
Robust Solutions for Constraint Satisfaction and

Optimisation under Uncertainty

by

Emmanuel Hebrard

Diplôme d’Etudes Approfondies, Universite Montpellier II,

2002

A thesis submitted in fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

University of New South Wales

2011

This thesis entitled:
Robust Solutions for Constraint Satisfaction and Optimisation under Uncertainty

written by Emmanuel Hebrard
has been approved for the Department of Computer Science

Supervisor: Prof. Toby Walsh

Signature Date

The final copy of this thesis has been examined by the signatory, and I find that both
the content and the form meet acceptable presentation standards of scholarly work in

the above mentioned discipline.

Declaration

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another person,
nor material which to a substantial extent has been accepted for the award of any other
degree or diploma at UNSW or any other educational institution, except where due
acknowledgement is made in the thesis. Any contribution made to the research by
others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in
the thesis.

I also declare that the intellectual content of this thesis is the product of my
own work, except to the extent that assistance from others in the project’s design and
conception or in style, presentation and linguistic expression is acknowledged. Parts of
the dissertation have appeared in the following publications which have been subject to
peer review.

1. Emmanuel Hebrard, Brahim Hnich and Toby Walsh. Super Solutions in
Constraint Programming. In Proceedings of the 6th International Confer-
ence on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimisation Problems (CP-AI-OR-2004).

2. Emmanuel Hebrard, Brahim Hnich and Toby Walsh. Robust Solutions for
Constraint Satisfaction and Optimization. In Proceedings of the 16th
European Conference on Artificial Intlligence (ECAI-2004).

3. Emmanuel Hebrard, Brahim Hnich and Toby Walsh. Super CSPs. In work-
shop on Online Constraint Solving: Handling Change and Uncertainty, held
alongside the 9th International Conference on Principles and Practice of Con-
straint Programming (CP-2003).

Signature Date

iv

Abstract

We develop a framework for finding robust solutions of constraint programs. Our

approach is based on the notion of fault tolerance. We formalise this concept within

constraint programming, extend it in several dimensions and introduce some algorithms

to find robust solutions efficiently.

When applying constraint programming to real world problems we often face un-

certainty. Whilst reactive methods merely deal with the consequences of an unexpected

change, taking a more proactive approach may guarantee a certain level of robustness.

We propose to apply the fault tolerance framework, introduced in [Ginsberg 98], to

constraint programming: A robust solution is one such that a small perturbation only

requires a small response. We identify, define and classify a number of abstract prob-

lems related to stability within constraint satisfaction or optimisation. We propose some

efficient and effective algorithms for solving these problems. We then extend this frame-

work by allowing the repairs and perturbations themselves to be constrained. Finally,

we assess the practicality of this framework on constraint satisfaction and scheduling

problems.

Dedication

A ma filleule Julie,

A mes parents,

vi

Acknowledgements

First and foremost, I would like to thank my supervisor, Toby Walsh, who directed

my Ph.D. studies, guided and supported me, and from whom I learnt so much. I acquired

from him a great deal of research methodology, learnt many aspects of computer science,

(plus a significant amount of applied geography ;) and much more.

It is difficult to quantify how much I am indebted to my co-supervisor Brahim

Hnich and D.E.A supervisor Christian Bessiere. The former for the countless discussions

we had on the topic of this very thesis and the invaluable advice and support he gave

me. The latter for having introduced constraint programming in such clear terms, for

his guidance during my D.E.A., and for having introduced me to Toby.

I am also deeply thankful to Zeynep Kiziltan whose thesis was always opened for

guidance during all the writing process of the current dissertation.

There would be too many names to cite, so I will simply thank everyone I worked

with at 4C in Cork, and in the KRR group in Sydney. Both experiences were priceless.

