

Note that the above examples were intentionally made small to fit in one page. This
was partly done by selecting a relatively small area of the search, and finding the right
granularity for the lantern tree visualisation. Unfortunately, in the large trees that are
often obtained in practice, the areas of search that interest the user might not be as easy
to observe at a glance: for example, the layout algorithm in the traditional node-link
visualisation might position two sibling nodes too far away from each other to fit in one
screen if the underlying subtrees are large. While collapsing the failed subtrees addresses
this problem, the resulting view might not show the desired level of detail. Alternative
overview visualisations, such as the pixel tree and the icicle tree, offer a more practical
way for navigating the tree, as they allow the user to quickly identify particular regions of
the tree by using the two alternative tree visualisations as a form of ”map” for the search.

The work in [Goodwin et al., 2017] presented further studies on how icicle tree visual-
isations can give insights into constraint solver executions.

4.4. SUMMARY 71

4.4 Summary

This chapter first brought attention to one of the drawbacks in traditional node-link visu-
alisations which represent the state of the art in search tree visualisation: their cognitive
scalability. In particular, to the way collapsing of subtrees is currently performed: once
collapsed, the subtrees lose all information regarding their underlying subtrees, and thus
the entire search tree becomes difficult to reason about.

The chapter then introduced an alternative technique for visualising large trees: col-
lapsing subtrees into special “lantern” nodes that convey information about their underly-
ing subtrees via their height. Additionally, the collapsing is performed selectively: the user
can specify the maximum number of nodes that the largest lantern node can contain, thus
controlling the degree of detail in the resulting visualisation. Side by side comparisons of
the state of the art and the proposed techniques are provided, which clearly demonstrate
the advantages of the new technique.

The chapter then demonstrated how two unconventional techniques for visualising
generic trees – pixel tree visualisation and icicle tree visualisation – can be applied in the
context of search trees to provide a complementary view of the search. In particular, it
demonstrates that even in a compressed form, which is necessary for large trees, pixel trees
allow users to distinguish between different regions in the search, and, unlike traditional
visualisation, pixel trees clearly convey time progression. Further, displaying statistical
information under a pixel tree allows users to simultaneously see how that information
changes in time and its relation to the different regions in the search.

Regarding icicle trees, the chapter shows that, while they are not suited for depicting
time progression, they are also easy to compress and, in contrast to pixel trees, the meaning
of the visual elements in icicle tree is mostly clear even in a compressed form: they represent
individual nodes, or underlying subtrees. This fact allows users to colour-code individual
nodes or subtrees based on different statistical information. The notion of time, however,
is not as clear as in the pixel tree.

Finally, the chapter demonstrated how both alternative visualisations make it easier
to navigate the traditional node-link visualisation: one can use them to obtain a good
overview of the search and select regions of interest, and CP-Profiler will highlight the
same regions in the traditional visualisation, where the search can be examined in more
detail.

72 CHAPTER 4. VISUALISATION OF SEARCH TREES

Chapter 5

Finding Recurring Patterns in
Executions

Search trees for large real-world problems often contain many thousands or even millions
of nodes. Partial understanding of such large executions can be obtained through good
“overview” visualisations like the ones suggested in Chapter 4. However, as I show in this
chapter, some helpful insights about an execution are often buried in detail, making it
impractical to uncover them without the aid of automated analysis.

One of the ways to facilitate the examination of a program’s execution is to provide
users with guidance regarding the parts of the search tree on which to focus their attention.
This can be achieved in a variety of ways, each useful for detecting different problems. For
example, CP-Viz [Simonis et al., 2010] provides an invariant checker that can be used to
detect nodes where the constraint propagation performed by the solver is not as strong
as it could be, and might lead to a very costly search. In this way, the user can focus on
the search nodes that show poor propagation. Another example is the “Christmas Tree”
visualisation of search trees provided by the APT tool (see Chapter 2), which allowed
users to draw nodes in different sizes/colours, depending on some statistical measure (e.g.
propagation time).

In this chapter I propose a new approach for improving the user’s focus – one that
is based on automatically analysing a search tree in order to find repeated patterns in
the form of similar subtrees. (Hereafter I refer to this kind of analysis as the similar
subtree analysis.) The subtrees identified as similar are of interest to the modeller, as
they often indicate repeated, and thus inefficient behaviour, such as that caused by the
presence of symmetries or dominance in the model. Once the analysis is performed, the
user can focus on examining the similar subtrees only (rather than the entire tree) to
determine whether they indicate inefficient behaviour, and if so, investigate the reasons
and potentially improve the model by, for example, adding symmetry/dominance breaking
constraints.

The structure of this chapter is as follows. First, Section 5.1 discusses different sim-
ilarity criteria that can be used for the analysis. Then, Section 5.2 presents algorithms
that underlie the similar subtree analysis. This is followed by the discussion of the imple-
mentation of the analysis within CP-Profiler in Section 5.3. Section 5.4 presents a case
study, which demonstrates that the analysis can be used for model improvement. Finally,
Section 5.5 summarises the chapter.

73

74 CHAPTER 5. FINDING RECURRING PATTERNS IN EXECUTIONS

5.1 Measuring the Similarity among Subtrees

To perform the similar subtree analysis, one first needs to determine when two subtrees
should be considered similar. This section discusses different similarity criteria for subtrees
appropriate for the analysis.

Two or more subtrees are said to form a pattern if they conform to one of the similarity
criteria discussed here. Two subtrees are said to be identical if they have the exact same
node structure and the exact same decisions on corresponding branches. This definition
leads to the first way to define similar subtrees: two or more subtrees are similar if they are
identical. Note that such identical subtrees can still contain nodes representing different
states, e.g., the corresponding variable domains could differ.

Since the above definition of similar subtrees is quite restrictive, the user can easily
reason about the similarities found by the analysis. The disadvantage, however, is that
the analysis can be too conservative and disregard otherwise interesting patterns in a
tree. Therefore, it might be interesting to relax this criteria by, for example, disregard-
ing branching decisions, or by allowing a few internal nodes to be different. One such
possibility that I explored is using a notion of similarity by contour.

The contour of a subtree describes how far the subtree extends horizontally at each
decision level. That is, for each decision level of a subtree, the contour records horizon-
tal position (for example, in pixels) of the leftmost and rightmost nodes at that level,
relative to the root of the subtree. As an example, consider the subtree depicted in Fig-
ure 5.1. Its contour can be represented by the following sequence of pairs of numbers:
[(0, 0), (−15, 15), (0, 30)] (with 30 as the minimal distance between nodes in this case).
The first pair corresponds to the level of the root node, the second corresponds to the
level of its children etc. In total, this subtree contains three decision levels, and therefore,
its height is 3.

Figure 5.1: Visualisation of a basic search tree.

Note that the definition of a contour disregards the exact decisions taken by the solver
in each branch, and only captures the outside contour of the tree, without distinguishing
between the inner nodes. For example, note how the two trees depicted in Figure 5.2 have
the same contour (outlined by the grey shapes around both subtrees), and thus would
be identified as similar. However, the trees are clearly not identical, as the tree on the
right lacks two nodes in the middle. A significant advantage of this pattern definition is
that its computation is already required by the layout algorithm for drawing the tree and,
therefore, it can be obtained without any overhead.

Algorithm 1 outlines a possible method for calculating contours (only binary trees
are considered for simplicity, but the extension to n-ary trees is straightforward). It is
based on the tree layout algorithm that was first described in [Kennedy, 1996] and then
implemented in, among others, Oz Explorer, Gist and now CP-Profiler.

The algorithm takes the root of the tree of interest (Root) as a parameter, and popu-
lates the extents data structure for every node in the tree. Note that Root represents the

5.1. MEASURING THE SIMILARITY AMONG SUBTREES 75

Figure 5.2: Different trees of the same contour.

entire tree in this case. Similarly, individual subtrees can be represented by their corre-
sponding roots. The following algorithm as well as Algorithms 4 and 5 take advantage of
this fact.

The extents for a node N is a vector of tuples (Li, Ri), representing the contour of the
subtree rooted at node N : every element of the vector indicates the relative horizontal
positions of the left-most (Li) and the right-most (Ri) nodes at height level i.

The contour for a subtree rooted at node N can be calculated as a result of conceptually
merging the contours of the underlying subtrees, prepended with the contour of the root
node N : [(0, 0)], which represents the extents of a single node (not accounting for its
dimensions). Consequently, the contour of any leaf node is [(0, 0)] (assigned in line 2). If
a node has children, the layout procedure is recursively applied to them first (line 5), and
then its extents are computed based on the extents of the children. In the case of a node
with a single child C, its extents are calculated as: contour(N) = [(0, 0)] ++ contour(C),
since the child is positioned directly under N .

If two children, C1 and C2, are present, the algorithm first computes the minimal (hori-
zontal) distance between the two root nodes required for their contours not to overlap. This
is done by calculating the maximum of the “overlaps” on each level i ∈ [0,MinHeight),
where MinHeight is the height of the shallower of the subtrees rooted at C1 and C2 (cal-
culated in line 13). The overlap on level i is the difference between the right extent of
the right-most node in C1 and the left extent of the left-most node in C2, both on level
i. Additionally, the overlap is increased by a constant MinDist, representing the desired
minimal (horizontal) distance between any two nodes (line 14).

For aesthetic reasons, the algorithm positions the subtrees in such a way that the root
node N is the same distance apart from its children C1 and C2. To achieve this, the left
and the right subtrees are conceptually moved by adding ShiftL and ShiftR (computed
in line 15 as half of the maximum overlap in the absolute values, but opposite in signs) to
their the horizontal coordinates, respectively. This is done by adding the corresponding
values to the extents of the children subtrees after copying them over. For the range of
levels where both subtrees have nodes (i.e., for i ∈ 0..MinHeight), the node’s extents are
appended by a tuple of two values for each level: the left extent of the left-most node of
the left subtree and the right extent of the right-most node of the right subtree (lines 16
to 18). Further, if one of the subtrees is deeper than the other, its extents for the deeper
levels (those farther from the root) are copied as the parent’s extents for the corresponding
levels (lines 19 through 27).

A similar algorithm can be used for n-ary trees as well. In that case, a contour for node
N with m children Ci, i ∈ 1..m can be calculated as above, with the exception that the
“merging” procedure would have to be performed m− 1 times: first merging the subtrees
rooted at C1 and C2, then merging the result of the previous merge with C3 etc.

76 CHAPTER 5. FINDING RECURRING PATTERNS IN EXECUTIONS

Algorithm 1: Algorithm for calculating contours of subtrees [Kennedy, 1996].

Global Data: MinDist: minimal horizontal distance between nodes

1 Procedure Layout(Root)
2 Root.extents← [(0, 0)]
3 if |children(Root)| = 0 then return
4

5 for Child ∈ children(Root) do Layout(Child)
6

7 if |children(Root)| = 1 then
8 Root.extents ← Root.extents ++ child(Root).extents
9 end

10

11 if |children(Root)| = 2 then
12 (extL, extR) ← children(Root).extents
13 MinHeight ← min(height(extL), height(extR))
14 Overlap ← MinDist +

max[extL[i].right− extR[i].left | ∀i ∈ [0..MinHeight)]
15 (ShiftL, ShiftR) ← (−Overlap/2, Overlap/2)
16 for i ∈ [0..MinHeight) do
17 Root.extents ← Root.extents ++ (extL[i].left+ShiftL,

extR[i].right+ShiftR)

18 end
19 if height(extL) > height(extR) then
20 for i ∈ [MinHeight..height(extL)) do
21 Root.extents ← Root.extents ++ (extL[i].left+ShiftL,

extL[i].right+ShiftL)

22 end

23 else
24 for i ∈ [MinHeight..height(extR)) do
25 Root.extents ← Root.extents ++ (extR[i].left+ShiftR,

extR[i].right+ShiftR)

26 end

27 end

28 end

5.2 Algorithms for Similar Subtree Analysis

The criteria for similarity between subtrees often affects the choice of the appropriate algo-
rithm for performing similar subtree analysis. In the following two sections I describe the
algorithms designed for the two similarity definitions introduced above (one for contours,
and one for identical subtrees).

5.2.1 Similarity by Contour

The algorithm that finds similar subtrees based on their contour is outlined in Algo-
rithm 2. At the core of the algorithm is the comparison function Less(a, b) that provides
a strict weak ordering for subtrees. In particular, its definition (see Algorithm 3 below)
requires that for any pair of subtrees (S1, S2): S1 and S2 belong to the same group iff
Less(S1, S2)⇔ Less(S2, S1).

5.2. ALGORITHMS FOR SIMILAR SUBTREE ANALYSIS 77

First, an empty set of sets is initialised in line 2, where each internal set contains
subtrees that together form a pattern. Then, for every Subtree from Subtrees, the algo-
rithm searches for a pattern G in Patterns, such that Subtree belongs to G, that is, for
every element Gi ∈ G: Less(Subtree,Gi) ⇔ Less(Gi, Subtree). It is sufficient, however,
to check this condition for any one element from G, as it is done in line 4, showing the
element as G0. If such a pattern already exists, Subtree is added to the corresponding
set (line 5). Otherwise, a new pattern is created with Subtree as its first element and
added to Patterns (line 7). Once all Subtrees have been processed this way, Patterns
will contain the final result of the algorithm, which is returned in line 10.

Note that if Patterns is implemented as a sorted list (with sorting performed using the
“Less” function), the search in line 4 could be performed in O(logN) time using binary
search, for example. Additionally, most of the algorithm could be abstracted away using
a standard “multiset” data structure for Patterns (available as std::multiset in C++,
for example), which will arrange elements in groups as they get inserted (based on the
comparison function “Less”).

Algorithm 2: Clustering subtrees using contours.

Input : Subtrees: a set of all subtrees in a tree, Less: comparison function
Output: Patterns: a set of groups of subtrees (each group representing a contour)

1 Function AnalyseContours(Subtrees, Less)
2 Patterns← ∅
3 foreach Subtree ∈ Subtrees do
4 if ∃ G ∈ Patterns : G0 ∈ G, Less(Subtree,G0) ⇔ Less(G0, Subtree) then
5 G ← G ∪ {Subtree}
6 else
7 Patterns ← Patterns ∪ {{Subtree}}
8 end

9 end
10 return Patterns

Algorithm 3: “Less” operator for contours.

Input : Subtree1, Subtree2
Output: bool

1 Function Less(Subtree1, Subtree2)
2 (Contour1, Contour2) ← (contour(Subtree1), contour(Subtree2))
3 (Height1, Height2) ← (height(Contour1), height(Contour2))
4 if Height1 < Height2 then return true
5 if Height1 > Height2 then return false
6 for i← 0 to Height1 do
7 (L1, R1)← Contour1[i]
8 (L2, R2)← Contour2[i]
9 if (L1 > L2 or R1 < R2) then return true

10 if (L1 < L2 or R1 > R2) then return false

11 end
12 return false

I propose the following function for comparing for two subtrees based on their contours
(see Algorithm 3). The function takes Subtree1 and Subtree2 as arguments, and provides
a means for strict weak ordering of subtrees: it returns true if Subtree1 precedes Subtree2

78 CHAPTER 5. FINDING RECURRING PATTERNS IN EXECUTIONS

and false if Subtree2 precedes Subtree1. The algorithm first extracts contours of the
subtrees (line 2) and queries their heights (line 3). The lines 4 and 5 state that a shallower
subtree must precede a deeper one. For subtrees of equal height the ordering is determined
based on the extents on each level: left and right extents of the two contours are compared,
starting from the height of 0 to Height1 until a discrepancy is found (lines 6 to 11).
(The way extents determine the ordering is quite arbitrary, but the intuition is that the
“narrower” subtree should appear first.) If extents of both subtrees are equal on each
level, the algorithm will return false (line 12) for both Less(Subtree1, Subtree2) and
Less(Subtree2, Subtree1), indicating that the corresponding subtrees are similar. Defined
this way, the comparison function guarantees that in the resulting clustering, any two
subtrees belong to the same cluster (or pattern) iff they have the same contours.

It is easy to see that the comparison function has time complexity proportional to the
height of the tree, which in the worst case is O(N), where N represents the number of nodes
in the tree. In turn, processing of a single subtree requires at most logN comparisons,
necessary to find its group (line 4 of Algorithm 2). The overall worst-case complexity of the
similar subtree algorithm for contours is, therefore, O(N2× logN). The best-case scenario
for the algorithm is when the tree is fully-balanced, and thus the height of its subtrees is
bounded by O(logN), turning the complexity of the algorithm into Ω(N × logN × logN).

5.2.2 Finding Identical Subtrees

When the definition of similar subtrees considers grouping only identical subtrees, an
approach similar to the one above will not work as well, since the comparison function
would be more expensive to compute: in the worst-case scenario, it would require accessing
all nodes in both subtrees in order to perform pairwise comparison. The number of nodes
in a subtree in the worst-case scenario is O(N) for a tree with N nodes. Analogously to
the above reasoning for contours, the worst-case complexity for identical subtrees would be
O(N2× logN). Contrary to the contours, however, there is no apparent best-case scenario
for the case of identical subtrees: the number of nodes in a subtree of a fully-balanced tree
is still O(N).

Instead of taking the same approach as for contours, a partition refinement algorithm
can be more appropriate for finding identical subtrees. One such algorithm [Horbach et
al., 2002] is outlined in Algorithm 4 and can be described as follows. Let G be the initial
set of groups of subtrees that we want to partition. Let Gp and Gr be disjoint sets of
groups, such that Gp ∪ Gr = G, corresponding to, respectively, processed and remaining
groups. Initially, Gr contains all subtrees rooted at an internal node (n) grouped by the
number of direct children of n. For example, if a binary branching is used to build the
tree, every node of that tree will have either 0 or 2 children, so Gr will contain a single
element/group. In turn, Gp contains all subtrees rooted at a leaf node grouped by their
status (which indicates whether a node represent a solution or a failure).

For some set S, let S[i] denote the subset of S containing all (and only) subtrees of
height i. The algorithm starts with Gp[1] (i.e., the set of all groups of subtrees of height 1)
processing one group gp at a time. For every group gp, all subtrees associated with a root
n, where n is the first child (j = 1) of its parent node, are considered first. This condition is
checked in line 7. For every such node n, its parent node (its associated subtree) is marked
as a candidate for separation, adding it to the Marked set (line 8). Groups containing at
least one subtree in Marked will be bisected based on whether a subtree is in Marked,
with the two resulting groups replacing the original group in Gr (lines 11–12).

5.2. ALGORITHMS FOR SIMILAR SUBTREE ANALYSIS 79

Figure 5.3: A simple tree used for demonstrating Algorithm 4.

The above repeats for all j, until Children (the maximum number of direct children for
an individual node within Gr, computed in line 4) is reached. By that point, all subtrees
of height i+1 are fully partitioned, so Gr[i+1] is moved into Gp as processed (lines 16–17).
The algorithm then proceeds to the next height i + 1, repeating the procedure performed
for i. Once the maximum height of the tree (MaxHeight, available globally) is reached,
the algorithm finishes with all subtrees fully partitioned in Gp.

Algorithm 4: Partition refinement algorithm for subtrees.