vii

Contents

Chapter

1 Introduction 1

1.1 Constraint Programming . 1

1.2 Uncertainty . 3

1.2.1 Related Work . 5

1.2.2 A Classification of Robustness 8

1.3 Fault Tolerance . 11

1.4 Contributions and Outline . 15

2 Formal Background 17

2.1 Introduction . 17

2.2 Worst Case Complexity . 17

2.3 Constraint Satisfaction and Optimisation 18

2.3.1 Constraint Satisfaction Problem 18

2.3.2 Propositional Satisfiability . 20

2.3.3 Constraint Satisfaction and Optimisation Problem 20

2.4 Consistency and Search . 21

2.4.1 Maintain Arc Consistency . 22

2.4.2 Branch & Bound . 24

2.5 Conventions and Notations . 26

3 Definitions and Complexity 29

3.1 Introduction . 29

3.2 Fault Tolerant Solutions . 29

viii

3.2.1 Super Models . 29

3.2.2 Super Solutions . 30

3.2.3 Repairability . 32

3.3 Problem Definition . 33

3.3.1 Satisfaction Problems . 34

3.3.2 Optimisation Problems . 34

3.3.3 Partial Problems . 35

3.4 Complexity . 35

3.4.1 Decision Problems . 35

3.4.2 Optimisation Problems . 38

3.4.3 Partial Problems . 40

3.5 Polynomial Classes . 45

3.5.1 Tractability due to the Constraint Graph 46

3.5.2 Tractability due to the Constraint Relations 52

3.6 Tractable super-CSP . 53

3.7 Summary and Limitations . 55

4 Full Fault Tolerance 57

4.1 Introduction . 57

4.2 Reformulation Methods . 59

4.2.1 Previous Method: P + P Reformulation 59

4.2.2 New Method: P × P Reformulation 61

4.3 Local Consistencies for Robustness . 64

4.3.1 Arc Consistency Extended: GAC+ 64

4.3.2 Super Arc Consistency: super-GAC 65

4.3.3 k-multiconsistency . 66

4.4 Algorithm for Achieving Closure . 67

4.4.1 Differences with Classical Closures 67

4.4.2 GAC+ Closure . 68

4.4.3 super-GAC Closure . 71

4.5 Theoretical Properties: . 74

4.5.1 Notations for consistency comparison 78

ix

4.5.2 Static vs. Dynamic context . 78

4.5.3 Filtering Level: static context . 79

4.5.4 Filtering Level: dynamic context 81

4.5.5 Complexity . 84

4.6 Search Algorithms . 87

4.6.1 Maintain GAC+ (MAC+) . 88

4.6.2 Super Maintain Arc Consistency (super-MAC) 88

4.6.3 Soundness and Completeness . 88

4.7 Summary and Limitations . 90

5 Weak Fault Tolerance 92

5.1 Introduction . 92

5.2 The Decomposition Algorithm . 94

5.2.1 Decomposition Approach . 95

5.2.2 Explanation of the Algorithm . 97

5.3 Repair Localisation . 98

5.3.1 Breakage Neighbourhood . 101

5.3.2 Preprocessing of the Similarity Constraint 103

5.4 Avoiding Unnecessary Checks . 105

5.4.1 Multidirectionality . 105

5.4.2 Ground Neighbourhood . 106

5.5 Sub-problems Solving . 106

5.5.1 Propagation Algorithm for the Similarity Constraint 106

5.5.2 Neighbourhood Inference for the Similarity Constraint 108

5.6 Master-problems Solving . 108

5.6.1 Implementation . 111

5.7 Theoretical Properties . 113

5.7.1 Soundness and Completeness . 113

5.7.2 Complexity . 115

5.7.3 Comparison with Full Fault Tolerance Algorithms 117

5.8 Summary and Limitations . 118

x

6 Partial Fault Tolerance 121

6.1 Introduction . 121

6.2 Minimising the Repair Size . 123

6.2.1 Objective Function . 123

6.2.2 Inference Method: “bmin-repairable” 123

6.2.3 Closure Algorithm for “bmin-repairable” 123

6.2.4 Theoretical Properties . 125

6.2.5 Alternative Approaches . 126

6.3 Maximising Full Fault Tolerance . 127

6.3.1 Objective Function . 127

6.3.2 Inference Method: “GAC+max” 127

6.3.3 Closure Algorithm for “GAC+max” 128

6.3.4 Theoretical Properties . 129

6.3.5 Inference Method: “super-GACmax” 130

6.3.6 Closure Algorithm for “super-GACmax” 130

6.3.7 Theoretical Properties . 137

6.4 Maximising Weak Fault Tolerance . 139

6.4.1 Objective Function . 139

6.4.2 Inference Method: “b-repairablemax” 139

6.4.3 Closure Algorithm for “b-repairablemax” 139

6.4.4 Theoretical Properties . 142

6.5 Summary and Limitations . 143

7 Extensions to the Framework 145

7.1 Introduction . 145

7.2 Extended Modelling . 146

7.2.1 Breakage, Repair and Free Sets 148

7.2.2 Constraints on the Breakages . 149

7.2.3 Constraints on the Repairs . 151

7.2.4 Solving Extended Problems . 153