Global Data: MaxHeight : height of the tree
Input : Gp, Gr: initial partition of subtrees
Result : Gp: fully partitioned subtrees

1 Procedure Partition(Gp, Gr)
2 foreach i ∈ [1..MaxHeight− 1] do
3 foreach gp ∈ Gp[i] do
4 Children← maxChildren(Gr)
5 for j ∈ [1..Children] do
6 Marked← ∅
7 foreach n ∈ gp, n is a jth child do
8 Marked←Marked ∪ parent(n)

9 end
10 foreach gr ∈ Gr, gr ∩Marked 6= ∅ do
11 Gr ← Gr − gr
12 Gr ← Gr ∪ {gr −Marked} ∪ {gr ∩Marked}
13 end

14 end

15 end
16 Gp ← Gp ∪Gr[i + 1]
17 Gr ← Gr −Gr[i + 1]

18 end

The key insight that the algorithm is built upon is the fact that for any two trees to
be identical, their corresponding subtrees must be identical as well. The algorithm thus
requires some initial partition (in this case, Gp) that it can use as the “ground truth”.
At the beginning, Gp only contains patterns of height 1 specified by the initial partition.

80 CHAPTER 5. FINDING RECURRING PATTERNS IN EXECUTIONS

When all such patterns are processed, the subtrees of height 2 become fully partitioned and
can no longer change, and thus groups of height 2 can also serve as the “ground truth”
extending Gp. More precisely, when processing a single group from gp for some j, the
algorithm splits groups from Gr based on whether or not their subtrees have an element
from gp as their jth child. Since all child subtrees for patterns of height i + 1 must be
in Gp[k], k ≤ i, processing them guarantees that subtrees in Gr[i + 1] have been fully
partitioned. The set of processed groups Gp can thus be extended by Gr[i + 1].

Note that this algorithm is relatively easy to modify to incorporate other information
on nodes. For example, the variables assigned in the search decision, or the full decisions
(labels) can be used for this purpose. In that case, the initial partition has to be modified
in such a way that only nodes with the same decisions can be within the same group.
Additionally, the procedure in lines 6– 13 would need to be run separately for nodes in gp
that have different labels (requiring an additional loop over labels).

Example 5.2.1. Consider the tree depicted in Figure 5.3. For demonstration, all nodes
are labelled with their unique identifiers: for example, the identifier of the root node is
0, and its children are labelled as 1 and 2. However the algorithm in this example will
not take labels into account, that is, otherwise identical subtrees with different labels on
nodes will be treated as identical.

The algorithm starts with an initial partition, consisting of two parts: Gp and Gr,
representing processed and remaining groups, respectively. In this example, all failed
nodes {7 8 9 11 12 15 16 17 18 19 21 22} comprise the only group within Gp. Any other
types of leaf nodes that should be distinguished from failed nodes (such as solution nodes)
would be placed in their respective groups within Gp alongside the group for failed nodes.
All branch nodes {0 1 2 3 4 5 6 10 13 14 20} comprise the only group within Gr.

The algorithm first goes through subtrees of height 1, that is, leaf nodes. In the initial
partition all such nodes are in the set of processed groups, that is, within Gp. In this
example, there is only one group of nodes of height 1 – the group of failed nodes. The
loop starting in line 5 initiates with j = 0, indicating that only jth children nodes (of their
corresponding parents) will be considered first. For the group of failure nodes, only nodes
{7 9 11 15 17 19 21} satisfy that condition. According to line 8, parents of the selected
nodes are obtained as Marked: {3 4 5 10 13 14 20}. Then, according to lines 10–13, any
nodes that are in Marked are separated from their respective groups. In our case, the
only group within Gr is separated into two: {3 4 5 10 13 14 20} and {0 1 2 6}.

The algorithm proceeds to second (right) children by incrementing j. The nodes in
question are {8, 12, 16, 18, 22}. Similarly to the above, parents of the selected nodes {3
5 10 13 20} are obtained and used to separate unprocessed groups further, resulting in
the following partition: {3 5 10 13 20} {4 14} {0 1 2 6}. Since the tree in this example is
binary (Children = 2), the loop started in line 5 exits. The outer loop also exist since at
this point there is only one group in Gp, which we have just examined. By this point, all
groups of height 2 have been processed (since we have examined all their children), so all
such groups are moved from Gr to Gp.

The algorithm then proceeds to subtrees of height 2 and repeats the above steps. All
steps required to complete the algorithm are outlined Table 5.1, which shows how the
partition changes over time (the changes shown in red with bold font). The algorithm
finishes when Gr becomes empty, and the resulting partition can be found in Gp. Note
that, for the purpose of similar subtree analysis, only groups with multiple subtrees are
of interest. Excluding trivial patterns (comprised of a single element or single nodes), the
resulting patterns are: {1 6}, {4 14}, and {3 5 10 13 20}.

5.2. ALGORITHMS FOR SIMILAR SUBTREE ANALYSIS 81

Step Remaining groups (Gr) Processed groups (Gp)

Initial {0 1 2 3 4 5 6 10 13 14 20} {7 8 9 11 12 15 16 17 18 19 21 22}
i = 1; j = 0 {0 1 2 6} {3 4 5 10 13 14 20} {7 8 9 11 12 15 16 17 18 19 21 22}
i = 1; j = 1 {0 1 2 6} {4 14} {3 5 10 13 20} {7 8 9 11 12 15 16 17 18 19 21 22}

move h = 2 {0 1 2 6} {4 14} {3 5 10 13 20}
{7 8 9 11 12 15 16 17 18 19 21 22}

i = 2; j = 0 {0} {1 2 6} {4 14} {3 5 10 13 20}
{7 8 9 11 12 15 16 17 18 19 21 22}

i = 2; j = 1
(no change: {4 14} are marked for splitting,

but they already comprise their own set)

move h = 3 {0} {1 2 6} {4 14} {3 5 10 13 20}
{7 8 9 11 12 15 16 17 18 19 21 22}

i = 3; j = 0 (no change: no nodes in Gp[3] for j = 0)

i = 3; j = 1 {0} {1 6} {2} {4 14} {3 5 10 13 20}
{7 8 9 11 12 15 16 17 18 19 21 22}

move h = 4 {0} {2} {1 6} {4 14} {3 5 10 13 20}
{7 8 9 11 12 15 16 17 18 19 21 22}

i = 4; j = 0
(no change: {0} is marked for splitting,

but it already comprises its own set)

i = 4; j = 1
(no change: {2} is marked for splitting,

but it already comprises its own set)

move h = 5 {0} {2} {1 6} {4 14} {3 5 10 13 20}
{7 8 9 11 12 15 16 17 18 19 21 22}

i = 5; j = 0 (no change: no nodes in Gp[5] for j = 0)

i = 5; j = 1
(no change: {0} is marked for splitting,

but it already comprises its own set)

move h = 6
{0} {2} {1 6} {4 14} {3 5 10 13 20}
{7 8 9 11 12 15 16 17 18 19 21 22}

Table 5.1: Steps performed for finding identical subtrees in Example 5.2.1.

5.2.3 Filtering the Results

When applied to large search trees, the similar subtree algorithm can find many patterns,
potentially making the results overwhelming. It is thus essential to help the user find
the patterns that are most likely to lead to a fruitful insight regarding the execution by
automatically filtering out the rest. This can be done by only showing those patterns that
exceed a certain height and/or occur at least as often as some user defined number. For
example, if a subtree is unique (i.e., no similar subtree can be found in the search tree),
the algorithms above will associate it with a pattern of cardinality 1. Such unique subtrees
are of no interest, at least during the similar subtree analysis, and should be discarded.
Likewise, patterns of shallow subtrees, such as leaf nodes or subtrees of two to four levels
of height, convey little information and should be discarded: it is most likely that the
similarities found there are purely due to chance.

In addition to such trivial patterns, there is another class of subtrees that one should
avoid: tall subtrees with relatively few nodes corresponding to a solver “deep dive”. Often
solvers make a deep dive, backtracking at most one level up, resulting in tall subtrees with
relatively few nodes. Such subtrees rarely convey interesting information even when they

82 CHAPTER 5. FINDING RECURRING PATTERNS IN EXECUTIONS

appear frequently (especially, if the similarity criteria is loose, e.g., no labels are taken
into account) and should be discarded like other trivial patterns.

In addition to simply filtering patterns by their height and frequency, one can greatly
simplify the results of the analysis, without loss of generality, by eliminating subsumed
patterns.

5.2.4 Eliminating Subsumed Patterns

By definition, if two subtrees are identical, their corresponding underlying subtrees must
be identical. Similarly and more generally, if two subtrees can be associated with some
pattern (for example, they have the same contour), their corresponding underlying subtrees
might form patterns of their own.

Consider again the two contours depicted in Figure 5.2. The subtrees have been
identified as having the same contour – a fact that can also be observed by comparing the
areas around the subtrees highlighted in grey. The contours of their underlying subtrees
are depicted in Figure 5.4. As indicated by the highlighted areas, the two left subtrees
have the same contour, while the right subtrees have different ones.

Figure 5.4: Contours of underlying subtrees can differ.

In practice, we may wish to focus on the larger, non-subsumed patterns only, since the
smaller, subsumed, ones convey little additional information. Subsumed subtrees could be
eliminated using the algorithm outlined in Algorithm 5. The key idea behind the algorithm
is to use the input set of patterns to construct a set of subtrees that they would subsume
had they been part of a pattern. Once this set is obtained, it can is used to determine if
a pattern is subsumed, that is, all its subtrees are subsumed.

The detailed algorithm description is as follows. Let a Pattern represent a group of
subtrees that satisfy a given similarity criteria. The algorithm above takes a set of patterns
as input and returns all patterns that cannot be subsumed by others from the same set.
For every subtree associated with a Root node found within a pattern from Patterns,
the algorithm obtains a list of the Root’s children and adds them to Marked – a set of
nodes representing subtree candidates for subsumption, initialised in line 2 to an empty
set. After that, for every pattern from Patterns the algorithm checks if all of its subtrees
(their roots) are within Marked (line 11). If that is the case, the pattern is known to
be subsumed and thus omitted. Otherwise, the pattern is added to the FilteredPatterns
set, which is returned as the result of the algorithm (line 15).

5.3. IMPLEMENTATION WITHIN CP-PROFILER 83

Algorithm 5: Removing subsumed patterns

Input : Patterns – original patterns
Output: FilteredPatterns – patterns less subsumed

1 Procedure RemoveSubsumed(Patterns)
2 Marked ← {}
3 foreach Pattern ∈ Patterns do
4 foreach Root ∈ Pattern do
5 Marked←Marked ∪ children(Root)
6 end

7 end
8 FilteredPatterns ← {}
9 foreach Pattern ∈ Patterns do

10 Roots ← getRootsOf(Pattern)
11 if Roots 6⊆Marked then
12 FilteredPatterns← FilteredPatterns ∪ {Pattern}
13 end

14 end
15 return FilteredPatterns

Example 5.2.2. Consider again the tree from Figure 5.3 used in Example 5.2.1. In that
example, Algorithm 4 found the following patterns of subtrees: {1 6}, {4 14}, and {3 5 10
13 20}. Let us apply Algorithm 5 in order to eliminate subsumed patterns (if any) from
this set.

The algorithm starts by walking through the original set of patterns. The first pattern
is {1 6}, which represents subtrees rooted at nodes 1 and 6. The algorithm obtains children
of nodes 1 and 6: {3 4} and {13 14}, respectively, and adds them to the Marked set. Thus,
Marked currently contains: {3 4 13 14}. The algorithm repeats the above procedure for
remaining patterns {4 14} and {3 5 10 13 20}, extending the Marked set with {9 10 19
20} and {7 8 15 16 17 18 21 22}, respectively. The resulting Marked set consists of the
following nodes: {3 4 7 8 9 10 13 14 15 16 17 18 19 20}.

Note that any pattern whose roots are entirely in Marked is considered subsumed by
some other pattern (or multiple patterns) from the original set. The algorithm thus walks
through the original set of patterns again in order to check for this condition. Pattern
{1 6}, for example, is not subsumed since neither 1 nor 6 is in Marked. On the other
hand, both 4 and 14 of pattern {4 14} can be found in Marked, and thus the pattern is
subsumed. Finally, pattern {3 5 10 13 20} is not subsumed, even though four out of five
of its nodes/subtrees ({3 10 13 20}) are in Marked. The result of the algorithm is thus
comprised of the following patterns: {4 14} and {3 5 10 13 20}, which are now ready to
be presented to the user.

5.3 Implementation within CP-Profiler

I have extended CP-Profiler to be able to perform the similar subtree analysis using both
criteria proposed in this work: by contour and by identity. Figure 5.5 shows the result
of applying the analysis to a search tree, with the similarity criteria by contour selected
(the model used in the execution is discussed in Section 5.4). The window displaying the
result is vertically divided into two parts. A histogram of the patterns found is shown on

84 CHAPTER 5. FINDING RECURRING PATTERNS IN EXECUTIONS

the left, where each horizontal bar represents a single pattern found in the tree. For each
pattern the user can also see:

1. Height : the number of decision levels in the subtrees represented by the pattern

2. Size: the number representing the pattern’s size

3. Count : the number of times the pattern occurs in the tree

A pattern’s size is designed to resemble the area that the pattern occupies with the
motivation that it should work for both kinds of patterns: subtrees and contours. More
precisely, the size of a pattern p of height H is defined as the sum of the widths of the
pattern’s extents on levels from 1 to H, where the width of extent (Li, Ri) is equal to
Ri − Li. Note that other definitions for size can be viable as well. For example, if a
pattern represents subtrees with identical structure, the number of nodes in the subtree
could be more appropriate.

CP-Profiler supports sorting and filtering patterns by these three properties, and choos-
ing which parameter will determine the lengths of the horizontal bars (shown in light red
colour). This enables users to focus on two parameters at once, thus helping them find
patterns of interest. For example, in Figure 5.5 the patterns are sorted by height, while
the lengths of the bars indicate their sizes as defined above. The user could change the
bars to indicate the patterns’ Count instead, and thus clearly separate large patterns that
are frequent from those that are less frequent.

Once the user selects a pattern (as is the case for the ninth pattern from the top in this
example, indicated by a dashed outline), a subtree representing the pattern is shown in
the preview part of the window on the right. All subtrees in the original tree that belong
to the selected pattern are also highlighted on the traditional node-link tree visualisation
window. This is achieved by changing the color of the subtrees’ contours and collapsing
everything else, as demonstrated in Figure 5.6.

From there, the user can study the similarities more closely by focusing on the high-
lighted areas only. For example, the user might be interested in the decisions made by
the solver that led to the same subtrees or, more precisely, in the difference between the
decisions made on the two search paths, that nonetheless led to similar searches.

Note how in Figure 5.6 the two paths that lead to the two highlighted subtrees share
a large number of nodes (at the beginning of the tree). To aid the user in identifying the
differences, the path differences can be automatically calculated and shown upon pattern
selection. This is achieved in CP-Profiler by showing the different decisions textually below
the histogram, as displayed in Figure 5.5. This feature will be demonstrated in more detail
in the following section.

To give an idea about the performance of the algorithms used in the similar subtree
analysis, Tables 5.2 and 5.3 show the time required to run their CP-Profiler implementation
on a consumer-grade CPU (Intel Core i7-4790 used in this case). In particular, Table 5.2
shows from left to right: the tree’s size, the time taken by the similar subtree analysis with
the similarity by contour (Section 5.2.1), the number of patterns found initially, the time
taken by the subsumed subtree elimination algorithm (Algorithm 5), and the number of
patterns after the elimination. Table 5.3 shows the same information as in Table 5.2, but
for the analysis with similarity by identity (Algorithm 4).

Note that the running time of the similar subtree analysis by contour has better scal-
ability than that of the algorithm by identity. Despite that, both algorithms find patterns
in a reasonable amount of time for large trees with several millions of nodes. Importantly,

5.3. IMPLEMENTATION WITHIN CP-PROFILER 85

Figure 5.5: Viewing similar subtrees.

Figure 5.6: Subtrees of interest highlighted on the tree visualisation.

the similar subtree analysis does not require the execution to finish before it could be
applied to it and still be meaningful: patterns in partial executions tend to resemble those
in the corresponding complete ones.

Tree Size (nodes) Analysis Patterns (init) Elimination Patterns (final)

1,677.1K 2.39s 9,684 1.06s 9,197
5,895.0K 9.42s 27,449 4.41s 26,156
9,367.0K 16.64s 45,351 8.26s 39,644

Table 5.2: Similar subtree analysis performance (by contour).

Tree Size (nodes) Analysis Patterns (init) Elimination Patterns (final)

1,677.1K 6.22s 8,635 1.12s 6,841
5,895.0K 43.63s 21,202 4.97s 16,137
9,367.0K 61.87s 28,672 8.61s 21,823

Table 5.3: Similar subtree analysis performance (by identity).

86 CHAPTER 5. FINDING RECURRING PATTERNS IN EXECUTIONS

5.4 Case Study

I present a case study for using the similar subtree analysis on an execution of the Social
Golfers problem. In this problem, a cohort of N golfers play R rounds of golf, wherein
each round, the golfers are divided into G groups containing S players each. The goal of
the problem is to find R partitions of golfers into G groups, such that no two golfers play
together in the same group more than once.

The following model (Listing 5.1), which can be found as golfers1 in the MiniZinc
benchmarks library1, was used in the study:

1 include "globals.mzn";
2
3 int: G; % The number of groups.
4 int: S; % The size of each group.
5 int: R; % The number of rounds.
6
7 int: N = G * S;
8
9 set of int: ROUNDS = 1..R;

10 set of int: GOLFERS = 1..N;
11 set of int: PLACES = 1..N;
12
13 array [ROUNDS , PLACES] of var GOLFERS: rpg;
14 array [GOLFERS , GOLFERS] of var 0..R: ggr;
15
16 % Each member of each group must be distinct.
17 constraint
18 forall (r in ROUNDS) (
19 alldifferent (p in PLACES) (rpg[r, p])
20);
21
22 % Each pair can play together at most once.
23 constraint
24 forall (r in ROUNDS , g in 0..(G - 1), i, j in 1..S where i < j) (
25 ggr[rpg[r, S * g + i], rpg[r, S * g + j]] = r
26);
27
28 % Break some symmetry by strictly ordering players
29 % within each group in each round.
30 constraint
31 forall (r in ROUNDS , p in PLACES) (
32 if p mod S != 0
33 then rpg[r, p] < rpg[r, p + 1]
34 else true
35 endif
36);
37
38 solve
39 :: int_search ([rpg[r, p] | r in ROUNDS , p in PLACES],
40 first_fail , indomain_min , complete)
41 satisfy;

Listing 5.1: MiniZinc Model for the Social Golfers Problem.

An assignment of a golfer to a group in each round is modeled through the golfers’
position within the rpg array (defined in line 13), such that two golfers in positions P1

and P2 during some round belong to the same group iff: bP1
S c = bP2

S c. The constraint in
lines 17 through 20 guarantees that each player appears only in one group each round, and
there is no duplicate entry for the same player. For any two golfers, the array of variables
in ggr (defined in line 14) represents the round which golfers g1 and g2 play together in a
group. For example, ggr[g1, g2] = 1 would indicate that g1 and g2 play in the same group
in the first round. The second constraint (lines 23 through 26) makes ggr consistent with
rpg, i.e., it ensures that any pair of golfers play together in at most one round, the one

1See https://github.com/MiniZinc/minizinc-benchmarks

https://github.com/MiniZinc/minizinc-benchmarks

5.4. CASE STUDY 87

stated explicitly within ggr. Finally, the third constraint (lines 30 through 36) significantly
reduces the search space by enforcing that players within each group are strictly ordered
by their index, thus avoiding symmetrical solutions that assign golfers within a group to
different positions within that group.