7.3 Symmetry . 153

7.3.1 Symmetry and super-solutions 155

xi

7.3.2 Symmetry Breaking and super-solutions 161

7.4 Summary and Limitations . 164

8 Applications and Experimental Results 165

8.1 Introduction . 165

8.2 Benchmarks . 168

8.2.1 Jobshop Scheduling Problem (JSP) 168

8.2.2 Uniform Random Binary Constraint Satisfaction Problem 175

8.3 Phase Transition and Computational Complexity: 177

8.3.1 Phase Transition . 177

8.3.2 Comparison between CSP and SuperCSP 180

8.4 Algorithms Comparison: . 185

8.4.1 Algorithms for (1, 0)-SuperCSP 185

8.4.2 Algorithms for (a, b)-SuperCSP 186

8.5 Optimisation and Application: . 192

8.5.1 Algorithms for (a, b)-MaxRepairCSP 192

8.5.2 Tradeoff between Robustness and Optimality 196

8.6 Summary and Limitations . 199

9 Conclusion and Future Work 201

9.1 Contributions . 201

9.1.1 Extending the Framework . 202

9.1.2 Computational Cost . 203

9.1.3 Designing Algorithms . 204

9.2 Limitations . 205

9.3 Future Work . 206

9.4 Conclusion . 207

Bibliography 208

xii

List of Tables

Table

3.1 The complexity of finding super-solutions. 45

3.2 The complexity of finding super-models for SAT tractable classes ([Roy 98]). 45

3.3 The complexity of finding super-solutions on languages of constraint closed

under a constant operation. 53

3.4 The complexity of finding super-solutions on languages of constraint closed

under a majority operation. 54

3.5 The complexity of finding super-solutions of CSPs whose constraint graph

is a tree. 55

4.1 The P + P reformulation summary. 59

4.2 The P × P reformulation summary. 62

4.3 The complexity of computing (1, 0)-super-solutions for some global con-

straints. 86

4.4 The complexity of computing some local consistency closures for finding

(1, 0)-super-solutions. 87

5.1 The sub-problem Pϕ,A (Brute-force approach). 96

5.2 The sub-problem Pϕ,A (Neighbourhood-based inference). 107

7.1 The sub-problem Pϕ,A (Reminder). 148

7.2 The sub-problem Pϕ,A (Breakage and repair set restriction). 149

7.3 The sub-problem Pϕ,A (Breakage constraint). 151

7.4 The sub-problem Pϕ,A (Repair constraint). 151

8.1 Comparison of full fault tolerance algorithms. 186

xiii

8.2 The makespan penalty for (1, 1)-super-schedules. 197

xiv

List of Figures

Figure

1.1 An instance of the Jobshop Scheduling Problem. 2

1.2 A solution of the problem illustrated in Figure 1.1. 3

1.3 A feasible schedule (f) for the JSP illustrated in Figure 1.1. 9

1.4 A feasible schedule (g) for the JSP illustrated in Figure 1.1. 9

1.5 The consequences of postponing an activity in Schedule f 10

1.6 The consequences of postponing an activity in Schedule g. 10

1.7 Three approaches to robustness and their respective position in the space

of possible methods. 12

1.8 The Warehouse Allocation Problem. 13

1.9 An instance of the Warehouse Allocation Problem. 14

2.1 The Maintain Arc Consistency algorithm. 25

2.2 The Branch & Bound algorithm. 26

3.1 A simple constraint network and its solutions. 30

3.2 The reduction of an instance of CSP to (a, b)-super-SuperCSP. 37

3.3 The reduction of an instance of MaxClique to ∃1-MinBCSP. 42

3.4 The gadget for correlating repairability with clique size. 44

3.5 The reduction of an instance of GraphColouring to ∀(1, 1)-SuperTreeCSP. 49

3.6 The reduction of an instance of GraphColouring to ∃(1, 2)-SuperTreeCSP. 49

3.7 The reduction of an instance of ∀/∃(1, b)-SuperCSP to ∀/∃(1, b + 1)-

SuperCSP. 51

xv

4.1 A constraint network, its solutions, and the repairs of its unique (1, 0)-

super-solution. 58

4.2 A constraint network P and its reformulation P + P. 60

4.3 A (1, 0)-super-solution over two variables. 61

4.4 A (1, 0)-super-solution over three variables. 61

4.5 A constraint C(X1, X2) in P and its reformulation C×(X1, X2) in P × P. 62

4.6 An algorithm for computing the GAC+ closure of a constraint network

based on AC3. 70

4.7 A constraint over two variables. 72

4.8 An algorithm for computing the super-GAC closure of a constraint net-

work based on AC3. 73