Figure 5.5 shows the result of identifying similar subtrees in the search performed by
the Gecode solver for the instance of the problem with R = 6, G = 5, and S = 5 (i.e. for
each of the 6 rounds, golfers need to split into 5 groups of 5 players).

Let us consider the top-most pattern – one of the largest patterns found both in terms
of subtree height and size. In this study, I assume that the information about the actual
domains of variables is not available to the user, as it can be rather costly to communicate
this information for every node. Therefore, in the following analysis I focus on the decisions
made on the path to the subtrees of interest, thus ignoring any variable assignments made
implicitly by propagation.

The different decisions are shown at the bottom of the figure as:

left subtree right subtree

rpg[3,11]=3 rpg[3,12] 6=6 rpg[3,11]6=3 rpg[3,11] 6=4
rpg[3,12]=9 rpg[3,13]=15 rpg[3,11]=5 rpg[3,12]=6
rpg[3,14]=16 rpg[3,16] 6=4 rpg[3,13]=14 rpg[3,14]=17
rpg[3,16]=5 rpg[3,17] 6=6 rpg[3,16]=3 rpg[3,17]=9

Since decisions of the form X = a subsume X 6= b (a 6= b), the above decisions can be
simplified as:

left subtree right subtree

rpg[3,11]=3 rpg[3,11]=5
rpg[3,12]=9 rpg[3,12]=6
rpg[3,13]=15 rpg[3,13]=14
rpg[3,14]=16 rpg[3,13]=17
rpg[3,16]=5 rpg[3,14]=3
rpg[3,17]=6 rpg[3,14]=9

Recall that an expression of the form rpg[R,P] = G indicates that golfer G played
in position P during round R. In all of the above assignments R = 3, indicating that
the difference in decisions are only in the third round. The table below illustrates which
golfers are assigned to which positions in the third round, omitting the first two groups
(associated with positions from 1..5 and 6..10), as they are not present in the different
decisions.

position P 11 12 13 14 15 16 17 18 19 20

golfer G (left subtree) 3 9 15 16 5 6

golfer G (right subtree) 5 6 14 17 3 9

Empty cells indicate variables not yet assigned at the associated nodes, or assigned
implicitly through propagation. Even with this limited information, one can notice a
symmetrical relationship between subtrees. For instance, one can notice that, while players
3 and 9 occupy the first two places within group 3 (associated with positions 11..15) in
the left subtree, the same players occupy the same places within group 4 (associated with
positions 16..20) in the right subtree. Similarly, in the left subtree, players 5 and 6 are

88 CHAPTER 5. FINDING RECURRING PATTERNS IN EXECUTIONS

placed first within group 3, and in the right subtree they are placed first within group 4.
This observation suggests the groups 3 and 4 might be simply swapped around. (Note that
this fact can be confirmed by inspecting the exact variable domains at the corresponding
nodes, if they are provided by the solver.)

The fact that swapping groups can result in the same search, as indicated by similar
(identical in this case) subtrees of large size, suggests that the two corresponding subprob-
lems are also equivalent (that is, symmetrical). Indeed, the order of groups is irrelevant
in the definition of the problem (which could be confirmed by the modeller), and leads to
the exploration of symmetrical areas of the search space.

Having identified the presence and cause of some redundant search, the user could
eliminate it by, for example, adding a symmetry breaking constraint on the rounds – the
original golfers1 model has constraints that break the symmetry within each group in
each round, but not between different groups of the same round.

Specifically, I added a constraint that forces the groups within each round to be ordered;
that is, the “smallest” golfer in the first group must be less than the smallest golfer in the
second group, and so on for all adjacent groups:

1 constraint
2 forall (r in ROUNDS , g in [1 + i * S | i in 0..G-2])
3 (rpg[r, g] < rpg[r, g+S]);

The extended model requires exploring a smaller search space and, unsurprisingly,
shows better performance than the original model. For example, when tested on the
instances provided in the MiniZinc benchmarks library, the extended model either required
the same amount of time (for the smallest instance), or 1-2 orders of magnitude less time
(for larger instances). The extended model is now part of the MiniZinc benchmark suite
as golfers1b.

5.5 Summary

This chapter presented a profiling technique that can discover inefficiencies in large execu-
tions: the similar subtree analysis. The technique works by automatically finding repeated
patterns in the execution – something that often indicates the presence of inefficient search.
The chapter presented a case study that demonstrated how the similar subtree analysis
can be used to detect a symmetry present in the problem, but not addressed in the model.
Eliminating the found symmetry has led to an improvement of the model.

Chapter 6

Techniques for Comparing
Executions

6.1 Introduction

In order obtain a fast execution of a given problem, the modeller often considers multiple
encodings of the problem, tries different search strategies or, indeed, different solvers
until a satisfactory result is reached. Trying all possible combinations of models, search
strategies, and solvers is impractical. It is therefore extremely important for the modeller
to know which changes in the execution are favorable. This chapter aims to achieve the
goal of designing profiling techniques that provide the modeller with that knowledge.

It particular, this chapter discusses two techniques for comparing the executions of
different versions of the same model, and shows how utilising them can be beneficial for
model improvement. First, Section 6.2 introduces search merging as a technique for com-
paring two executions that is most useful when their searches are relatively similar. Then,
Section 6.3 proposes a technique for making two executions follow the same search, which
broadens the circumstances under which the search merging technique can be effective.
I then continue by demonstrating a case study, where these two techniques are used to-
gether to gain previously unknown information about a modelling case from the literature.
Finally, I conclude by summarising the contributions of this chapter and discussing some
potential limitations of the presented techniques.

6.2 Comparison of Executions

In order to know how a given model modification affected the model’s execution (and,
thus, determine which modifications lead to the biggest impact), it is essential to be able
to compare the executions before and after the modification. Currently, this comparison
is only possible by means of relatively crude aggregate measures, such as execution run-
times or the size of the corresponding search trees. A more detailed analysis of search
trees is impractical to perform by hand, as search trees often contain many millions of
nodes. This section explores the possibility of comparing execution through comparing
their search trees automatically the resulting comparison tool is available within CP-
Profiler as a proof of concept.

89

90 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

Figure 6.1: Two simple search trees used for demonstrating search merging.

6.2.1 Comparison Algorithm

Consider a situation where the difference between two executions of a problem is due to
a relatively small modification in the model, and the search strategy is unchanged. Then,
the search trees corresponding to the executions before and after the modification will
often make similar decisions, especially at the higher decision levels in the tree (i.e. closer
to the root). This is due to the fact that when there is a difference in propagation, the
effect it will have on the search is likely to be more profound in the deeper levels in the
search tree, as a consequence of the compounding effect of propagation: values pruned
earlier lead to further pruning as the search progresses deeper. For that reason, such
executions will tend to have similar structure near the higher decision levels.

The approach for comparison that I propose takes advantage of this fact, and compares
the two executions by performing an inexpensive merging procedure of their search trees.
A high-level description of this procedure is as follows. First, an empty tree is created for
the purpose of displaying the result. Then, the process of merging proceeds by traversing
both trees in lockstep in a depth-first-search manner, starting at the root nodes and
comparing corresponding nodes at each step. A node is created on the resulting merged
tree for every pair of corresponding nodes that are identical. Once a difference is found in
corresponding nodes N1 and N2, a special pentagon node is added where the trees start to
diverge. The underlying subtrees from the two original trees are copied into the resulting
tree as the children of the pentagon node. The traversal then backtracks to find the next
point of divergence, until the two trees are exhausted.

Example 6.2.1. Consider the two trees (intentionally small for demonstration purposes)
depicted in Figure 6.1. Both trees find the same solution (identified by path {A,¬B,C}).
However, the execution on the left was able to identify a dead end earlier on the path
{A,¬B,¬C}, while it also required more search on the path {¬A} than the execution on
the right. The result of merging the two trees is shown in Figure 6.2, where the pentagons
mark the parts in the search trees that are different. Note that the tree on the left has
its pentagons collapsed (that is, their contents are hidden), and the one on the right is
expanded. As a visual aid, my implementation within CP-Profiler highlights the different
subtrees in two different colours depending on which execution they belong to, as it is
shown in the figure.

6.2. COMPARISON OF EXECUTIONS 91

Figure 6.2: Comparison result collapsed (left) and with pentagons expanded (right).

Pseudo-code for a possible implementation of the merging algorithm is presented in
Algorithm 6. Three stacks are initialised in line 2 and maintained throughout the code
to perform the lockstep depth-first-search traversal of three search trees: two (Stack1 and
Stack2) are for the executions being compared and one (Stack) is for the resulting tree.
Every time a pair of nodes is extracted from their corresponding stacks (in lines 7 and 8),
a reference Node to the top-of-the-stack node of the resulting tree is also acquired (line 9).

If Node1 and Node2 are not equal (checked in line 10), Node is turned into a pentagon
with children Node1 and Node2 (and their underlying subtrees) copied into the resulting
tree as children of Node (lines 20 through 23). Otherwise, Node is used to represent both
Node1 and Node2 (which is achieved in line 11 by substituting Node with a copy of Node1

– Node2 could have been used instead). Additionally, all three stacks are extended with
the children of the corresponding nodes (shown in lines 14 through 18).

In this context, two nodes are equal iff they both have the same status (that is, if the
nodes both represent failures, solutions etc.), the same number of children, and the same
labels on the paths to them. The equality checking is taken out into a separate procedure
and outlined in Algorithm 7.

Note that other definitions for node equality can be considered. For example, the
definition outlined in Algorithm 7 can be relaxed by taking only the variable names in
labels into account (as opposed to requiring labels to match exactly). This can identify
where the searches in two executions start to diverge in terms of variable selection.

The algorithm for merging trees is fast and scales well to large trees. It is easy to show
that its time complexity, given a pair of trees T1 and T2, is linear in the number of nodes
(O(N1+N2)), where N1 and N2 are the number of nodes in T1 and T2, respectively. The
algorithm performs a depth-first-search traversal of T1 and T2 visiting at most min(N1, N2)
nodes. Every visited pair of nodes (Node1 and Node2) is either copied into the resulting
tree T3 (when the two nodes are equal), or causes the corresponding subtrees (for which
Node1 and Node2 are roots) to be copied into T3 under a newly created pentagon node.
In either case, a node from T1 or T2 is only copied once per merging. Assuming that
copying a single node is a O(1) operation, the algorithm runs in O(N1+N2), since only
constant-time operations are performed for at most N1 + N2 nodes.

92 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

Algorithm 6: The algorithm for merging search trees.

Input : Root1, Root2 : roots of trees to compare
Result: merged tree is constructed rooted at Root

1 Procedure Compare(Root1, Root2, Root)
2 Stack1, Stack2, Stack ← empty stacks
3 Stack1.push(Root1)
4 Stack2.push(Root2)
5 Stack.push(Root)
6 while Stack1.size() > 0 do
7 Node1 ← Stack1.pop()
8 Node2 ← Stack2.pop()
9 Node ← Stack.pop()

10 if Equal(Node1, Node2) then
11 copyInto(Node1, Node)
12 numberOfChildren ← size(Node1.children())
13 extend Node with numberOfChildren child nodes
14 for i ∈ [numberOfChildren, 0) do
15 Stack1.push(Node1.getChild(i))
16 Stack2.push(Node2.getChild(i))
17 Stack.push(Node.getChild(i))

18 end

19 else
20 Node ← create pentagon
21 ChildL, ChildR ← get left and right children of Node
22 copyTree(Node1, ChildL)
23 copyTree(Node2, ChildR)

24 end

25 end

Algorithm 7: The procedure for comparing nodes.

1 Function Equal(Node1, Node2)
2 return size(Node1.children()) = size(Node2.children()) AND
3 statusOf(Node1) = statusOf(Node2) AND
4 labelOf(Node1) = labelOf(Node2)

6.2.2 Performance experiments

Consider three different models of the Golomb Ruler problem introduced in Section 2.5. In
the first model, a global constraint alldifferent is utilised to ensure that the differences be-
tween any pair of marks are unique (the model is the same as was presented in Listing 2.1).
The second model uses instead the decomposition of the alldifferent global constraint (a
set of disequality constraints). The third model is similar to the first one, and differs only
in that it lacks the symmetry breaking constraint (declared in line 17 of Listing 2.1). All
three models are solved with the Gecode solver using a static search strategy that selects
variables from the mark array in order from first to last, and selects values from lowest to
highest from the corresponding domains.

Table 6.1 presents statistical results of a pairwise comparison between the discussed
model variations for different lengths of the ruler: 9, 10, and 11. In particular, the first
column shows the instance used (determined by the problem’s parameter m) and the

6.2. COMPARISON OF EXECUTIONS 93

Figure 6.3: Sorted list of pentagons (left), which allows to locate them on the tree (right).

number of nodes in the tree obtained using the first model. Other columns show for the
two alternative models the number of nodes in their search trees, and the result of merging
their trees with that from the first model: the number of pentagons and the time (averaged
over 3 runs) required to merge the trees. The results demonstrate that multi-million node
trees can be merged in a relatively short time. Additionally, these results suggest that the
search trees of executions that use fixed search share a lot in common near the roots, as
indicated by the large number of pentagons.

Note that the number of pentagons is presented for demonstration purpose only and
is not intended to be used by the modeller to extract insights. Instead, the modeller is
presented with a table of pentagons sorted based on the difference in the number of nodes
between the left and the right subtrees. An example of such table is presented in Figure 6.3
on the left. The modeller can select a row representing a pentagon (first row is selected
in the example), and the pentagon from the traditional search tree visualisation will be
highlighted (shown in Figure 6.3 on the right, where the selected pentagon is colored in
yellow). The modeller can thus learn that the largest difference in two executions is near
the end of the search. Studying that area closer, for example, by examining the search
decisions near the pentagon might reveal further insights.

Instance Golomb (decomposed) Golomb (no symmetry breaking)
(nodes) nodes pentagons time nodes pentagons time

m = 9
83’517 5’691 0.07 34’909 2’433 0.04

(19’635)

m = 10
633’103 34’355 1.35 191’045 12’530 0.99

(115’931)

m = 11
9’367’521 478’095 7.37 3’140’787 220’175 3.24

(1’677’105)

Table 6.1: Experimental results of merging search trees.

94 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

The algorithm for merging (in the form as presented here) does not work well for n-
ary branching, where the number of children for every node depends on the domain of
the corresponding variable. This fact can lead to some undesirable behaviour: when a
pair of nodes from different executions have the same path but differ in the number of
children, they will be treated as different by the algorithm. However, some of their children
(and, indeed, entire subtrees) can match, and, thus, it would be logical to merge them.
To accommodate cases like that, the algorithm could be modified by: (1) removing the
requirement that equal nodes have the same number of children, and then (2) identifying
the subset of children in the first execution that match those in the second execution.
These modifications would lead to more accurate results, but would also raise the level
of time complexity above linear, since a sorting operation appears to be necessary for
modification (2).

A further limitation of the proposed method is that it requires the two executions to
have a similar search near the roots of the search trees. As shown earlier, this situation
is not uncommon, and it arises, for example, when the two executions search over the
same variables using fixed search. However, the methodology can be useful even when a
dynamic search strategy is employed by one of the executions. In particular, if the search
in one execution can be made to match the dynamic search of another execution, the
search merging can be used to determine the effect of different propagation. Aiming to
achieve that, I propose a methodology for search replaying in the following section.

6.3 Search Replaying

Given a solver, the two main factors that affect execution are propagation and search.
However, the two are not independent, that is, one can significantly affect the other.
For example, when the first-fail dynamic search strategy is employed, which branches on
variables with the smallest domains, domain reduction in decision variables caused by
propagation can significantly alter the search. Usually the modeller specifies the search
and the propagation separately: search – through choosing a search strategy; and propa-
gation – implicitly through the choice of the variables and constraints used to describe the
problem in the model, and explicitly by enforcing the consistency level for each constraint
propagator used in the model (such as bounds or domain consistency). Importantly, when
comparing two executions (before and after some modification), it can be useful to con-
sider propagation and search in isolation, decouple them, so that user modifications to one
or the other can be evaluated.

One way to achieve this decoupling is by forcing the same decisions on both executions,
and, thus, making sure the executions have the same (or quite similar) search. To achieve
this, I propose the search replaying methodology, which involves recording all search de-
cisions made in one execution (E1) to a file (called search log), and then using this search
log to drive the search in another execution (E2). I refer to E1 as the recording execution,
and to E2 as the replaying execution. Clearly, applying this technique is different from
simply using the same search strategy in both E1 and E2, since, for example, if a dynamic
search strategy is used, even small differences in variable domains (caused, for example,
by a difference in propagation level) may lead to different search decisions.

When a search is replayed this way, two problems need to be addressed: (1) some
decisions specified in the search log might no longer be necessary in E2 due to differences
in propagation; (2) contrary to the first problem, decisions made in E1 may not be sufficient
for an exhaustive search in E2.

6.3. SEARCH REPLAYING 95

To better understand how problem (1) can arise, let us consider the case where at some
node N in the search, the execution E1 makes decision V ← k, where V is the branching
variable and k ∈ dom(V). It is possible that in E2, due to a difference in propagation,
k /∈ dom(V) in node N ′ (corresponding node to N from E1), indicating that V ← k will
lead to a dead-end in E2. In this case, I call V ← k a failing decision. It is also possible
that in E2, k ∈ dom(V) in node N ′ but |dom(V)| = 1 (i.e. the variable V is already
assigned to k in execution E2). In this case, I call the decision V ← k an implied decision,
as it is unnecessary (it does not prune any variable domains).

One way to address the problem of both implied and failing decisions being present
in the search log is to simply skip them. Unfortunately, this might harm the effectiveness
of the merging algorithm discussed earlier in this chapter, since this might lead to small
(and, perhaps, unimportant) discrepancies in the two trees, potentially focusing the user
on the uninteresting parts of the comparison. Instead, I suggest processing these decisions
normally, thus causing the creation of unnecessary nodes in the search tree. This rule
does not apply, however, in the case where |dom(V) = 0| in N ′, that is, where the node
is a dead-end, and the decision corresponding to its descendants can be safely skipped
(without hurting the merging). Note that posting implied or failing decisions this way
should not trigger any propagation, and, therefore, it should not significantly affect the
execution time of E2. Additionally, if the unnecessary nodes are correspondingly marked
as implied or failing, the merging can take the provided information into account when,
for example, the node difference within a pentagon is calculated.

Regarding problem (2), the problem arises when a node N of execution E1 is a leaf
node (either a dead-end, or a solution), but the corresponding node N ′ in E2 has some
unassigned variables and, therefore, needs to search further with no branching decisions
available in the search log. In this case, I propose for the solver of E2 to continue the
search in N ′ with some form of default branching until it backtracks out of N ′. Note
that if N is a solution node, the search of E2 is also guaranteed to discover a solution at
some point under N ′. This follows from the fact that nodes N and N ′ represent the same
subproblem and the invariant that if a problem has solutions, any two solvers will find a
solution given enough time. Following the same reasoning we can conclude that if N is a
failed node, N ′ will represent a failed subtree in execution E2.

The methodology for search replaying as described here fits well within the profiling
system proposed in Chapter 3. This is because the branching information is readily avail-
able on the search tree, and thus no solver modifications are required in order to record the
search. Instead, the search can be recovered by traversing the search tree in a depth-first
search manner.