4.9 An algorithm for computing the super-GAC closure of a constraint net-

work based on AC4. 75

4.10 A counter example for GAC+ º super -GAC. 80

4.11 A counter example for super -GAC 6º GAC(P × P). 81

4.12 A counter example for (GAC(P + P) 6º GAC+) (within search). 83

4.13 An example of the consequences of the same decision for MAC+ and MAC

on P + P. 84

4.14 An algorithm for finding (1, 0)-super-solutions of an Among constraint. 86

4.15 The relation between consistencies (reads if tail holds then head holds). 87

4.16 An algorithm for finding (1, 0)-super-solution using GAC+. 89

4.17 An algorithm for finding (1, 0)-super-solution using super-GAC. 89

5.1 A naive reformulation approach for solving an (a, b)-SuperCSP. 95

5.2 A backtracking algorithm for finding (a, b)-super-solutions. 98

5.3 An algorithm for checking the repairability of a partial solution. 98

5.4 An example of neighbourhood-based inference making. 99

5.5 The resolution of the sub-problem Pϕ,{X1} for the partial solution ϕ and

the breakage {X1}. 100

5.6 A second example of neighbourhood-based inference making. 101

5.7 The neighbourhood of a variable. 102

5.8 An example of preprocessing-based inference making. 104

xvi

5.9 An algorithm for computing the GAC closure of a Similarity constraint. 108

5.10 An algorithm for computing the GACclosure of a Similarity constraint

using neighbourhood-based inference. 109

5.11 An example of inference making from a sub-problem to the master-problem.109

5.12 Continuation of figure 5.11. 110

5.13 An algorithm for checking the repairability of a partial solution using

neighbourhood-based inference. 111

5.14 A backtracking algorithm for finding (a, b)-super-solutions. 113

5.15 An abstracted version of the repairability-Γ procedure. 115

5.16 The relation between consistencies (reads if tail holds then head holds). 119

6.1 An inference method for MinBCSP. 124

6.2 An algorithm for computing the minimum maximum repair size of a

solution. 124

6.3 An algorithm for computing the GAC+max closure of a constraint network.128

6.4 An algorithm for computing the super-GACmax closure of a constraint

network. 132

6.5 A constraint network. 134

6.6 The data structures after iteration 1 of super-ACmax. 134

6.7 The data structures after iteration 2 of super-ACmax. 135

6.8 The data structures after iteration 4 of super-ACmax. 135

6.9 The data structures after iteration 5 of super-ACmax. 135

6.10 The data structures after iteration 6 of super-ACmax. 136

6.11 The data structures after iteration 8 of super-ACmax. 136

6.12 A filtering algorithm for MaxRepairCSP. 141

7.1 Extended backtracking Algorithm for finding (a, b)-super-solutions. . . . 154

7.2 The set of solutions sol(P) and a symmetry mapping γ on this set. . . . 156

7.3 A symmetry of the 5-Queens problem. 158

7.4 A (1, 2)-super-solution of the 13-Queens problem and its symmetric im-

age by a 90◦ rotation. 161

7.5 The P × P reformulation, before symmetry breaking. 163

xvii

7.6 The P × P reformulation, after symmetry breaking. 163

8.1 An example of Jobshop Scheduling Problem. 170

8.2 The constraint network modelling the JSP shown in Figure 8.1. 171

8.3 An algorithm for computing the minimum makespan of a Jobshop Schedul-

ing Problem. 171

8.4 Phase transition expectation. 180

8.5 Comparison between MAC and super-MAC on a range of URBCSP instances.182

8.6 Comparison between MAC and decompose-backtrack-Γ on a range of

URBCSP instances. 183

8.7 decompose-backtrack-Γ: number of breakages checked. 184

8.8 Comparison between JSP and (1, 1)-SuperJSP (cpu-time). 184

8.9 Comparison between JSP and (1, 1)-SuperJSP (backtracks). 185

8.10 Neighbourhood-based inference: 75 constraints. 188

8.11 Neighbourhood-based inference: 125 constraints. 188

8.12 (1, 1)-SuperJSP: CPU Time (seconds) 189

8.13 (1, 1)-SuperJSP: Backtracks . 190

8.14 (1, 1)-SuperJSP: Makespan Length . 190

8.15 (1, 3)-SuperJSP: Cpu-time (seconds) 190

8.16 (1, 3)-SuperJSP: Backtracks . 191

8.17 (1, 3)-SuperJSP: Makespan Length . 191