However, it is still necessary to modify the solver used for replaying execution E2, as
solvers do not usually provide that functionality. In order to evaluate the methodology
for search replaying, I modified the Gecode solver to be able to read and follow any search
recorded accordingly to the protocol as described below.

6.3.1 The Protocol for Replaying

The replaying scheme that I propose requires the following information: a unique identi-
fier per node, the number of children of every node, and the decision made for reaching
every child node. More specifically, my implementation records a search in a search log
– a human-readable text file, where each line, or entry, corresponds to a single node in
the search of E1. Each entry, in turn, is divided into tokens separated by a whitespace
character. The first two tokens in each entry are the identifier of the corresponding node

96 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

1 0 2 1 X>=0 2 X<0
2 1 2 3 Y>=0 4 Y<0
3 3 0
4 4 0
5 2 0

Figure 6.4: Basic search tree to replay (left) and corresponding search log (right).

and the number of direct children nodes it has. For a leaf node, the number of children is
0, and the corresponding entry does not contain any further tokens. For a non-leaf node,
the entry is expanded by a pair of tokens per child, containing the child’s identifier and
the branching decision it represents.

Figure 6.4 provides an example of a basic search tree (on the left) and the search log
that would be produced by following the protocol discussed above. The root node, for
example, is represented by the first line, where its id is specified as 0, the number of
children nodes is 2; the first child’s id is 1 representing decision X ≥ 0, while the second
node’s id is 2 representing decision X < 0.

6.3.2 The Algorithm for Recording Search

The algorithm for recording search where Root represents the root of the search tree E1

is outlined in Algorithm 8. I again use a Stack (initialising it in line 2, and updating
it in lines 4, 6, and 15) to follow a depth-first-search traversal. Additionally, an empty
string Log is initialised in line 3, and will be used to store the resulting search log. (The
search log will normally be saved to a file upon the completion of the algorithm.) While
performing the traversal, Log is extended by the current node’s identifier (line 7) and by
the number of children nodes it has (line 8). (The operator << is assumed to add separators
between each token.) If the current node has children, each child node further extends
Log with its identifier (line 10) and its corresponding branching decision (line 11). Each
node entry is separated by a new line character in line 13. Finally, the constructed the
search log is returned once all nodes in the search tree have been visited.

6.3.3 The Algorithm for Replaying

A basic search engine for replaying a previously recorded search is outlined in Algorithm 9.
A stack (Stack) of branching choices is created in line 2 and maintained throughout the
execution to perform a depth-first-search traversal of the search tree. The choices are
represented as a list of tuples (Id, Constraint), each representing a branching decision (in
the form of a constraint), and the identifier of the corresponding child node. The stack is
first populated in line 3 with an entry representing the root node (identifier 0) and a dummy
decision/constraint true (it does not modify the problem). The following steps are then
repeated until the stack is exhausted (which will indicate exhausting the search space).
First, a choice is retrieved from the stack in the form of a tuple (Id, Constraint). The
Constraint is applied at the current node in line 6. This will run propagation algorithms
(omitted here) and return a Status taking one of the following values: fail, solution, or
branch. If Status holds the value of failure or solution (indicating that the current node
represents a dead-end or a solution, respectively), the search backtracks by undoing the
last decision (line 8). Otherwise, the search continues branching in line 10.

6.3. SEARCH REPLAYING 97

Algorithm 8: The algorithm for recording search.

Input : Root – root of the search tree to record
Result: Log – string representing the search log

1 Function RecordSearch(Root)
2 Stack ← <empty stack>
3 Log ← <empty string>
4 Stack.push(Root)
5 while Stack.size() > 0 do
6 Node ← Stack.pop()
7 Log << Node.id()
8 Log << size(Node.children())
9 for Child ∈ Node.children() do

10 Log << Child.id()
11 Log << Child.decision()

12 end
13 Log << <new line>
14 for Child ∈ reverse(Node.children()) do
15 Stack.push(Child)
16 end

17 end

The getBranching procedure retrieves the branching choices for the node identified as
Id. If the list of choices returned by getBranching in not empty, the choices are pushed
onto the Choices stack in reversed order, ensuring that the left-most choice is applied first
(lines 12 to 14). If, on the other hand, the list of choices is empty (indicating that, contrary
to the current execution, the original search did not require any additional branching and
arrived at either a solution or a failure in the corresponding node), the replaying solver
is expected to solve the problem in the current node without consulting the search log,
but utilising some default branching strategy instead (line 16). This “unguided” search
continues until the search space is exhausted at the node Id, and the replaying resumes
with the new iteration of the while loop thereafter.

The algorithm for extracting branching decisions from the recorded search log is out-
lined in Algorithm 10. A readable stream of recorded search is assumed to be available
through the LogStream handle (defined globally elsewhere). A node identifier Current,
which is supplied by the search engine, represents the node that should be extended next.
The algorithm obtains the next line of the log file from the stream (line 4) and extracts the
first two tokens (separated by a whitespace character): Node and NumberOfChildren,
which represent, respectively, the node’s identifier and the number of alternatives of the
next node in the recorded execution. All such entries are skipped until the one relevant
is found, that is, until the log entry corresponds to the node we look for – Current (this
condition is checked in line 6). Since both recording and replaying are done following the
depth-first-search order traversal, it is guaranteed that all entries can be safely skipped
this way. (This situation only arises when the replaying execution E2 doesn’t require
branching information regarding a part of the tree, for example, because the replaying ex-
ecution is able to identify a failure earlier than the original execution, and the associated
search in the original search tree E1 needs to be skipped.)

Once a match in the search log is found, the corresponding identifiers (Id) and branch-
ing constraints (Choice) for each alternative are extracted from the remainder of the entry
and added to the list of choices (lines 10 and 11). The latter is then returned as the result

98 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

Algorithm 9: Outline of the search engine used for replaying.

1 Function Replay()
2 Stack ← <empty stack>
3 Stack.push((0, true))
4 while Stack.size() > 0 do
5 (Id, Constraint) ← Stack.pop()
6 Status ← apply(Constraint)
7 if (Status = failure) OR (Status = solution) then
8 undo(Constraint)
9 end

10 Choices ← getBranching(Id)
11 if Choices.size() > 0 then
12 for Choice in reverse(Choices) do
13 Stack.push(Choice)

14 end

15 else
16 solveUnguided(Id)
17 end

18 end

to the search engine (line 13). The next time the same procedure is called, reading from
the LogStream will continue from where it last stopped.

Algorithm 10: Procedure for extracting next branching from a search log.

Data : LogStream – readable stream for the search log
1 Function getBranching(Current)
2 Choices ← <empty list>
3 while true do
4 Entry ← getLine(LogStream)
5 Tokens ← Entry.split(’ ’)
6 (Node, NumberOfChildren) ← (Tokens[0], Tokens[1])
7 if Node 6= Current then continue
8

9 for Child ∈ 1..NumberOfChildren do
10 (Id, Choice) ← (Tokens[Child+2], Tokens[Child+2+1])
11 add (Id, Choice) to Choices

12 end
13 return Choices

14 end

Example 6.3.1. Consider the model of the problem of Golomb Ruler presented in Chap-
ter 2. The model was first instantiated with a parameter m=10, signifying that the shortest
ruler with 10 marks is to be found. Then, Gecode was used to solve the problem using
a restart search exploration strategy, generating the search tree displayed in Figure 6.5.
The search required over a million backtracks (1’100’954) and restarted 28 times to find
an optimal solution and prove optimality.

After the search had finished, it was recorded to a file (54Mb in size) and replayed
by the same solver. This time, however, it was not necessary to instruct Gecode to
perform restarts. The resulting execution (obtained as the result of such replaying) was

6.4. CASE STUDIES 99

Figure 6.5: Search tree as a result of solving Golomb 10 with restarts (Gecode).

identical to the original, recorded execution. This fact was confirmed by merging the two
corresponding search trees, which resulted in two trees merged entirely, without creating
any pentagons. This experiment was important, as it demonstrated that replaying works
even for advanced exploration strategies, such as restarting search.

6.4 Case Studies

In this section I demonstrate how search replaying can be an effective technique for deter-
mining the effect of a model change, by means of case study on two problems.

6.4.1 Case Study: The All Interval Series Problem

Consider the All Interval Series problem, which requires finding a permutation of numbers
1 through n, such that the differences between all adjacent pairs of numbers form a permu-
tation of the numbers 1 to n− 1 (all different). Consider, for example, an instance of the
problem where n = 5. A possible solution to this instance can be a sequence of numbers 1,
5, 2, 4, 3. This sequence can be encoded through the X variables, where each Xi variable
represents the number located in position i (i ∈ 1..5): X1 = 1, X2 = 5, X3 = 2, X4 = 4
and X5 = 3. Alternatively, the same sequence can be encoded through the Y variables,
where each Yi variable represents the position of number i (i ∈ 1..5): Y1 = 1, Y2 = 3,
Y3 = 5, Y4 = 4 and Y5 = 2. These two different encodings can be used to model the same
problem in two different (dual) ways.

In [Choi et al., 2007] the authors study two models (or viewpoints) for each encoding
of the problem (MX and MY , respectively). While using either of the models is sufficient
to solve the problem, Choi et al. also considered simultaneously using both viewpoints
linked through channeling constraints (which show how to convert assignments between
the variables of each viewpoint), thus creating a combined model (MXY). The technique of
combining different viewpoints in a single model – redundant modelling [Cheng et al., 1999]
– is akin to adding redundant constraints and, thus, aims to achieve stronger propagation
at the cost of performing more computations.

The experimental results of Choi et al., where a solver is instructed to find all possible
solutions, show that the MXY model performs significantly better than MX or MY , both
in terms of search space reduction and time reduction. Indeed, it was expected that the

100 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

1 int: n;
2 array [1..n] of var 1..n: X;
3 array [1..n-1] of var 1..n-1: U;
4
5 include "alldifferent.mzn";
6 constraint alldifferent(X);
7 constraint alldifferent(U);
8
9 constraint forall(i in 1..n-1)(U[i] = abs(X[i] - X[i+1]));

10
11 solve :: int_search(X, first_fail , indomain_min , complete) satisfy;

Listing 6.1: MX variant of the all-intervals model in MiniZinc.

execution of MXY would lead to a smaller search tree, as a result of stronger propagation in
the combined model. However, the authors used a dynamic search strategy (branching on
variables with smallest domains first), where the individual branching decisions depend on
how much the constraint propagation engine has been able to narrow down the variable
domains at each node. As a consequence, based only on the number of nodes in the
search tree and the execution time, the authors did not verify whether the improvement
was caused by the stronger propagation obtained from the extra constraints, or by the
difference in the search decisions due to the differences in propagation. This information
could, for example, help determine whether further improvements are possible. To answer
this question I applied the replaying methodology discussed above.

In order to reproduce the results of Choi et al., I used corresponding MiniZinc models
MX , MY and MXY , presented in Listings 6.1, 6.2, and 6.3, respectively. The variables
and constraints are equivalent to those used in [Choi et al., 2007].

In the MX model (Listing 6.1), the order of numbers is declared using the array of
decision variables X in line 2, such that Xi denotes the number at position i. The array of
decision variables U (line 3) denotes the differences between adjacent numbers, as computed
by the constraint in line 9. The values of the variables in X are declared to be unique in
line 6 through the use of the alldifferent global constraint. (MiniZinc requires explicitly
including global constraints used in the model, hence the include statement in line 5.)
Similarly, the values of the variables in U are declared to be unique in line 7.

1 int: n;
2 array [1..n] of var 1..n: Y;
3 array [1..n-1] of var 1..n-1: V;
4
5 include "alldifferent.mzn";
6 constraint alldifferent(Y);
7 constraint alldifferent(V);
8
9 constraint forall(i,j in 1..n where i < j)

10 (Y[i] - Y[j] = 1 -> (V[j-i] = Y[j]));
11 constraint forall(i,j in 1..n where i < j)
12 (Y[j] - Y[i] = 1 -> (V[j-i] = Y[i]));
13
14 constraint abs(Y[1] - Y[n]) = 1;
15 constraint V[n-1] = min(Y[1],Y[n]);
16
17 solve :: int_search(Y, first_fail , indomain_min , complete) satisfy;

Listing 6.2: MY variant of the all-intervals model in MiniZinc.

In the MY model (Listing 6.2), the order of numbers is declared using the array of
decision variables Y in line 2, such that Yi denotes the position of number i. Auxiliary
variables Vi are declared in line 3 to denote the differences between adjacent numbers,

6.4. CASE STUDIES 101

n MX MY MXY MXY (MY) MXY (MX)

10 10,876 48,876 1,446 1,353 9,644
11 48,305 264,637 4,605 4,220 42,505
12 225,310 1,562,749 15,648 13,950 195,987
13 1,119,821 9,799,788 57,037 49,565 974,213

Table 6.2: All Interval Series Problem, number of failures to find all solutions.

as computed by the constraints in lines 9 to 12. Again, the constraints in lines 6 and 7
ensure that the numbers are unique, and the differences between adjacent numbers are
also unique. Redundant constraints in lines 14 and 15 indicate that the only way to get
the difference n− 1 is to make 1 and n adjacent.

The combined model MXY (Listing 6.3) combines the two alternative encodings
through the arrays of variables X and U declared in lines 5 and 6, and the constraints de-
clared in lines 11 and 12. Finally, the two viewpoints are connected through an “inverse”
global constraints in lines 24 and 25. The global constraint inverse(X, Y) is semantically
equivalent to the logical constraint Xi = j ⇐⇒ Yj = i, for all i, j ∈ 1..|X|. The models
is executed using a first-fail search strategy on the Y variables, that is, branching on the
Y variables and choosing at each step the Y variable with the smallest domain.

1 int: n;
2
3 array [1..n] of var 1..n: Y;
4 array [1..n-1] of var 1..n-1: V;
5 array [1..n] of var 1..n: X;
6 array [1..n-1] of var 1..n-1: U;
7
8 include "alldifferent.mzn";
9 constraint alldifferent(Y);

10 constraint alldifferent(V);
11 constraint alldifferent(X);
12 constraint alldifferent(U);
13
14
15 constraint forall(i in 1..n-1)(U[i] = abs(X[i] - X[i+1]));
16
17 constraint forall(i,j in 1..n where i < j)
18 (Y[i] - Y[j] = 1 -> (V[j-i] = Y[j]));
19
20 constraint forall(i,j in 1..n where i < j)
21 (Y[j] - Y[i] = 1 -> (V[j-i] = Y[i]));
22
23 include "inverse.mzn";
24 constraint inverse(Y,X);
25 constraint inverse(U,V);
26
27 constraint abs(Y[1] - Y[n]) = 1;
28 constraint V[n-1] = min(Y[1],Y[n]);
29
30 solve :: int_search(Y, first_fail , indomain_min , complete) satisfy;

Listing 6.3: MXY variant of the all-intervals model in MiniZinc (combined).

The experimental results in Table 6.2 show the number of failures as a measure of the
size of the search trees for the several executions on four instances (n = 10, n = 11, n = 12,
and n = 13). In particular, columns “MX”, “MY ”, and “MXY ” represent the execution
of the associated models with the first-fail strategy, as used in [Choi et al., 2007]. The
results match those obtained by Choi et al. in that MXY significantly outperforms both
MX and (to a larger degree) MY .

102 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

Figure 6.6: Intensity matrix (left) and its decomposition (right) in the Radiation problem.

Figure 6.7: Two out of five cells are exposed to radiation using two horizontal rods.

Following the methodology for replaying, I recorded the search decisions made when
solving the MX and the MY models and replayed these two searches using the combined
model MXY , which resulted in executions shown in Table 6.2 as MXY (MX) and MXY

(MY), respectively. These replayed executions additionally show that solving MXY by
replaying the search of MY search (shown as MXY (MY)) also outperforms the original
execution of MY . Since every decision taken during the execution of MXY in the replay
search is the same as for MY , this shows that the considerable reduction in search space
is entirely due to propagation. Interestingly, the execution MXY (MY), which uses the
model MXY and replays the search of MY (the worst model based on the size of the
search tree in the original experiment) gives even better results than those obtained using
the same model with the first-fail search strategy. Investigating why the decisions guided
by the weaker propagation consistently yield better behaviour than those guided by the
stronger propagation is extremely interesting, but falls outside the scope of this thesis.
However, it could be a promising avenue for future work.

6.4.2 Case Study: The Intensity-Modulated Radiation Therapy Prob-
lem

Consider the Intensity-Modulated Radiation Therapy problem [Baatar et al., 2011], where
radiation is given through repeated exposures of a device that delivers radiation of uniform
intensity through a rectangular field. This rectangular field is shaped using two horizontal
lead rods per row of the rectangle. Each two rods are positioned at the left and right of
the row, respectively, and can slide horizontally to block the radiation. In each exposure,
the rods are moved into a given position, the radiation source is switched on for a specified
length of time and then switched off, to move to a new position. The left part of Figure 6.6
shows an example of an intensity matrix with five rows and columns as a possible input
data for this problem. The numbers in cells indicate the amount of radiation individual
cells require to receive. Figure 6.7 demonstrates how the amount of radiation in this
problem is controlled by using two lead rods per row; in this case, the rods expose the
second and the third cells of the row.

6.4. CASE STUDIES 103

The model I studied is the one used in the MiniZinc Challenge 2015. The input data is
an m×n Intensity matrix of non-negative integers, where Intensity[i,j] represents the
total amount of radiation that the cell in row i, column j should expose. The goal is to find
a decomposition of the matrix into a positive linear combination of the smallest number
of binary matrices (representing the different positions), each with the consecutive-ones
property (i.e., all 1s in any row are consecutive), where the 0s represent the part of the
row occluded by the rods and the 1s the non-occluded part which exposes radiation. The
reason to minimise the number of binary matrices is to reduce the number of positions
and, thus, the cost and time required for the radiation procedure.

An example of such decomposition for the example on the left in Figure 6.6 is shown
on the right in Figure 6.6. Note that these decomposition matrices are associated with
the durations for which they are applied (indicated by the numbers on the right), which
in this figure range from one to three time units.

The model is as follows:

1 int: m; % Rows
2 int: n; % Columns
3 set of int: Rows = 1..m;
4 set of int: Columns = 1..n;
5 array[Rows , Columns] of int: Intensity; % Intensity matrix
6 set of int: BTimes = 1.. Bt_max;
7 int: Bt_max = max(i in Rows , j in Columns) (Intensity[i,j]);
8 int: Ints_sum = sum(i in Rows , j in Columns) (Intensity[i,j]);
9

10 var 0.. Ints_sum: Beamtime; % Total beam -on time
11 var 0..m*n: K; % Number of shape matrices
12 % N[b] is the number of shape matrices with associated beam -on time b
13 array[BTimes] of var 0..m*n: N;
14 % Q[i,j,b] is the number of shape matrices with associated beam -on time
15 % b that expose cell (i,j)
16 array[Rows , Columns , BTimes] of var 0..m*n: Q;
17
18 constraint Beamtime = sum(b in BTimes) (b * N[b]);
19 constraint K = sum(b in BTimes) (N[b]);
20 constraint forall(i in Rows , j in Columns) (
21 Intensity[i,j] = sum([b * Q[i,j,b] | b in BTimes])
22);
23 constraint forall(i in Rows , b in BTimes) (
24 upper_bound_on_increments(N[b], [Q[i,j,b] | j in Columns])
25);
26
27 predicate upper_bound_on_increments(var int: N_b , array[int] of var int: L) =
28 N_b >= L[1] + sum([max(L[j] - L[j-1], 0) | j in 2..n]);
29
30 int: obj_min = lb((m*n + 1) * Beamtime + K);
31 int: obj_max = ub((m*n + 1) * Beamtime + K);
32 var obj_min .. obj_max: objective = (m*n + 1) * Beamtime + K;
33
34 solve :: int_search ([Beamtime] ++ N ++
35 [Q[i,j,b] | i in Rows , j in Columns , b in BTimes],
36 input_order , indomain_split , complete) minimize objective;

Listing 6.4: The model used for the radiation problem.

The first 8 lines introduce the parameters of the problem: lines 1 and 2 introduce m
and n, respectively, line 5 introduces the intensity matrix, line 7 computes in Bt max the
maximum intensity value in the matrix, and in Ints sum the sum of all intensity values in
the matrix. The latter serves as an upper bound to the total amount of time the radiation
beam will have to be on. The next lines introduce the variables of the problem: line 10
defines the total exposure time Beamtime for the solution, line 11 defines the total number
K of binary matrices in the solution (with m × n as the upper bound), line 13 defines array
N, where variable N[b] is the number of matrices with the same exposure time b, and

104 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

line 16 defines array Q, where variable Q[i,j,b] is the number of binary matrices exposing
cell (i,j) for the duration of time b.

The constraints start on line 18, which computes the total exposure time as the result
of adding the exposure time used for every binary matrix. The constraint in line 19
computes the total number of matrices as the result of adding those associated with every
exposure duration. The constraint starting in line 20 states that the intensity required by
each cell (i,j) in the intensity matrix must be achieved by the solution, that is, it must
be equal to the sum of exposure times for each of the binary matrices that expose that
cell. The constraint starting in line 23 ensures the consecutive-ones property of the binary
matrices by requiring that, for every exposure duration b and every row i of Q[i,j,b],
the number of times the intensity increases from a column j-1 to the next j, is equal to
or less than the number N[b] of binary matrices with that exposure duration. Finally,
the solve item in line 34 states that the goal is to minimise the value of the objective by
using a search strategy that considers variables in the following order: Beamtime, variables
from N, and variables from Q. The labeling is performed by making search decisions of the
form X < v and X ≥ v, where X is a decision variable, and v is a value from its domain.
Effectively, this search strategy tries values in order from the smallest to the largest values
from the domains of the variable.

The results of the MiniZinc Challenge 2015 show that learning solvers, such as Chuffed
and Opturion CPX, significantly outperform non-learning solvers, such as Gecode, on this
problem. To investigate the reasons for this, I first executed one of the instances of this
problem from the challenge (namely, the i7-9 instance) using Chuffed. A lantern tree
visualisation for this execution is shown in Figure 6.8, which contains around 25 thousand
nodes, with “lantern” nodes representing subtrees of up to 800 nodes. An interesting
property of this search is that after reaching the first solution (represented by the green
“lantern” node), the solver restarts and performs a relatively small search to prove the
optimality of this solution (the corresponding node is shown with grey background). In
fact, executing all other instances shows that their executions also find only one solution,
which is proved to be optimal in the second restart. By examining the search strategy
stated in the model, it can be easily confirmed that the search is designed to find the
optimal solution first: the smallest values for the Beamtime and the variables from N are
assigned first, and the objective is a monotonically increasing function of Beamtime and
Ni, which is to be minimised. It can thus be concluded that the proof of optimality is
unnecessary.

Executing the same instance using Gecode, I visually observed that its search tree
did not reveal any interesting patterns. Therefore, I executed this instance using Gecode
again, but this time replaying the search decisions from the Chuffed’s execution. Note that,
although both Gecode and Chuffed use the same search annotation (line 34 of the model),
the actual search decisions made by the two solvers are likely to deviate: regardless of the
search annotation, Chuffed would sometimes perform a certain procedure during search
called a “backjump”, which can significantly affect the search (see Chapter 7 dedicated to
learning solvers).

The search tree of the resulting replaying execution is shown in Figure 6.9, and contains
around one million nodes in total, with “lantern” nodes representing subtrees of up to
200’000 nodes. Note that, as in the tree for Chuffed, the subtree with the grey background
corresponds to the proof of optimality. This time, however, the proof of optimality required
by far the most search effort – a very different behaviour from that of Chuffed.

Interestingly, while Gecode’s tree is significantly larger than that of Chuffed, the
amount of search required to find the optimal solution by both solvers seems to be much

6.4. CASE STUDIES 105

closer in magnitude than that of the proof of optimality. In fact, we can consult the tree
to find that Gecode required exploring 3.93 times more nodes to find the solution (17,780
nodes in Chuffed against 69,931 nodes in Gecode), while it required 6,755.36 times more
nodes to prove optimality (150 nodes in Chuffed against 1,013,304 nodes in Gecode). This
is an interesting observation, because, while the original results from the MiniZinc compe-
tition show that Gecode often fails to find solutions early, this is not the case when Gecode
replays Chuffed’s search.

Figure 6.8: The radiation problem solved using Chuffed.

Figure 6.9: The radiation problem solved using Gecode with search replaying.

To investigate further, I decided to focus on the part of the execution responsible for
finding the optimal solution. To achieve this, I replaced the text “minimize objective”
in line 36 of the model with “satisfy”. This change results in the solvers producing the
same search as before for finding the first solution, but terminating immediately after
that. I then considered some of the smaller instances used in the challenge (namely, i6-11,
i7-9, and i9-11), and solved each instance with Chuffed, with Gecode, and with Gecode
replaying the search performed by Chuffed.

The obtained results are shown in Table 6.3, where the first two columns correspond
to the executions using Chuffed, the next two columns correspond to the executions using

106 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

Instance
Chuffed Gecode Gecode (rep)

time (s) nodes time (s) nodes time(s) nodes

i6-11 6.03 106’187 408.65 28’751’319 18.54 1’252’774
i7-9 2.29 24’899 16.57 1’013’254 1.73 69’932
i9-11 68.29 348’044 1’980.19 60’458’164 50.23 1’294’069

Table 6.3: Solving the Radiation problem using Gecode, Chuffed, and Gecode with search
replaying.

Gecode, and the last two columns correspond to Gecode replaying Chuffed’s search. The
columns show the solving time in seconds and the total number of nodes in the search
tree.

Indeed, the results are consistent with those from the MiniZinc Challenge: they show
that Chuffed is significantly faster on this problem than Gecode, even when no optimality
proof is necessary. However, when Gecode is executed by replaying Chuffed’s search, its
executions are at least one order of magnitude faster than the original ones, where Gecode
performed its own search. This fact demonstrates that once the difference in searches is
eliminated, the performance of Gecode is much closer to that of Chuffed on this problem.
We can thus conclude that the reason for Chuffed outperforming Gecode on this problem
is mainly due to the differences in their searches, rather than to the advantages given by
no-good learning propagation.

This case study will be discussed further in the next chapter, which is dedicated to the
analysis of learning solvers.

6.5 Related Work

The idea of replaying search was developed simultaneously with (and independently of)
that of [Van Cauwelaert et al., 2015], who use a similar method to compare propagators.
Similar to my work, the authors recognise the importance of replaying for making com-
parison of executions fair when dynamic search is employed. Their approach for replaying
is, however, different to what I propose in this thesis. Since the work in [Van Cauwelaert
et al., 2015] was done in isolation to any profiling framework, the authors had to instru-
ment a solver for the purpose of recording, rather than recover it from the search tree as
proposed in my work. Further, the authors propose a different protocol for replaying. In
particular, the protocol represents each node as a triple 〈b, c, d〉 where b, c and d denote the
branching decision, the number of children, and the number of descendants, respectively.
When the replaying execution arrives at a failure, but more search is expected by the
search log, d node entries can be skipped, and the next node entry in the log will correctly
correspond to the next node in replaying execution.

This is different from my approach, where I use node identifiers for the same purpose.
Note that Van Cauwelaert et al. do not explore the opposite case wherein the replaying
execution is weaker, and, thus, requires more search than is specified in the search log
(and, in fact, the authors state it as a limitation of their methodology). My approach,
on the other hand, supports replaying any execution regardless of the propagation used.
In fact, the ability to replay an execution with stronger propagation is central for the
methodology of analysing learning solvers, which I present in the following chapter.

6.6. SUMMARY 107

6.6 Summary

In this chapter I presented two techniques that help modellers compare the effects of their
model modifications: search merging and search replaying. Search merging refers to the
merging of the search trees, and it can be used to pinpoint where two executions differ
in terms of their search. It is mostly effective when a fixed search strategy is employed
by both executions, or when the dynamic search strategy does not make the searches
diverge too soon in the search tree. In the former case, search merging will pinpoint
where one execution required less search compared to the other (for example, due to the
difference in propagation strength). In the latter case, search merging will pinpoint the
nodes in the search tree where the two executions started to diverge in terms of search.
This technique scales well to large executions, but requires the executions to be relatively
similar, particularly near the roots.

The second technique – search replaying – allows users to record search decisions in one
execution and use them to drive the search in another execution, thus making the searches
in both executions match. Since the effect of the search strategy is eliminated, this can
be useful to evaluate the effect of propagation in the two executions. The two techniques,
search merging and search replaying, work hand in hand, as the latter makes the merging
work, even when a dynamic search strategy is employed in one of the executions.

108 CHAPTER 6. TECHNIQUES FOR COMPARING EXECUTIONS

Chapter 7

Analysis of Learning Solvers

A new generation of efficient constraint solvers has emerged in recent years that can learn
from past failures to arrive at solutions faster. These solvers are based on the Lazy Clause
Generation (LCG) technique [Ohrimenko et al., 2009], which combines the strengths of
Constraint Programming and SAT solving, and often results in dramatic reductions of the
search space, allowing the solver to solve hard constraint problems faster. Such solvers,
referred to as learning solvers, are indeed the state of the art for solving a number of com-
binatorial problems, including Resource Constrained Project Scheduling Problems [Schutt
et al., 2009] and the Carpet Cutting Problem [Schutt et al., 2011]. Further, they consis-
tently exhibit better performance than traditional Constraint Programming solvers for a
large number of problems in the annual MiniZinc Challenge [Stuckey et al., 2014].

However, for some problems, learning solvers seem to be unable to benefit from the
learning and perform poorly compared to non-learning solvers. The reasons for these dif-
ferences in behaviour are not well understood in practice, as learning solvers are even more
complex than traditional CP solvers. Thus, it is not yet clear to the research community
under what circumstances learning solvers are better, or even how to identify when or why
a learning solver is performing poorly or not.

To be able to better understand the behaviour of learning solvers, I designed a method-
ology for studying the execution of such solvers. This chapter presents this methodology
and demonstrates through case studies that analysing the execution of a learning solver
in this way can be useful, not only to better understand its behaviour — opening what
is typically a black box — but also to infer modifications to the original constraint model
that can improve the performance for both learning and non-learning solvers.

The chapter first (Section 7.1) briefly describes the technology that underlies learning
solvers. Section 7.2 presents the methodology for analysing learning solvers. Section 7.3
briefly discusses the implementation of this methodology in CP-Profiler. This is followed
by two case studies that demonstrate the effectiveness of this methodology for improving
models. Finally, Section 7.5 draws conclusions for this chapter and discusses potential
future work.

7.1 Background on No-Good Learning

Learning solvers extend CP solvers by instrumenting their propagators to explain the
domain changes caused by propagation. In the context of Lazy Clause Generation, the
domain changes are represented by literals, that is, Boolean expressions in the form of
equalities (x = d for d ∈ D(x)), disequalities (x 6= d) or inequalities (x ≥ d or x ≤ d). An

109

110 CHAPTER 7. ANALYSIS OF LEARNING SOLVERS

explanation for literal ` is S → `, where S is a set of literals. For example, consider the
constraint x 6= y. If variable x is set to 5, the propagator associated to x 6= y will infer
y 6= 5. Thus, a learning solver will instrument the propagation to produce the explanation
{x = 5} → y 6= 5. Explanations make the reasons behind constraint propagation explicit
and can be used later when a failure occurs.

In learning solvers, each new literal inferred by a propagator is recorded in a stack in
the order it was generated and attached to its explanation. Decision literals, that is, the
literals associated with branching decisions, are also added to the stack and marked as
such. The decision level for any literal is the number of decision literals pushed in the
stack before it. The literals on the stack form the vertices of the implication graph, which
is described in an example below.

When encountering a failure, learning solvers generate a no-good that explains the
failure, i.e., a conjunction of literals that cannot be extended to a solution. Given an
implication graph, a no-good is computed by starting with the direct cause of the failure,
and then eliminating literals by replacing them with their explanations until only one
literal at the current decision level remains. A no-good obtained this way is a 1UIP (First
Unique Implication Point [Marques Silva et al., 1996]) no-good. While other ways of
generating no-goods are possible, the resulting no-goods generally do not perform as well
as the 1UIP no-goods, and they are not used in practice.

Example 7.1.1. Consider the free pizza problem from the MiniZinc Challenge 2015. In
this problem a customer is to obtain a number of pizzas by either paying for them or by
using vouchers to get them for free. Each voucher is represented by a pair of numbers
a/b, indicating that the voucher allows customers to get b number of pizzas for free, as
long as they pay for a number of pizzas, and none of the b pizzas are more expensive than
any of the a pizzas. Given a customer who has m such vouchers and wants n pizzas (the
prices of the pizzas are specified separately), the aim is to minimise the total price paid
for the n pizzas. The model that was used in the annual MiniZinc Challenge (denoted as
freepizza) is shown in Listing 7.1.

The first 9 lines introduce the problem parameters. Lines 1 and 5 introduce n and m,
respectively, while line 3 introduces an array to store the price of each pizza. Lines 7 and 8
introduce two arrays for vouchers, buy and free, where buy[i] and free[i] represent the
parameters a and b for the ith voucher, respectively. Finally, line 9 introduces the total
parameter, which is computed as the collective price of all pizzas, and acts as the upper
bound on the amount of money that could be spent.

Lines 13 through 15 introduce the decision variables. Line 13 defines the array of
variables how, indicating for every pizza how it is obtained. More precisely, how[p] holds
value:

� v, if pizza p was obtained for free thanks to voucher v;

� 0, if p was paid for and not used in any voucher;

� -v, if p was paid for and used to get free pizzas with voucher v.

Line 14 introduces the array of variables used, indicating for every voucher whether the
voucher is used. Line 15 introduces the objective, and defines it as the total price paid for
the pizzas.

The lines 17 through 28 introduce the constraints in the problem. The constraint
in lines 17 through 19 states that if voucher v is used (used[v] holds), then the total
number of pizzas bought and assigned to v must be greater than or equal to buy[v], the

7.1. BACKGROUND ON NO-GOOD LEARNING 111

1 int: n; % number of pizzas wanted
2 set of int: PIZZA = 1..n;
3 array[PIZZA] of int: price; % price of each pizza
4
5 int: m; % number of vouchers
6 set of int: VOUCHER = 1..m;
7 array[VOUCHER] of int: buy; % buy this many to use voucher
8 array[VOUCHER] of int: free; % get this many free
9 int: total = sum(price);

10
11 set of int: ASSIGN = -m .. m;
12
13 array[PIZZA] of var ASSIGN: how;
14 array[VOUCHER] of var bool: used;
15 var 0.. total: objective = sum(p in PIZZA)((how[p] <= 0)* price[p]);
16
17 constraint forall(v in VOUCHER) (
18 used[v]<->sum(p in PIZZA)(how[p]=-v) >= buy[v]
19);
20 constraint forall(v in VOUCHER) (
21 sum(p in PIZZA)(how[p]=-v) <= used[v]*buy[v]
22);
23 constraint forall(v in VOUCHER) (
24 sum(p in PIZZA)(how[p]=v) <= used[v]*free[v]
25);
26 constraint forall(p1, p2 in PIZZA)(
27 (how[p1] < how[p2] /\ how[p1]= -how[p2]) -> price[p2] <= price[p1]
28);
29
30 solve :: int_search(how , input_order , indomain_min , complete) minimize objective;

Listing 7.1: Free pizza original model.

number of pizzas required by the voucher. The constraint in lines 20 through 22 states
similar information but in the opposite direction: the total number of pizzas bought and
assigned to voucher v must be less than or equal to used[v]*buy[v]. Together, the two
constraints make the total number of pizzas bought for voucher v to be equal to buy[v]
if the voucher is used. The constraint in lines 23 through 25 states that the total number
of free pizzas obtained thanks to voucher v must be smaller than or equal to the number
of free pizzas allowed by v if the voucher is used, and 0 otherwise. The last constraint in
lines 26 through 28 states that if two pizzas p1 and p2 are assigned to the same voucher,
and p2 is obtained for free while p1 is purchased (given how[p1] < how[p2] and how[p1]
= -how[p2]), then the price of p2 must be lower than or equal to that of p1. Finally, the
solve item in line 30 states that the goal is to minimise the objective, and it specifies the
search strategy that should be employed by a solver: variables from the how array are to
be assigned in order from first to last, trying smallest values from their domains first.

Figure 7.1 shows a search tree for the execution of the model using Chuffed [Chu, 2011]
with the following input data:

n = 5;
price = [17, 98, 76, 36, 69];
m = 8;
buy = [4, 4, 1, 4, 2, 1, 1, 3];
free = [2, 4, 1, 1, 4, 2, 3, 3];

The third branch of the tree shows a restart after bound 259 has been established for
the objective. Note that during the MiniZinc compilation process, variable names are
modified and, thus, variables how i and used j in the tree correspond to variables how[i]
and used[j] in the model, respectively.

112 CHAPTER 7. ANALYSIS OF LEARNING SOLVERS

Figure 7.1: Search tree for freepizza using Chuffed. The path to the highlighted node is
labelled.

Level 0 Level 1 Level 2 Level 3 Level 4

o ≤ 259

77

how [1] = 0

��

how [2] ≥ −7

��

how [2] = −7 how [3] = −8

��

how [1] ≤ 0

00

how [2] 6= −8

''

how [3] ≤ 0

��
how [5] ≥ 1

��
how [5] 6= −8

��
used [8] = false // fail

Figure 7.2: Part of the implication graph for freepizza. Decision literals are double
boxed.

Figure 7.2 shows part of the implication graph used to derive a no-good after the failure
caused by search decision how[3]=-8 (marked as yellow in Figure 7.1). In this figure,
literals are outlined with rectangular borders and arranged in columns, which correspond
to different decision levels. There is one decision literal per decision level, and it is depicted
with double borders. Arrows between literals show implication relationships.

The initial no-good associated with this failure is {how[3]=-8, used[8]=false}. Since
the no-good has two literals belonging to the current decision level (level 4), the last
literal is reduced obtaining {how[3]=-8, how[2] 6=-8, how[5]6=-8}. This set still has two
literals belonging to the current decision level, so literal how[5]6=-8 is reduced to obtain
{how[3]=-8, how[2]6=-8, how[5]≥1}. This reduction process continues until only one
literal remains at the current decision level, yielding the 1UIP no-good {objective≤259,
how[1]≤0, how[2] 6=-8, how[3]=-8}.

Once a no-good N is obtained, its negation (¬N , also called a learnt clause) is added
as a clausal propagator. In other words, the learnt clause is treated as a regular model
constraint, participating in propagation in every node, and thus preventing the same failure

7.2. THE METHODOLOGY 113

from recurring. In this case, the learnt clause is {objective>259, how[1]>0, how[2]=-8,
how[3] 6=-8}, which is interpreted as the disjunction of its literals.