8.18 The average repairability over time (8 jobs, 5 machines, 40 activities). . 194

8.19 The average repairability over time (8 jobs, 8 machines, 64 activities). . 194

8.20 The average repairability over time (10 jobs, 5 machines, 50 activities). . 195

8.21 The average repairability over time (10 jobs, 10 machines, 100 activities). 195

8.22 The makespan penalty for (1, 1)-super-schedules. 197

8.23 The tradeoff between (1, 1)-repairability and optimality. 198

Chapter 1

Introduction

The thesis defended in this dissertation is that:

The concept of fault tolerance can be extended in a number of directions
to provide robust solutions to constraint satisfaction and optimisation
problems. Finding fault tolerant solutions is significantly more difficult
than finding regular solutions. However, efficient and effective algo-
rithms can be designed for that purpose.

Fault tolerance has been introduced and studied on Boolean satisfiability problem

by Roy et al. [Ginsberg 98, Roy 98] as a framework for finding robust solutions of

combinatorial problems. In this chapter, we introduce and motivate our approach to

fault tolerance within constraint satisfaction and optimisation. We briefly introduce

constraint satisfaction and optimisation problems in Section 1.1. We motivate our

work, discuss the notion of uncertainty and review the previous work in this area in

Section 1.2. We introduce our approach to tackling uncertainty in Section 1.3 and

review the contributions of this dissertation and outline the subsequent chapters in

Section 1.4.

1.1 Constraint Programming

Constraint Programming is a generic framework for solving hard combinatorial

problems. The factor that makes CP stand out is its wider and richer language of

constraints. In the Propositional Satisfiability framework, the problem may be de-

composed into a conjunction of disjunctions of Boolean literals. In Mathematical

Integer Programming, the atomic parts are linear equations. A constraint, on the

2

other hand, is a broader, albeit rather ill defined, notion. Any n-ary relation over a set

of values that can be checked in polynomial time can be qualified as constraint. For

instance, (X ≤ Y), (Xi 6= Xj ∀i 6= j) or (|{v | Xi = v ∀i}| ≤ N) are all constraints,

however the first is a linear equation of arity 2, the second is not linear, and the third

is NP-hard to reason with. In fact, the idea behind constraint programming is that a

problem can be partitioned into smaller problems (constraints) with the only require-

ment that a propagation algorithm is readily available for each of them. Consequently,

one may see constraint programming as a framework for integrating algorithms in such

a way that they can interact efficiently for solving larger problems.

A Constraint Satisfaction Problem (CSP) involves a set of variables, a finite

domain of values associated to every variable and a set of constraints, i.e., relations

restricting the combinations of values for subsets of variables. A CSP is satisfiable if

and only if there is a assignment of values to variables, such that all constraints are

satisfied.

Example 1. For instance, consider the Jobshop Scheduling Problem (JSP). In this

problem, a set of n jobs need to be scheduled, using a set of m resources. A job is a

sequence of m activities of given durations, along with a relation mapping each activity

in the job with a resource. In Figure 1.1, we illustrate a JSP involving 3 jobs and 3

resources. Each row corresponds to a job, and an activity is represented as a rectangle

whose length corresponds to its duration and whose colour corresponds to the resource

it uses.

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

X11 X12 X13

X21 X22 X23

X31 X32 X33

Figure 1.1: An instance of the Jobshop Scheduling Problem.

The activities are to be scheduled, that is, a time point needs to be allocated to

every activity such that the following constraints hold:

• Within a job, the sequence of activities must be respected.

3

• Two activities sharing a resource must not overlap in time.

• The schedule must fit into a given time windows (makespan).

The instance of JSP represented in Figure 1.1 can be modelled and solved through

constraint programming. We can, for instance, associate a variable to each activity, that

is, Xij stands for the jth activity of the ith job. These variables will take their values

into a discretised set of time points. To ensure that the sequence within each job is

respected we introduce a set of temporal precedence constraints for any job i:

∀j ∈ [1..m − 1], Xij + Duration(Xij) ≤ Xij+1

Next, for any pair Xij , Xkl of activities sharing a resource, we have a disjunctive con-

straint ensuring that they do not overlap:

(Xij + Duration(Xij) ≤ Xkl) ∨ (Xkl + Duration(Xkl) ≤ Xij)

Finally, we restrict the domains to ensure that the deadline D is met.

∀i, j Xij + Duration(Xij) ≤ D

We give an example of valid schedule in Figure 1.2. Notice that the makespan is

minimal, that is, there is no shorter feasible schedule for these jobs.

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

Figure 1.2: A solution of the problem illustrated in Figure 1.1.

1.2 Uncertainty

When dealing with real world problems, efficiency and optimality may not be the

only concerns. For instance, the most tightly optimised schedule may not be the best

one if a single activity being delayed causes all other activities to stand idle. Moreover,

in many cases it is difficult or even impossible to obtain a perfect matching between

4

the real situation being modelled and the mathematical model. The real problem may

simply be too complex, and no perfectly accurate model can be produced; some data

may be unavailable or erroneous; the environment may simply be inherently dynamic,

hence the model cannot easily capture more than a given fixed state, etc. In this

dissertation we focus on the latter situation, however all these cases, from the modelling

and solving viewpoint, will result in a gap between the mathematical model and the

actual state of the environment when the solution is deployed. In the problems we

shall consider, the state of the environment is not known accurately while solving or

is prone to change. Uncertainty is ubiquitous in constraint programming application

domains. Scheduling and planning problem are, by essence, affected by such changes.

In a job-shop scheduling problem, for instance, the duration of processing an activity,

or the availability of a resource at a time t may change, because of an unexpected event.

A temporary power shortage may result in a activity being delayed, or in a machine

being unavailable for a period of time. In a design problem the actual specifications

and feature of the object to design may evolve during the development process; in a

packing problem, a new item may need to be packed, or its dimension may happen to

be different than first specified; more generally, preferences might evolve over time.

A number of methods have been proposed to tackle uncertainty within constraint

programming (see [Verfaillie 05] for a survey). A common approach is to look proactively

for a robust solution. The concept of robustness can be given many characterisations.

For instance, a solution is usually seen as robust if future changes are unlikely to affect

it, that is, this solution is able to undergo perturbation without being invalidated. We

shall refer to this type of robustness as reliability. However reliability is not the only

valuable property for a solution to have. We explore a second viewpoint on the solution

robustness, and we refer to this property as stability. For instance, in a trip planning

problem, we do not want to change the plan dramatically because of an unexpected

perturbation along the trip. If the plan is not stable. a train running late could entail

a chain of delays, resulting in a missed plane and a complete replanning. Intuitively, a

stable plan is resilient to such situations in the sense that a small perturbation, such as

a delay, can be dealt with by a proportionally small change in the solution. The notion

of fault tolerance has been introduced in the propositional satisfiability framework by

5

Roy, Ginsberg and Parkes [Ginsberg 98]. A solution is fault tolerant if a small change

in the model is guaranteed not to result in a large perturbation of the solution.

1.2.1 Related Work

We now give a brief overview of past and current work on uncertainty in con-

straint programming and scheduling. We list and comment on some approaches to

uncertainty and subsequently propose an informal classification into which we can lo-

cate the framework developed in this dissertation. Notice that this list is in no way

exhaustive. We direct the interested reader to more detailed surveys by Verfaillie and

Jussien [Verfaillie 05], and Davenport and Beck [Davenport 00]. The former addresses

constraint programming techniques in the context of dynamic and uncertain environ-

ment whilst the latter is focused on scheduling problems.