The search then backtracks to the decision level of the second deepest literal in the
no-good, where it applies the newly learnt clause. Importantly, if the deepest latest literal
is not from the immediately preceding decision level, the search performs a backjump,
skipping decisions that were unrelated to the failure. In this case, the search backjumps
to level 2, as the no-good has no literal at level 3. This jump indicates that the decision
at level 3 (how[2]=-7) is unrelated to the failure.

Thus, the impact that a no-good makes on the process of solving is twofold:

� It strengthens the propagation due to the additional clause, potentially allowing
subsequent failures to be identified earlier. If so, we say that the no-good and its
corresponding learnt clause contribute to the failure.

� It creates the possibility of altering the search order, potentially yielding a more
favourable one due to backjumping.

Note, however, that the benefit of the additional propagation due to the learnt clause
can be outweighed by the cost of performing the extra propagation call. Therefore, modern
learning solvers have to make decisions as to which learnt clauses should be kept and which
of them should be discarded.

While identifying learnt clauses with high impact is important for solvers, it can also
be valuable information for the modeller. In the remainder of this chapter I present a
methodology for determining which learnt clauses have the most impact on the execution,
and demonstrate how this information can be helpful for model improvement.

7.2 The Methodology

In order to analyse why learning is beneficial for a given model, let us compare two
executions of the same instance of that model: one execution with learning and another
execution without learning. Since it is important to ensure that the only difference in
the two executions is entirely due to the benefits of learning, the two solvers used for this
comparison (learning and non-learning) should employ similar propagation algorithms.
Ideally, the two executions would be obtained by the same learning solver that additionally
supports a traditional backtracking search with no learning.

Recall that learning solvers receive benefits from the clauses they learn, which might
help to (a) determine a failure earlier in the search, and/or (b) backjump over some
unexplored nodes, altering the search order. This methodology is focused on studying
the effect that learnt clauses have on the propagation (a), and uses the search replaying
technique (presented in the previous chapter) to separate the effect of different searches,
including the effect of backjumping (b).

Following the methodology for search replaying, the profiler first records the search
decisions taken by the learning solver in solving a given model instance, and saves the
resulting search log. The search log is then used for replaying the same instance, this time
without learning. Figure 7.3 shows search trees of two executions, obtained following the
steps above.

As discussed, the main differences between such two executions come from the clauses
learnt by the learning solver. To pinpoint the exact areas in the trees where the difference

114 CHAPTER 7. ANALYSIS OF LEARNING SOLVERS

Figure 7.3: Model executed with learning (left) and the resulting search is replayed without
learning (right).

Figure 7.4: Two trees are merged to pinpoint the effect of no-goods.

in propagation due to no-goods made an impact, the two trees are merged using the search
merging technique presented in the previous chapter. Recall that search merging shows the
differences by means of pentagons, which display two subtrees as their children – one per
search tree at the corresponding point of divergence. Note that in this methodology the
subtree corresponding to the learning execution will always1 contain a single failure node,
while the corresponding non-learning subtree will contain more than one node. Figure 7.4
shows the result of merging the two trees from Figure 7.3 with eight such pentagons. Note
that the trees used in this demonstration are quite small (containing less than 200 nodes
each), and the number of pentagons is much larger for real-world models.

The difference in the number of nodes between the two subtrees under a pentagon,
which equals the number of nodes in the non-learning subtree minus one, is referred to as
the search reduction. Since the difference in the two executions is only due to the additional
propagation caused by the learnt clauses, it is reasonable to attribute the search reduction
in a given pentagon to the clauses that “contributed” to the early failure in the learning

1Provided that the difference in propagation is entirely due to no-goods.

7.3. IMPLEMENTATION 115

execution. Recall that each no-good discovered during search is recorded as its negation
– a learnt clause. This clause participates in propagation, and thus can be part of the
explanation for a future failure. In that case, the no-good is said to contribute to that
failure.

To obtain the information regarding contributing no-goods, the learning solver requires
additional instrumentation. In particular, in addition to the structure of the search tree
normally required by CP-Profiler, the solver needs be modified to send the following
information for every failure node:

� the no-good generated at that node;

� a list of the previously recorded no-goods that contributed to that failure.

More often than not, the list of contributing no-goods will contain multiple items.
When multiple no-goods collectively contribute to a failure, each of them are thought
of as partially contributing to the failure. For simplicity, in this case the amount of
search reduction is split equally between each of the contributing no-goods, allowing us to
estimate individual contributions of the no-goods.

In addition, it is not unusual for a single no-good to (partially) contribute to multiple
pentagons, that is, to different search reductions. In this methodology, the individual
contributions of a given no-good are aggregated across the entire execution to obtain the
total search reduction for that no-good. The no-goods can then be sorted by the total
search reduction producing a ranking that reveals the “top” no-goods, that is, the no-goods
that contribute the most to search reduction.

7.3 Implementation

Once we have this information, we can extend CP-Profiler to measure the impact of the
no-goods by comparing the learning execution with a similar execution without learning,
and examining the points at which their behaviours diverge.

For my studies I have chosen Chuffed as the learning solver, as it represents the state
of the art in LCG, and its source code is readily available on-line, making it easy to
instrument. Although it is possible to run Chuffed in a non-learning mode, I have chosen
Gecode [Schulte et al., 2016] – an efficient backtracking CP solver – as Chuffed’s non-
learning counterpart, since its instrumentation already supported replaying. This choice
should not, however, lead to major inaccuracies in the methodology (in associating no-
goods with search reduction) since, for most constraints, Gecode implements the same or
stronger level of propagation as Chuffed.

On the profiler side, I modified the search merging procedure to additionally identify
all cases (pentagons) where a single failure node in the learning execution corresponds to a
larger subtree in the non-learning execution. Further, the profiler aggregates all pentagons
as discussed in Section 7.2, and displays the results in a table form (see Table 7.1 for an
example).

7.4 Case Studies

With all the necessary implementation completed, I used the new methodology to com-
pare Chuffed’s and Gecode’s behaviour on two different problems. The following section

116 CHAPTER 7. ANALYSIS OF LEARNING SOLVERS

Rank Activity Reduced Search Clause

1 159 3425 how[1] = -1 how[2] = -1 how[3] = -1 how[4] = -1 how[5] = -1
how[1] = -2 how[2] = -2 how[3] = -2 how[4] = -2 how[5] = -2

how[6] ≤ 0 how[6] ≥ 3
2 176 2068 how[7] ≤ 2 how[7] ≥ 4 how[1] 6= -3 how[1] ≥ -2
3 34 1712 how[4] 6= 3 how[1] = -3 how[2] = -3 how[3] = -3 how[4] = -3
4 8 1636 how[5] 6= -3 how[3] 6= 3
5 8 1636 how[8] 6= -3 how[3] 6= 3
6 8 1636 how[9] 6= -3 how[3] 6= 3
7 8 1636 how[10] 6= -3 how[3] 6= 3
8 143 1489 how[6] ≤ 2 how[6] ≥ 4 how[1] 6= -3 how[1] ≥ -2
9 25 1404 how[5] 6= -3 how[4] 6= 3 how[4] ≤ 2

10 24 1403 how[10] 6= -3 how[4] 6= 3

Table 7.1: Most effective learnt clauses in the Free Pizza problem.

presents these case studies and demonstrates how applying this methodology can lead to
insights that result in effective model transformations.

7.4.1 First Case Study: the Free Pizza Problem

Consider an instance of the free pizza problem and its model introduced in Section 7.1
with the following input data:

n = 10;
price = [70, 10, 60, 65, 30, 100, 75, 40, 45, 20];
m = 4;
buy = [1, 2, 3, 3];
free = [1, 1, 2, 1];

Following the methodology introduced in the previous section, I executed the model for
the data shown above using Chuffed, replayed its search using Gecode, merged the resulting
execution trees, and ranked the learnt clauses in terms of their associated reduced search.
Table 7.1 shows the top 10 clauses together with information regarding their activity (that
is, the number of times they contributed to a failure) and number of search nodes they
reduced. Note that the total number of nodes in the execution with Gecode is 77, 100,
therefore the nodes reduced by these top clauses represent a significant portion of the
search.

I first concentrated on some of the shorter clauses, like how[5] 6= -3, how[3] 6=
3, which is ranked number four. It states that pizza 3 cannot be obtained for free with
voucher 3 by buying pizza 5 and assigning it to this voucher. This is a direct consequence
of the constraint starting in line 26 of the model and the fact that pizza 3 (cost 60) is
more expensive than pizza 5 (cost 30). This observation helped me understand the longer
clauses and realise that some of them were weaker (and more complex) than I expected.

Consider, for example, the top clause, which captures information about the relation-
ship between obtaining pizza 6 with vouchers 1 or 2 (as how[6] ≤ 0, how[6] ≥ 3 indicates
that how[6] cannot be 1 or 2), and buying pizzas 1, 2, 3, 4, and 5, assigning them to these
vouchers. Consulting the input data, I realised that pizza 6 is more expensive than any
other pizza and, thus, it cannot be obtained for free with any voucher (not just 1 and 2)
and must be purchased. Therefore, the clause could be strengthened by simply expressing
it as how[6] ≤ 0. It was to a certain degree surprising to realise that this simple fact
(and its cousin: the cheapest pizza cannot be used to obtain any other pizza for free)
was not being learnt by the solver. This interesting insight further motivates the need for

7.4. CASE STUDIES 117

studying the learnt clauses to better understand the information learnt (or not learnt) by
the solver.

While the learnings (how[6]≤0 and how[2]≥0) were instance specific, the same ideas
can be stated in a generic way and used as redundant constraints in the model. Here is
one way to do it (note that != represents disequality):

% the most expensive pizza can never be bought with a voucher
constraint forall(p in PIZZA) (

if forall(o in PIZZA where o != p) (price[p] > price[o])
then how[p] <= 0 else true endif

);
% the cheapest pizza can never be used with a voucher
constraint forall(p in PIZZA) (

if forall(o in PIZZA where o != p) (price[p] < price[o])
then how[p] >= 0 else true endif

);

The first constraint requires that if pizza p is the (single) most expensive one, it cannot
be obtained for free, and thus the value how[p] cannot be positive. The second constraint
requires that if pizza p is the cheapest, it cannot (should not) be used with a voucher,
and thus the value how[p] cannot be negative. It should be noted, however, that these
redundant constraints will be vacuous if there is no single most expensive/cheapest pizza.

I was also surprised to realise that many of the top clauses (4 to 7) allowed Chuffed to
avoid exploring significant amounts of nodes when compared to Gecode, despite the fact
that these clauses are direct consequences of a single constraint (the one starting in line 26).
One would expect Gecode to also avoid exploring those nodes by directly propagating the
constraint. This observation indicates that the constraint was not propagating as well as
expected. Focusing on this constraint, I realised that the how[p1] < how[p2] part of the
constraint could be replaced by how[p2] > 0, since it only needs to ensure that pizza
p2 is free. This is clearly stronger information and connects with the way the objective
function is expressed, thus allowing stronger propagation when the objective is bounded.
The modified constraint can be expressed as follows (with the modified part shown in
green):

constraint forall(p1,p2 in PIZZA) (
(how[p2] > 0 /\ how[p1] = -how[p2]) -> price[p2] <= price[p1]);

To assess the modifications made to the model, I randomly generated 100 input data
files and measured the solving time using Gecode and Chuffed with fixed search (as speci-
fied in the original model) and with free search. Aiming to solve all instances to completion
within a reasonable amount of time for both solvers (not too easy, not too difficult), I gen-
erated the input data using between 2 to 10 vouchers for Gecode and 6 to 10 vouchers for
Chuffed, each voucher requiring 1 to 4 pizzas to be purchased and allowing customers to
get 1 to 4 pizzas for free. The number of pizzas to obtain was between 9 to 10 for Gecode
with fixed search, 12 to 13 for Gecode with free search, and 15 to 16 for Chuffed. Any
data file that for a given solver and search was solved in under one second using all models
was excluded from the final results. As a result, 74 and 80 data files were used for Gecode
with fixed and free search, respectively, and 98 and 95 data files were used for Chuffed,
respectively.

Aggregated results for these data files are shown in Table 7.2, which compares the
performance of the two solvers in terms of execution time and number of failures using
three models: the original one, the one obtained by adding the two redundant constraints,
and the final one obtained by also modifying the constraint starting in line 26 as indicated
above. For a given combination of search and solver, the table presents the results of

118 CHAPTER 7. ANALYSIS OF LEARNING SOLVERS

Figure 7.5: Execution time of original and improved pizza models (logarithmic scale).

pairwise comparison of the three models in terms of execution time and the number of
nodes in their search trees in terms of geometric mean and median of the corresponding
ratios. For example, the first row compares the original model to the model with the
redundant constraint, both executed using Chuffed with fixed search. Clearly, the modi-
fications improved the performance of both solvers (as all numbers are below 1), with the
results being particularly significant for Gecode with fixed search, where the difference
reaches two orders of magnitude.

Detailed results are presented in Figure 7.5, where each dot shows the solving time for
a given data file using the original and the final models in the horizontal and vertical axes,
respectively. The scatter plots show that the vast majority of the instances lie below the
identity line, and thus, that the final model consistently performs better than the original
one.

7.4.2 Second Case Study: the Golomb Ruler Problem

Recall the Golomb ruler problem introduced in Chapter 2, which involves finding a minimal
ruler with n integer marks, such that no two pairs of marks are the same distance apart. I
use the model from the MiniZinc benchmarks set2 for this problem, which was introduced
also in Chapter 2.

2https://github.com/MiniZinc/minizinc-benchmarks

7.4. CASE STUDIES 119

Models Ratio GeoMean(time) Median(time) GeoMean(fails) Median(fails)

redundant/original 0.4885 0.5497 0.5186 0.5737
final/redundant 0.7746 0.7905 0.9159 0.9368

C
h
u
ff

ed

final/original 0.3784 0.4152 0.9368 0.5199

redundant/original 0.0904 0.1250 0.0925 0.1234

F
ix

ed
S
ea

rc
h

final/redundant 0.0569 0.0786 0.0435 0.0461

G
ec

o
d
e

final/original 0.0051 0.0056 0.0040 0.0042

redundant/original 0.7039 0.7162 0.7625 0.7426
final/redundant 0.8228 0.8070 0.8872 0.8944

C
h
u
ff

ed

final/original 0.5791 0.5830 0.6765 0.6876

redundant/original 0.1526 0.1468 0.1493 0.1459

F
re

e
S
ea

rc
h

final/redundant 0.7205 0.7330 0.7991 0.8104

G
ec

o
d
e

final/original 0.1100 0.1050 0.1193 0.1187

Table 7.2: Aggregate Results for Free Pizza over a set of random instances (relative).

Rank Activity Reduced Search Clause

1 2 55 mark[6] ≥ 19, mark[4] ≤ 14, mark[3] ≤ 13
2 3 55 mark[6] ≥ 18, mark[4] ≤ 13, mark[3] ≤ 12
3 3 41 (mark[8] - mark[6] ≤ 5), (mark[8] - mark[6] ≥ 7),

M
o
d
ifi

ed

(mark[10] ≥ 55), (mark[6] ≤ 41),
(mark[10] - mark[8] ≤ 5)

Table 7.3: Most effective learnt clauses for Golomb Ruler (after the first modification).

This model is known to be difficult for learning solvers. Indeed, it can be shown
that Gecode is consistently faster than Chuffed on this model (see “Original Model” in
Table 7.5). Nonetheless, Chuffed requires fewer failures to solve the problem and, thus,
I decided to examine Chuffed’s behaviour to see if I could determine how to improve the
model.

Using the methodology introduced earlier in this chapter, I executed the instance of
this model with parameter m = 10 using Chuffed, replayed its search using Gecode, merged
the resulting executions trees, and ranked the learnt clauses in terms of their associated
reduced search. Table 7.4 shows the 5 most effective clauses learnt by Chuffed. All these
clauses are of the form

(mark[i] >= n) /\ (mark[i+1] >= n+1) -> (mark[i+2] >= n+3),

for some i and n. (Note that a clause of the form {A,B,C} can be interpreted as
¬B ∧ ¬C → A.) This represents an implied constraint, which the solver is effectively
rediscovering and explicitly adding to the execution. By manually analysing the problem,
I confirmed it was correct to add the following redundant constraint:

mark[i] + 3 <= mark[i+2],

for all i. Clearly mark[i+2] is at least one more than mark[i+1], which is at least one
more than mark[i]. Thus, mark[i+2] and mark[i] are at least two apart and, if so, both
intermediate differences must be one, which is forbidden.

120 CHAPTER 7. ANALYSIS OF LEARNING SOLVERS

Rank Activity Reduced Search Clause

1 49 193 mark[6] ≥ 38, mark[5] ≤ 35, mark[4] ≤ 34
2 6 170 mark[5] ≥ 18, mark[4] ≤ 15, mark[3] ≤ 14
3 6 170 mark[5] ≥ 15, mark[4] ≤ 12, mark[3] ≤ 11

O
ri

g
in

a
l

4 5 168 mark[5] ≥ 22, mark[4] ≤ 19, mark[3] ≤ 18
5 50 163 mark[6] ≥ 36, mark[5] ≤ 33, mark[4] ≤ 32

Table 7.4: Most effective learnt clauses for Golomb Ruler (before the first modification).

Once this redundant constraint is added to the model, I again applied the methodology
for studying no-goods. The new top 3 learnt clauses are shown in Table 7.3. The first two
follow the pattern:

(mark[i] >= n) /\ (mark[i+1] >= n+1) -> (mark[i+3] >= n+5).

The third clause illustrates a property of connected differences: if the difference between
mark[i] and mark[j] is, say, 6, and the difference between mark[j] and mark[k] is at least
6, then the difference between mark[i] and mark[k] is at least 6+6+1=13. The 1 in the
sum appears for the same reason as above.

Note that all these clauses refer to the idea that the distance between two marks that
are k positions apart is equal to the sum of the inner distances, which are all different.
As a result, this distance is at least as large as the sum of the arithmetic sequence of
natural numbers, i.e., k(k+1)

2 . In fact, by following this methodology I had rediscovered a
redundant constraint for this problem, unknown to me, but discussed earlier in [Barták,
2005].

The inclusion of this redundant constraint in the model reduces the search effort re-
quired to solve it, both in number of nodes and in time (see “Improved Model” in Ta-
ble 7.5). Interestingly, even the non-learning solver Gecode benefited from the constraint.
This demonstrates how, even when learning solvers are not the strongest for a given prob-
lem, we can gain useful insights from examining the clauses they learn.

Original Model Improved Model
Size n Time (s) Number of Failures Time (s) Number of Failures

n = 10 1.99 20,912 1.49 19,343
n = 11 72.36 307,957 54.25 288,071

C
h
u

ff
ed

n = 12 616.2 2,329,959 512.63 2,254,206

n = 10 0.74 23,463 0.57 19,928
n = 11 15.81 374,886 12.09 321,419

G
ec

o
d

e

n = 12 147.00 3,002,474 117.83 2,656,663

Table 7.5: Golomb Ruler Results.

7.4.3 Third Case Study: the Radiation Problem

In Section 6.4.2 I introduced the Intensity-Modulated Radiation Therapy problem and
showed, using the search replaying technique, that the reason for Chuffed’s good perfor-
mance while finding the first (and optimal) solution to this problem is mainly due to its
search.