Flexible Constraint Satisfaction Problems: There are several incentives

for introducing degrees of violation of constraints, and in general, more continuous out-

comes than the usual satisfiability/unsatisfiability. Partial CSP ([Freuder 89, Freuder 92])

much like the MaxSAT problem, deals with overconstrainedness by relaxing the con-

straints, the goal being to satisfy most of them. Subsequent frameworks, such as Proba-

bilistic CSP [Schiex 92], fuzzy CSP [Dubois 93], valued CSP [Schiex 95] and semiring-

based CSP [Bistarelli 95, Bistarelli 99] have been proposed to deal with preferences and

overconstrainedness but can also been used to deal with uncertainty. Indeed, consider

a problem subject to uncertainty, that is, where contingent external events might inval-

idate a solution. Such an event can be seen as a constraint that may or may not hold.

The idea is thus to express uncertain constraints as soft constraints. They do not need

to be satisfied, but satisfying them is an extra security. A solution that satisfies many

such soft constraints is therefore more robust to changes.

Example 2. Consider for instance a JSP where the durations of activities are not

known with certainty. We can model this situation using a valued CSP. In this frame-

work, each constraint is associated with a totally ordered set of valuations that provides

a gradual notion of consistency. The valuations are aggregated using an operation such

as max,
∑

or
∏

, for instance. Let pi(d) be the probability that the duration of an

6

activity Xi exceeds d. We can replace the following precedence constraint:

Xi + Duration(Xi) ≤ Xj

with a valuation τ over the combinations of values (vi, vj) for Xi and Xj:

τ(vi, vj) = pi(vj − vi)

Similarly the disjunctive constraints may be replaced with the following valuation σ:

σ(vi, vj) = min(pi(vj − vi), pj(vi − vj))

The valuations shall thus be aggregated using the product operation, so that the total

cost of a solution represents the probability that two activities overlap in the schedule.

An optimal solution therefore minimises this probability, hence it is robust.

Dynamic Constraint Satisfaction Problem: The concept of Dynamic Con-

straint Satisfaction has been introduced in [Dechter 88] to model belief revision in a

Belief Maintenance System (BMS). A Dynamic Constraint Network (DCN) is defined

by Dechter as follows:

A Dynamic Constraint Network (DCN) is a sequence of static CNs each
resulting from a change to the preceding one, representing new facts
about the environment being modelled.[...]

page 3, [Dechter 88].

We can partition the past work on dynamic constraint satisfaction into the following

three lines of research:

• Solution and nogood reuse: The idea here is that given a sequence {P1,P2, . . .Pk}

of constraint networks, a solution for Pi can be used to help search for a solution

to Pi+1. Indeed the assumption is that since the change between two constraint

networks is relatively small, a solution of Pi+1 should be relatively close to a

solution of Pi. Similarly, when a part of Pi is found to be inconsistent, we know

that the same hold for cni+1, providing that the change between cni and cni+1

was an addition of constraints. Examples of such reasoning can be found in

[Verfaillie 94] and [Schiex 94].

7

• Incremental arc consistency: Here the situation is a little different as the as-

sumption is that a change, i.e., a jump from Pi to Pi+1 can happen at any time

while solving Pi. Therefore search algorithms need to be adapted to accom-

modate such changes. For instance, in [Bessiere 91] the well known algorithm

Maintain Arc Consistency (MAC) is modified in such a way that the inference

step does not need to be restarted from scratch when a change arises.

• Minimal perturbation: Here the idea is that the solution for Pi+1 should be

as close as possible to the solution for Pi. The minimal perturbation problem

has been studied in a scheduling setting [Sakkout 98, Sakkout 00] as well as in

constraint programming [Ran 02, Barták 03]. This is motivated by the same

goal as this dissertation: achieving stability. However, this viewpoint is purely

reactive whilst ours is purely proactive.

The framework we develop in this dissertation can be seen as proactively addressing the

problem of reducing the perturbation caused by an external event, that is, the transition

between two consecutive constraint networks in a DCN.

Observe that representations of uncertain problems as flexible CSPs or as dy-

namic CSPs are not mutually exclusive. In [Miguel 01] and [Miguel 03], it is shown

that both frameworks can be applied in conjunction and an integrated algorithm that

handles soft constraints while reusing past reasoning in a dynamic setting is proposed.