7.4. CASE STUDIES 121

Figure 7.6: Chuffed backjumps in the Radiation problem.

Closer examination of the Chuffed’s search tree (shown in Figure 7.6 for instance i7-
9) reveals that the search frequently backjumps (grey square nodes indicate the parts of
the search not explored due to backjumping). Note that this tree shows three distinct
regions of search. The first region, represented by the top nodes, corresponds to searching
on variables Ni. Below this point on the tree, all variables Ni have been assigned, as
required by the search strategy. The search then proceeds to the second region, which
corresponds to searching on variables Q1,j,k associated with the first row in the matrix.
These variables seem underconstrained, and the search quickly assigns all of them without
the need to backtrack, arriving at the third region (represented by two subtrees highlighted
with grey background). This region corresponds to searching on variables Q2,j,k associated
with the second row in the matrix. Note that this region requires more search as indicated
by backtracks.

Unable to find satisfying assignments to the variables of the second row, the search does
not backtrack to the second region, but rather backjumps directly to the first region. This
observation suggests that variables of the first row do not participate in the failure caused
by assigning variables from the second row. Analysing the model more closely reveals that
variables that correspond to different rows (such as Q1,j,k and Q2,j,k) become independent
once all variables Ni have been assigned. The fact that there is no satisfying assignment
to variables Q2,j,k for a given assignment to Ni, holds for any other assignments to Q1,j,k.
Fortunately, Chuffed is able to identify this and thus leaves regions two and three rather
quickly to change the value of Ni that is incompatible with the second row assignments.

Gecode, on the other hand, is unable to backjump, and thus it would repeat the same
fruitless search for all satisfying assignments in stage two. This fact can be confirmed
using the similar subtree analysis introduced in Section 5. Indeed, this analysis reveals
a great deal of identical subtrees. For example, the search represented by the subtree
shown in Figure 7.7, which corresponds to searching on variables Q2,j,k (second row in the
matrix), is repeated 240 times throughout the execution. The lantern tree visualisation in
Figure 7.8 depicts a fraction of Gecode’s search tree, where the subtrees representing the
search from Figure 7.7 are shown as lantern nodes. The analysis additionally reports that
the difference in search decisions between the first two of these identical subtrees is only
in the value of a single variable: Q1,3,1 (first row in the matrix).

The main reason for Chuffed’s better performance on this problem compared to Gecode
is, indeed, its search due to backjumping, which reinforces the conclusion made in the
previous chapter. However, the benefit of extra propagation caused by the no-goods in

122 CHAPTER 7. ANALYSIS OF LEARNING SOLVERS

Figure 7.7: Gecode’s subtree repeated 240 times in the Radiation problem.

Figure 7.8: Gecode’s tree for the Radiation problem with similar subtrees highlighted.

Chuffed’s execution is still significant, as it explores less nodes than Gecode (see Sec-
tion 6.4.2), even when Gecode follows the same search decisions and performs the same
backjumps.

Although the performance of Gecode is likely to benefit more from a different search
than from a better propagation by, for example, redundant constraints identified by the
no-good analysis, I decided to apply this analysis to the model. The following data was
used for the analysis (corresponds to the i7-9 instance from the MiniZinc Challenge 2015):

m = 9; n = 9; % rows and columns
Intensity = [| 4, 8, 11, 2, 5, 7, 1, 10, 4 |

11, 4, 4, 5, 1, 8, 9, 3, 9 |
2, 9, 6, 2, 4, 1, 5, 2, 6 |
11, 9, 8, 9, 3, 2, 11, 6, 7 |
2, 8, 11, 2, 10, 5, 5, 4, 5 |
5, 9, 8, 1, 6, 3, 5, 11, 5 |
...
7, 1, 6, 10, 0, 8, 1, 0, 0 |];

Following the methodology introduced before, I executed the model for the Radiation
problem for the data shown above using Chuffed, replayed it using Gecode, merged the
resulting executions and ranked the learnt clauses in terms of their associated reduced
search. Table 7.6 shows the 5 top learnt clauses obtained as the result of this analysis.

As in the previous case studies, I focused on the shortest clauses first. For example,
the clause in the second row (N2 ≥ 2) ∨ (Q2,2,2 ≤ 1) ∨ (Q2,2,2 − Q2,1,2 ≥ 2) is logically
equivalent to the following implication: (Q2,2,2 − Q2,1,2 < 2) ∧ (Q2,2,2 > 1) ⇒ (N2 ≥ 2).
Recall that variable N2 represents the number of shape matrices associated with beam-on-
time 2, and variables Q2,1,2 and Q2,2,2 represent the number of shape matrices associated
with beam-on-time 2 that expose cells [2, 1] and [2, 2], respectively. Clearly, N2 must be
at least as large as the largest Qi,j,2 (∀i ∈ 1..m, j ∈ 1..n). (In fact, it appears that the
literal (Q2,2,2−Q2,1,2 ≥ 2) in the clause is redundant.) This observation can be expressed
in the model as the following constraint:

constraint forall(b in BTimes , i in Rows , j in Columns) (N[b] >= Q[i,j,b]);

7.4. CASE STUDIES 123

Rank Activity Reduced Search Clause

1 50 53072 (Q2,2,1 6= 4) (Q2,2,2 ≥ 2) (Q2,2,3 ≥ 2) (Q2,2,4 ≥ 1)
(Q2,2,5 ≥ 1) (Q2,2,6 ≥ 1) (Q2,2,7 ≥ 1) (Q2,2,8 ≥ 1)

2 25 45079 (N2 ≥ 2) (Q2,2,2 ≤ 1) (Q2,2,2 −Q2,1,2 ≥ 2)

3 17 44796 (N2 ≥ 3) (Q2,2,2 ≤ 2) (Q2,2,2 −Q2,1,2 ≥ 3)

4 16 44471 (N2 ≥ 2) (Q1,3,2 ≥ 2) (Q1,4,2 ≤ 1)(Q1,4,2 −Q1,3,2 ≥ 2)

5 33 43149 (N3 ≥ 2) (Q1,4,3 ≤ 1) (Q1,4,3 −Q1,3,3 ≥ 2)

Table 7.6: Most effective learnt clauses in radiation.

This constraint demands that for every matrix cell [i, j] (∀i ∈ 1..m, j ∈ 1..n) the total
number Nb of shape matrices associated with beam-on-time b (b ∈ Btimes) is at least as
large as the number of those shape matrices among the Nb that expose a given cell. I
added this constraint to the model, and evaluated the augmented model by comparing its
performance to that of the original model. The three instances used for the study are the
same as those used in the MiniZinc Challenge. The results of the comparison in terms of
the execution time and the number of nodes are shown in Table 7.7.

Original Model Augmented Model
Instance Time (s) Number of Failures Time (s) Number of Failures

i6-11 408.65 28,751,319 352.06 25,896,142
i7-9 17.28 1,013,473 14.83 896.536

G
ec

o
d

e

i9-11 1969.25 60,463,317 1827.96 55,837,438

i6-11 5.46 108,372 5.46 107,038
i7-9 2.09 25,056 2.13 24,407

C
h
u

ff
ed

i9-11 53.93 351,494 55.35 341,717

Table 7.7: Adding a redundant constraint to the model for the Radiation problem.

For Gecode, the results show around 10% reduction in time and in the number of
nodes in the search trees for the augmented model. For Chuffed, on the other hand, the
reduction in the number of nodes is insignificant (1−2%), and it is sometimes outweighed
by the cost of propagation the extra constraint, resulting in a small slow down.

Note, however, that not all top clauses identified by this analysis describe the same
“insight” as the clause ranked number two, that was the focus of the above study. For
example, close examination of the model reveals that the clause ranked number one relates
to the constraint defined in line 20 of Listing 6.4, while the clause ranked number two
relates to the constraint defined in line 23. This fact identifies an opportunity for future
work: automatically evaluate the potential effectiveness of a redundant constraint based
on, perhaps, the amount of search reduction achieved by its associated learnt clauses. In
fact, running other instances of this model or performing different searches often reveals
different “insights”. For instance, the clause (Q2,5,1 ≥ 1) ∨ (Q2,5,3 ≥ 1) ∨ (Q2,5,5 ≥ 1) was
identified during the analysis of the same instance executed only until the first solution
was found. This clause states that there should be a matrix that exposes cell [2,4] for the
duration of 1, 3 or 5. The rational for this restriction becomes clear upon the examination
of the input data, which requires the amount of radiation received by cell [2,4] to add up
to exactly 5 units – an odd number. Therefore, there needs to be at least one matrix with
an odd duration time. In particular, for 5 this requires a matrix with the duration of 1,
3, or 5, and anything longer than 5 would result in the overexposure of the cell, which is
exactly what the clause conveys. This observation can be expressed in the model as the
following redundant constraint:

124 CHAPTER 7. ANALYSIS OF LEARNING SOLVERS

constraint
forall(b in BTimes where b mod 2 = 1)

(forall(i in Rows , j in Columns where Intensity[i, j] = b)
(sum([Q[i,j,k] | k in 1..b where k mod 2 = 1]) > 0));

This constraint states that for every odd beam-on-time b and for every cell [i, j] in
the matrix there should be at least one shape matrix Qi,j,k with an odd beam-on-time
k. Adding this constraint, however, results in only 2 − 3% search reduction on average,
and is again not worthwhile, especially since it results in longer propagation time in each
node. Part of the reason this constraint is ineffective might be its instance-dependency,
as it targets cells with a specific intensity requirement (although odd numbers are not
uncommon, the constraint seems to be mainly effective for small numbers like 3 or 5).
This fact identifies an opportunity for future work: to rank learnt clauses across multiple
instances, so that the insights they represent are instance-independent.

7.5 Summary

This chapter presented a new methodology for analysing the execution of learning solvers.
The methodology was applied to three case studies, involving three different constraint
problems. For two problems, the methodology discovered redundant constraints that
significantly reduced both the solving time and the amount of nodes explored. In the
free pizza problem, the methodology additionally helped identify a constraint with poor
performance, and thus showed what part of the model requires more attention. Applying
a small modification to this constraint further improved the free pizza model.

Importantly, while the benefit of these modifications was greater for the non-learning
solver, the learning solver also benefited. Note that, although the added redundant con-
straints are reminiscent of the no-goods (learnt clauses) in the learning solver, they are
more general: they are stronger and are often effective across instances. Additionally,
the Golomb ruler study demonstrated that this methodology can be useful even when the
learning solver is outperformed by the traditional backtracking solver.

The case study of the Radiation problem also resulted in finding a redundant con-
straint. However, it only marginally improved the executions for Gecode and was not
worthwhile for Chuffed, as its search reduction was outweighed the longer propagation
time it caused.

Note that the current implementation of this methodology is at its early stage and
can be improved further. For example, it currently requires the modeller to process the
list of top no-goods manually to infer model improvements. One opportunity for future
work is to automate this process by, for example, automatically generating redundant
constraints. Another way to improve the analysis is to automatically link the top no-
goods to the constraints in the model, thus making it easier for the modeller to determine
which constraints require more attention.

Chapter 8

Conclusions

The profiling of Constraint Programming executions can help modellers improve their
models, and thus allows them to solve hard combinatorial problems faster, obtaining bet-
ter quality solutions. In this thesis I have explored the area of profiling in Constraint
Programming and presented significant improvements to the profiling process. In partic-
ular, the thesis introduces several effective profiling techniques along with a new profiling
system architecture that integrates and enables these techniques. This chapter discusses
the conclusions to the thesis by recapitulating its contributions and identifying the poten-
tial future work that arises from them.

The CP-Profiler System

Many profiling techniques are most effective when they are used together, as a part of
a profiling system. At the same time, the fundamental architectural decisions taken to
design such systems determine the kind of profiling techniques that can be integrated.
This thesis provides the following contributions regarding the profiling system design:

� This thesis identifies the requirements a profiling system for Constraint Programming
must fulfil in order to be effective. In particular, it must be:

– Capable of visualising search-trees.

– Efficient, that is, it scales for large real world executions.

– Solver-independent, that is, easy to integrate with new solvers by requiring only
reasonably small changes to the solver’s implementation.

– Search-independent, that is, capable of supporting both simple search explo-
ration paradigms and complex ones such as restart-based search, parallel search,
and that of learning solvers.

– Real-time, that is, it allows users to start analysing executions before they are
finished.

– Extensible, that is, it can adapt to new profiling techniques.

Although many existing profiling systems have been successful to an extent, no single
one of them is able to fulfill all the above requirements (with CP-Viz [Simonis et al.,
2010] being the most effective existing system, only failing to fulfill the requirement
of being real-time).

125

126 CHAPTER 8. CONCLUSIONS

� This thesis presents an architecture and associated design decisions, including a
protocol specification for solver-profiler communication, that fulfill the identified
requirements for an effective profiling system.

� A prototype profiling system called CP-Profiler based on this architecture has been
designed and made available open-source1. Despite its prototype status, CP-Profiler
has been used both by my collaborators and externally. A few solvers (namely,
Gecode, Chuffed, and Choco) have already been integrated into the system and,
importantly, these solver integrations have been adopted (and extended) by their
solver developers.

One possibility for future work is the integration of CP-Profiler into the MiniZinc IDE
in order to maximise its utilisation and impact in the community. Additionally, it would
be useful to integrate other popular solvers (e.g., Mistral-2.0 [Hebrard, 2008], Picat [Zhou
et al., 2015], JaCoP [Kuchcinski et al., 2013]) into CP-Profiler.

Enhancing Search Tree Visualisation and Navigation

Studying an execution by examining its search tree is one of the most popular tasks
performed when profiling an execution, and thus search tree visualisations are at the
heart of most CP profiling systems. However, despite the many advancements in search
visualisation techniques, the existing profiling systems are still not very effective at dealing
with the common case of large search trees. This thesis provides the following contributions
to the way large search trees are visualised:

� It presents a new search tree visualisation: the lantern tree, to reduce the scale of
large trees without losing their general structure. The technique builds on the state-
of-the-art search tree visualisation implemented by the Gecode solver, but improves
the way subtrees are collapsed. In particular, this technique collapses subtrees into
special “lantern” nodes that convey information about their underlying subtrees
via their height. This collapsing is performed selectively: the user can specify the
maximum number of nodes that the largest lantern node can contain, thus controlling
the degree of detail in the resulting visualisation. Side by side comparison of the
state of the art and the proposed techniques are provided, which demonstrate the
advantages of the new technique.

� It studies the use of two unconventional techniques for visualising generic trees –
pixel tree and icicle tree – in the context of search trees. In particular, this thesis
demonstrates that even in a compressed form, which is necessary for large trees,
pixel trees allow users to easily distinguish between different regions in the search,
such as regions with many solutions or those corresponding to the proof of optimality.
Additionally, unlike the traditional node-link visualisation, pixel trees clearly convey
time progression, and thus they can be used to display statistical information that
changes in time, clearly linking the information with the different regions in the
search.

Regarding icicle trees, the thesis demonstrates that they are easy to compress and,
while they are not suited for depicting time progression, the relation of the visual
elements in an icicle tree (horizontal rectangles) to the tree structure (nodes and
subtrees) is clear even in a compressed form. This property allows users to colour-
code individual nodes or subtrees based on different statistical information. For

1https://github.com/cp-profiler

127

example, colour-coding the nodes based on the branching decisions can show how
variable assignment order changes during the execution.

� It demonstrates how the two unconventional techniques mentioned above can make
it easier for users to navigate the traditional node-link visualisation: when selecting
regions of interest, CP-Profiler will highlight the same regions in the traditional
visualisation, where the search tree can be examined in more detail.

� The lantern tree visualisation and the two novel visualisations (pixel tree and ici-
cle tree) have been implemented and integrated into CP-Profiler, and thus made
available to the users of the Constraint Programming technology.

In regard to the lantern tree visualisation, one opportunity for future work is to
develop an algorithm to automatically identify the right level of detail to present
to the user. In regard to the use of unconventional search tree visualisations, one
opportunity for future work is to identify other statistical information that can be
displayed using the pixel tree and the icicle tree to gain insights about the execution.

Finding Recurring Patterns in Executions

The search trees for large real-world problems often contain many thousands or even
millions of nodes. While partial understanding of such large executions can be obtained
through good “overview” visualisations like the ones contributed by this thesis, some
helpful insights regarding the execution are often buried in detail, making it impractical to
uncover them without the aid from automated analysis. Although the need for automated
analysis is clear, there seems to be no such analysis available in the existing profiling
systems. The contributions of this thesis in this regard are as follows:

� It presents the similar subtree analysis – a technique capable of finding repeated
patterns in large executions, which often indicate the presence of inefficient search
behaviours.

� It implements the similar subtree analysis and integrates it into CP-Profiler, addi-
tionally demonstrating that it scales to large executions.

� It presents a case study that demonstrates how the similar subtree analysis can
be used to detect a symmetry present in the problem model. It also shows that
eliminating the found symmetry leads to a more efficient model.

Although the similar subtree analysis has been demonstrated to be effective in its
current form, further improvements are indeed possible. For example, this thesis only
explores two criteria for similarity: by shape and by identity. While the former is less
restrictive than the latter, they tend to find the same patterns. Developing a less restrictive
criteria might be beneficial, as it would be able to find more patterns, and thus provide
more insights to the user. Further, the automatic analysis of search tree structure seems
to be a promising area in general. One opportunity for future work is the identification of
common patterns that can be linked to inefficient behaviour, such as thrashing (where the
solver repeatedly searches fruitless areas of the search space) or blind inference (where a
great deal of computational effort is spent by the solver in producing information of little
use).

128 CHAPTER 8. CONCLUSIONS

Comparison of executions

Modifying the model, search strategy, or the selection of solver is often an inevitable part
of modelling. Therefore, being able to compare two executions to evaluate the impact of a
particular change is crucial for model improvement. The existing approaches for comparing
two executions are limited to a manual side-by-side comparison of the respective search
trees. The contributions of this thesis to support the comparison of executions are as
follows:

� It presents search merging – a profiling technique that allows the modeller to visually
compare the search trees of two different executions, before and after performing
some change to the model, solver, or search strategy, and assess the effect of that
change in detail. It is most effective when a fixed search strategy is employed, or
when a dynamic search strategy is used in both executions that does not make the
searches diverge too soon in the search tree. In the former case, it will pinpoint
where one execution required less search compared to the other (for example, due to
a difference in propagation strength). In the latter case, the technique will pinpoint
the nodes in the search tree where the two executions start to diverge. This technique
scales well for large executions, but requires their early search decisions (near the
roots) to be similar in order to be really useful.

� It presents search replaying – a profiling technique that allows the modeller to isolate
the effect of a change in terms of constraint propagation. In particular, it ensures
that the two executions follow exactly the same search decisions up to a failure.
Since the difference in the two searches is minimised, this allows the modeller to
evaluate the difference in terms of propagation between the two executions.

� It implements both search merging and search replaying and integrates them into
CP-Profiler, additionally demonstrating their good scalability for large executions.

� It presents a case study that demonstrates that the two comparison techniques can
be used hand-in-hand to gain better insights regarding model modifications, that in
turn could suggest further model improvements.

Although these techniques can already be effectively used to support the comparison
of two executions, further improvements are possible. For example, the search merging
is limited to executions with similar search decisions near the root. One opportunity for
future work is to extend this technique to additionally compare searches after they have
diverged.

Learning from Learning Solvers

A generation of no-good learning solvers has emerged in recent years, and they often solve
hard constraint problems faster than traditional, non-learning solvers. However, for some
problems, learning solvers seem to be unable to benefit from their learning and perform
poorly compared to non-learning solvers. The reasons for these differences in behaviour are
not well understood in practice, as learning solvers are even more complex than traditional
CP solvers. This thesis explores the profiling of learning solvers, and in doing so it presents
a surprising discovery: the profiling information can be used to aid modellers to improve
their models. In particular, the contributions of this thesis in this regard are as follows:

� It presents no-good analysis – a technique for studying the execution of learning
solvers. This technique is built on top of the search replaying and the search merging

129

techniques, and adds extra functionality specific for learning solvers that allows the
modeller to identify effective no-goods – those that have the most impact on the
execution (i.e., reduce the highest amount of search).

� It demonstrates how the most effective no-goods can be used to identify constraints
in the model that do not propagate well, and thus should be replaced by more
effective ones to speed up the execution.

� It demonstrates how the most effective no-goods can also be used to discover re-
dundant constraints that can be added to the model. Importantly, the redundant
constraints obtained this way are effective (that is, they improve the resulting model
when they are added), as they are based on the no-goods that significantly reduce
search space.

� It demonstrates that the model modifications obtained using the no-good analysis
can lead to significantly faster executions for both learning and non-learning solvers,
often with a few orders of magnitude improvement.

Although the no-good analysis is already effective in its current form, it can be im-
proved further. For example, its current implementation requires the modeller to process
the list of effective no-goods manually in order to infer model improvements. One in-
teresting and challenging opportunity for future work is to automate this process by, for
example, automatically generating redundant constraints. Another way to improve the
analysis is to automatically link the effective no-goods to the constraints in the model
– a task that is performed manually in the current implementation – thus showing the
modeller which constraints require more attention.

Conclusion

Profiling in Constraint Programming, despite the great deal of previous research dedicated
to it, is still not as commonly employed in day-to-day modelling as it is in imperative
programming. This thesis has a potential to change that by demonstrating that profiling
can be effective for model improvement, and thus, worthwhile. In fact, the optimisation
team at Monash University has recognised its value, and provided me with the opportunity
to work on CP-Profiler further to make it more robust, document its functionality, and
help in integrating it into the MiniZinc IDE, which I gladly accepted.

130 CHAPTER 8. CONCLUSIONS

Bibliography

Armando, A., C. Castellini, and E. Giunchiglia (1999). “SAT-Based Procedures for Tem-
poral Reasoning”. In: Recent Advances in AI Planning, 5th European Conference on
Planning, Proceedings. Ed. by S. Biundo and M. Fox. Vol. 1809. Lecture Notes in
Computer Science. Springer, pp. 97–108.

Baatar, D., N. Boland, S. Brand, and P. J. Stuckey (2011). “CP and IP Approaches to
Cancer Radiotherapy Delivery Optimization”. In: Constraints. Vol. 16. 2. Springer,
pp. 173–194.

Barták, R. (2005). “Effective Modeling With Constraints”. In: Applications of Declarative
Programming and Knowledge Management. Springer, pp. 149–165.

Biere, A., M. Heule, H. van Maaren, and T. Walsh, eds. (2009). Handbook of Satisfiability.
Vol. 185. Frontiers in Artificial Intelligence and Applications. IOS Press.

Bouvier, P. (2000). “Visual Tools to Debug Prolog IV Programs”. In: Analysis and Visu-
alization Tools for Constraint Programming, Constraint Debugging (DiSCiPl project).
Ed. by P. Deransart, M. V. Hermenegildo, and J. Maluszynski. Vol. 1870. Lecture
Notes in Computer Science. Springer, pp. 177–190.

Bracchi, C., C. Gefflot, and F. Paulin (2001). “Combining Propagation Information and
Search Tree Visualization Using ILOG OPL Studio”. In: arXiv preprint cs/0111040.

Burch, M., M. Raschke, and D. Weiskopf (2010). “Indented Pixel Tree Plots”. In: Advances
in Visual Computing – 6th International Symposium, Proceedings, Part I. Ed. by G.
Bebis, R. D. Boyle, B. Parvin, D. Koracin, R. Chung, R. I. Hammoud, M. Hussain,
K. Tan, R. Crawfis, D. Thalmann, D. Kao, and L. Avila. Vol. 6453. Lecture Notes in
Computer Science. Springer, pp. 338–349.

Carro, M. and M. V. Hermenegildo (2000a). “Tools for Constraint Visualisation: The VI-
FID/TRIFID Tool”. In: Analysis and Visualization Tools for Constraint Programming,
Constrain Debugging (DiSCiPl project). Ed. by P. Deransart, M. V. Hermenegildo, and
J. Maluszynski. Vol. 1870. Lecture Notes in Computer Science. Springer, pp. 253–272.

— (2000b). “Tools for Search-Tree Visualisation: The APT Tool”. In: Analysis and Visu-
alization Tools for Constraint Programming, Constrain Debugging (DiSCiPl project).
Ed. by P. Deransart, M. V. Hermenegildo, and J. Maluszynski. Vol. 1870. Lecture
Notes in Computer Science. Springer, pp. 237–252.

131

132 BIBLIOGRAPHY

Cheng, B., K. M. Choi, J. H.-M. Lee, and J. Wu (1999). “Increasing Constraint Prop-
agation by Redundant Modeling: an Experience Report”. In: Constraints. Vol. 4. 2.
Springer, pp. 167–192.

Choi, C. W., J. H. Lee, and P. J. Stuckey (2007). “Removing Propagation Redundant
Constraints in Redundant Modeling”. In: ACM Transactions on Computational Logic.
Vol. 8. 4. ACM, p. 23.

Chu, G. G. (2011). “Improving Combinatorial Optimization”. PhD thesis. The University
of Melbourne.

Dakin, R. J. (1965). “A Tree-Search Algorithm for Mixed Integer Programming Problems”.
In: The Computer Journal. Vol. 8. 3. Oxford University Press, pp. 250–255.

Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton landmarks in math-
ematics and physics.

Davis, M. and H. Putnam (1960). “A Computing Procedure for Quantification Theory”.
In: Journal of the ACM. Vol. 7. 3. ACM, pp. 201–215.

Deransart, P. (2004). “Main Results of the OADymPPaC Project”. In: Logic Program-
ming, 20th International Conference, Proceedings. Ed. by B. Demoen and V. Lifschitz.
Vol. 3132. Lecture Notes in Computer Science. Springer, pp. 456–457.

— (2011). “Generic Traces and Constraints, GenTra4CP revisited”. In: arXiv preprint
arXiv:1105.6210.

Deransart, P., M. V. Hermenegildo, and J. Maluszynski, eds. (2000). Analysis and Visu-
alization Tools for Constraint Programming, Constrain Debugging (DiSCiPl project).
Vol. 1870. Lecture Notes in Computer Science. Springer.

Dooms, G., P. V. Hentenryck, and L. Michel (2009). “Model-Driven Visualizations of
Constraint-Based Local Search”. In: Constraints. Vol. 14. 3. Springer, pp. 294–324.

Fages, F., S. Soliman, and R. Coolen (2004). “CLPGUI: A Generic Graphical User Interface
for Constraint Logic Programming”. In: Constraints. Vol. 9. 4. Springer, pp. 241–262.

Frisch, A. M., M. Grum, C. Jefferson, B. M. Hernández, and I. Miguel (2007). “The
Design of ESSENCE: A Constraint Language for Specifying Combinatorial Problems”.
In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial
Intelligence. Ed. by M. M. Veloso. AAAI Press, pp. 80–87.

Goodwin, S., C. Mears, T. Dwyer, M. Garcia de la Banda, G. Tack, and M. Wallace (2017).
“What do Constraint Programming Users Want to See? Exploring the Role of Visu-
alisation in Profiling of Models and Search”. In: IEEE Transactions on Visualization
and Computer Graphics 23.1, pp. 281–290.

Google (2015). Protocol Buffers. url: https : / / developers . google . com / protocol -
buffers/.

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

BIBLIOGRAPHY 133

Goualard, F. and F. Benhamou (2000). “Debugging Constraint Programs by Store In-
spection”. In: Analysis and Visualization Tools for Constraint Programming, Con-
strain Debugging (DiSCiPl project). Ed. by P. Deransart, M. V. Hermenegildo, and J.
Maluszynski. Vol. 1870. Lecture Notes in Computer Science. Springer, pp. 273–297.

Graham, S. L., P. B. Kessler, and M. K. McKusick (1982). “Gprof: A Call Graph Execution
Profiler”. In: ACM Sigplan Notices. Vol. 17. 6. ACM, pp. 120–126.

Hart, P. E., N. J. Nilsson, and B. Raphael (1968). “A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths”. In: IEEE Trans. Systems Science and Cybernetics.
Vol. 4. 2. IEEE, pp. 100–107.

Hartert, R. (2017). “Kiwi-A Minimalist CP Solver”. In: arXiv preprint arXiv:1705.00047.

Hebrard, E. (2008). “Mistral, a Constraint Satisfaction Library”. In: Proceedings of the
Third International CSP Solver Competition 3, p. 3.

Held, M. and R. M. Karp (1971). “The Traveling-Salesman Problem and Minimum Span-
ning Trees: Part II”. In: Mathematical Programming. Vol. 1. 1. Springer, pp. 6–25.

Horbach, M. and S. Woop (2002). “Incremental Algorithms and a Minimal Graph Repre-
sentation for Regular Trees”. Bachelor Thesis. Saarland University.

Johnson, B. (2012). Professional Visual Studio 2012. John Wiley & Sons.

Kennedy, A. J. (1996). “Functional Pearls”. In: vol. 6. 3. Cambridge University Press,
pp. 527–534.

Kruskal, J. B. and J. M. Landwehr (1983). “Icicle Plots: Better Displays for Hierarchical
Clustering”. In: vol. 37. 2. Taylor & Francis Group, pp. 162–168.

Kuchcinski, K. and R. Szymanek (2013). “Jacop-Java Constraint Programming Solver”.
In: CP Solvers: Modeling, Applications, Integration, and Standardization, co-located
with the 19th International Conference on Principles and Practice of Constraint Pro-
gramming.

Land, A. H. and A. G. Doig (1960). “An Automatic Method of Solving Discrete Program-
ming Problems”. In: vol. 28. 3. The Econometric Society, pp. 497–520.

Langevine, L. (2005). “Gentra4cp: A Generic Trace Format for Constraint Programming”.
In: Logic Programming, 21st International Conference, ICLP 2005, Sitges, Spain, Oc-
tober 2-5, 2005, Proceedings. Ed. by M. Gabbrielli and G. Gupta. Vol. 3668. Lecture
Notes in Computer Science. Springer, pp. 433–434.

Mackworth, A. K. (1977). “Consistency in Networks of Relations”. In: vol. 8. 1. Elsevier,
pp. 99–118.

Marques Silva, J. P. and K. A. Sakallah (1996). “GRASP – a New Search Algorithm for
Satisfiability”. In: Proceedings of the 1996 IEEE/ACM International Conference on
Computer-aided Design. IEEE Computer Society, pp. 220–227.

134 BIBLIOGRAPHY

Meier, M. (1995). “Debugging Constraint Programs”. In: Principles and Practice of Con-
straint Programming, First International Conference, Proceedings. Ed. by U. Monta-
nari and F. Rossi. Vol. 976. Lecture Notes in Computer Science. Springer, pp. 204–
221.

Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik (2001). “Chaff:
Engineering an Efficient SAT Solver”. In: Proceedings of the 38th Design Automation
Conference. ACM, pp. 530–535.

Nelson, G. and D. C. Oppen (1979). “Simplification by Cooperating Decision Proce-
dures”. In: ACM Transactions on Programming Languages and Systems. Vol. 1. 2.
ACM, pp. 245–257.

Nethercote, N., P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack (2007).
“MiniZinc: Towards a Standard CP Modelling Language”. In: Principles and Practice
of Constraint Programming - CP 2007, 13th International Conference, Proceedings.
Ed. by C. Bessiere. Vol. 4741. Lecture Notes in Computer Science. Springer, pp. 529–
543.

Newsham, Z., W. Lindsay, V. Ganesh, J. H. Liang, S. Fischmeister, and K. Czarnecki
(2015). “SATGraf: Visualizing the Evolution of SAT Formula Structure in Solvers”.
In: Theory and Applications of Satisfiability Testing - SAT 2015 - 18th International
Conference, Proceedings. Ed. by M. Heule and S. Weaver. Vol. 9340. Lecture Notes in
Computer Science. Springer, pp. 62–70.

Ohrimenko, O., P. J. Stuckey, and M. Codish (2009). “Propagation via Lazy Clause Gen-
eration”. In: vol. 14. 3. Springer, pp. 357–391.

OscaR Team (2012). OscaR: Scala in OR. url: https://bitbucket.org/oscarlib/oscar.

Prud’homme, C., J.-G. Fages, and X. Lorca (2017). Choco Documentation. TASC, LS2N,
CNRS UMR 6241 and COSLING S.A.S. url: http://www.choco-solver.org.

Rossi, F., P. van Beek, and T. Walsh (2008). “Constraint Programming”. In: Handbook of
Knowledge Representation. Ed. by F. van Harmelen, V. Lifschitz, and B. W. Porter.
Vol. 3. Foundations of Artificial Intelligence. Elsevier, pp. 181–211.

Ryder, B. G. (1979). “Constructing the Call Graph of a Program”. In: vol. 5. 3. IEEE,
pp. 216–226.

Schimpf, J. and K. Shen (2012). “ECLiPSe – from LP to CLP”. In: Theory and Practice
of Logic Programming. Vol. 12. 1-2. Cambridge University Press, pp. 127–156.

Schulte, C. (1996). “Oz Explorer: A Visual Constraint Programming Tool”. In: Program-
ming Languages: Implementations, Logics, and Programs, 8th International Sympo-
sium. Ed. by H. Kuchen and S. D. Swierstra. Vol. 1140. Lecture Notes in Computer
Science. Springer, pp. 477–478.

Schulte, C., G. Tack, and M. Z. Lagerkvist (2016). Modeling and Programming with Gecode.
url: http://www.gecode.org.

https://bitbucket.org/oscarlib/oscar
http://www.choco-solver.org
http://www.gecode.org

BIBLIOGRAPHY 135

Schutt, A., T. Feydy, P. J. Stuckey, and M. Wallace (2009). “Why Cumulative Decompo-
sition Is Not as Bad as It Sounds”. In: CP 2009. Ed. by I. P. Gent. Vol. 5732. Lecture
Notes in Computer Science. Springer, pp. 746–761.

Schutt, A., P. J. Stuckey, and A. R. Verden (2011). “Optimal Carpet Cutting”. In: CP
2011. Ed. by J. H. Lee. Vol. 6876. Lecture Notes in Computer Science. Springer, pp. 69–
84.

Shirazi, J. (2002). “Tool Report: JProfiler”. In: Java Performance Tuning.

Shishmarev, M., C. Mears, G. Tack, and M. Garcia de la Banda (2016a). “Learning from
Learning Solvers”. In: Principles and Practice of Constraint Programming – 22nd In-
ternational Conference, Proceedings. Vol. 9892. Lecture Notes in Computer Science.
Springer, pp. 455–472.

— (2016b). “Visual Search Tree Profiling”. In: Constraints. Vol. 21. 1. Springer, pp. 77–
94.

Simonis, H., P. Davern, J. Feldman, D. Mehta, L. Quesada, and M. Carlsson (2010).
“A Generic Visualization Platform for CP”. In: Principles and Practice of Constraint
Programming – 16th International Conference, Proceedings. Vol. 6308. Lecture Notes
in Computer Science. Springer, pp. 460–474.

Simonis, H. and A. Aggoun (2000). “Search-Tree Visualisation”. In: Analysis and Visual-
ization Tools for Constraint Programming. Ed. by P. Deransart, M. V. Hermenegildo,
and J. Maluszynski. Vol. 1870. Lecture Notes in Computer Science. Springer, pp. 191–
208.

Sinz, C. and E. Dieringer (2005). “DPvis - A Tool to Visualize the Structure of SAT In-
stances”. In: Theory and Applications of Satisfiability Testing, 8th International Con-
ference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings. Ed. by F. Bacchus
and T. Walsh. Vol. 3569. Lecture Notes in Computer Science. Springer, pp. 257–268.

Stuckey, P. J., T. Feydy, A. Schutt, G. Tack, and J. Fischer (2014). “The MiniZinc Chal-
lenge 2008–2013”. In: AI Magazine. Vol. 35. 2. AAAI, pp. 55–60.

Van Cauwelaert, S., M. Lombardi, and P. Schaus (2015). “Understanding the Potential of
Propagators”. In: Integration of AI and OR Techniques in Constraint Programming –
12th International Conference, Proceedings. Springer, pp. 427–436.

Van Hentenryck, P., L. Michel, L. Perron, and J.-C. Régin (1999). “Constraint Program-
ming in OPL”. In: Principles and Practice of Declarative Programming, International
Conference, Proceedings. Ed. by G. Nadathur. Vol. 1702. Lecture Notes in Computer
Science. Springer, pp. 98–116.

Zhou, N.-F., H. Kjellerstrand, and J. Fruhman (2015). Constraint Solving and Planning
with Picat. Springer.

	List of Tables
	List of Figures
	List of Abbreviations
	Abstract
	Acknowledgments
	Introduction
	Background
	Introduction
	Profiling in Imperative Programming
	Constraint Satisfaction Problems
	Tree Search
	Alternative to CP Approaches

	Modelling with MiniZinc
	MiniZinc Compilation Process

	Related Work
	Brief History of Profiling of Constraint Problems
	Search Tree Visualisations
	Comparison of Executions
	Visualisation of Domains
	Constraint Visualisations
	Propagation Views
	Visualisation of Solutions

	Summary

	An Architecture for Profiling CP Search
	Requirements for Effective Profiling
	Design Decisions
	The Profiling Architecture
	Communication Protocol

	Development and Evaluation of a Prototype
	The Protocol Specification
	Efficiency Evaluation of the Profiling System

	Solver Integrations
	Related Work
	Summary

	Visualisation of Search Trees
	Traditional Search Tree Visualisation
	The State of the Art in Search Tree Visualisation
	Visually Determining the Size of Subtrees

	Overview Visualisations
	Indented Pixel Tree Plots
	Icicle Tree

	Navigation
	Summary

	Finding Recurring Patterns in Executions
	Measuring the Similarity among Subtrees
	Algorithms for Similar Subtree Analysis
	Similarity by Contour
	Finding Identical Subtrees
	Filtering the Results
	Eliminating Subsumed Patterns

	Implementation within CP-Profiler
	Case Study
	Summary

	Techniques for Comparing Executions
	Introduction
	Comparison of Executions
	Comparison Algorithm
	Performance experiments

	Search Replaying
	The Protocol for Replaying
	The Algorithm for Recording Search
	The Algorithm for Replaying

	Case Studies
	Case Study: The All Interval Series Problem
	Case Study: The Intensity-Modulated Radiation Therapy Problem

	Related Work
	Summary

	Analysis of Learning Solvers
	Background on No-Good Learning
	The Methodology
	Implementation
	Case Studies
	First Case Study: the Free Pizza Problem
	Second Case Study: the Golomb Ruler Problem
	Third Case Study: the Radiation Problem

	Summary

	Conclusions