Stochastic Constraint Satisfaction Problem: In classical constraint pro-

gramming, variables correspond to decisions. However, when modelling problem involv-

ing uncertainty, we may need variables that correspond to the possible states of objects

that we cannot control. In the Mixed Constraint Satisfaction problem [Fargier 93,

Fargier 96], some of the variables are controllable and other are not controllable. The

latter models the environment and its uncertainties whilst the former are classical de-

cision variables. The goal is to find a solution maximising the probability of satisfying

the environmental constraints. Similar frameworks have been introduced for Boolean

satisfiability [Littman 01] and constraint satisfaction [Walsh 02, Manandhar 03]. These

frameworks also involve decision and state variables, however the probabilities are linked

to the values of state variables.

8

In the Branching Constraint Satisfaction Problem [Fowler 00, Fowler 03],

the future is only partially known. One must therefore make as robust as possible deci-

sions with respect to future events. Similarly, in the Open Constraint Satisfaction

Problem [Lamma 99, Faltings 02], the constraint network is not completely known in

advance. However, the motivation is different. Whereas, in a branching constraint sat-

isfaction problem we want to maximise the chance of eventually solving the CSP when

the events unfold, in an open problem some partially known aspects, such as values,

may relax the current problem, while some other, like constraints, may tighten it.

1.2.2 A Classification of Robustness

We have seen that the notion of robustness can be given many interpretations.

Moreover, within the context defined above there might be restrictions on how robust-

ness may be achieved. For instance, repairs may not be allowed and once a solution is

computed, it must be executed without change. In this case, only a proactive approach

can reduce the impact of the uncertainty. On the other hand, there are situations

where nothing is known about what is prone to change or break, and therefore a re-

active approach is likely to perform better. In order to put our approach for tackling

uncertainty into context with respect to previous work, we consider three important

dimensions across which such frameworks can be characterised. This view is certainly

not comprehensive and we leave many dimensions uncovered.

Stability vs. Reliability: Within the framework described earlier there are

mainly two ways for evaluating the robustness of a solution to a CSP. We will refer to

the first and maybe most intuitive definition as reliability, that is the ability to remain

a solution as often as possible, even in the event of a change in the model.

A solution is more reliable than another if and only if it has a greater
probability to remain a solution after a change.

The second notion, although widespread is perhaps less intuitive. The stability of a

solution is its ability to be affected as little as possible by a change. This gives way to

a more ambiguous definition as one should first define what does “affected” mean. One

accepted definition, which we shall use in the subsequent chapters, is the discrepancy

between the solution and its replacement after the change. However, there is again a

9

number of definitions that can be better adapted to the problem dealt with, such as the

loss in optimality, the CPU-time required to compute the alternative, and the number

of new resources consumed. We simply define the stability of a solution as its proximity

to an alternative, leaving the definition of the distance open for now.

A solution f is more stable than another solution g if and only if, in the
event of a change, a closer alternative to f than to g exists.

As observed in [Verfaillie 05], these two properties are not mutually exclusive, and a

sensible approach could be to combine both views.

Example 3. We illustrate the concepts or reliability and stability using the instance

of JSP in Figure 1.1.

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

60 24 30 38152

Figure 1.3: A feasible schedule (f) for the JSP illustrated in Figure 1.1.

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

������
������
������
������
������
������

������
������
������
������
������
������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

0 18 24 30 38 393

Figure 1.4: A feasible schedule (g) for the JSP illustrated in Figure 1.1.

We suppose now that the activities have uncertain release dates and that the

probability of an event precluding the release of an activity at time t is a linear increasing

function of t. Notice that we assume these unexpected events to be independent, that

is, a perturbation of t does not entail a perturbation of t − 1. We give in Figures 1.3

and 1.4 two solutions with equal (optimal) makespan. Clearly, since the mean start time

of the activities in the first solution (Schedule f , Figure 1.3) is less than in the second

10

solution (Schedule g, Figure 1.4), the probability that Schedule f will be executed exactly

as planned is larger than for Schedule g. In this context, one may conclude that Schedule

f is more reliable than Schedule g.

However, suppose now that an unexpected event occurs at time 0, and as a result,

the activity being processed at that time must be postponed (the other release dates remain

unaffected). In Schedule f , the only way to respond to this event is to postpone the

next activity, resulting in a chain of postponed activities, as illustrated in Figure 1.5.

However, consider Schedule g. There is enough space to swap this activity with the

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

This activity must be postponed

Figure 1.5: The consequences of postponing an activity in Schedule f .

next one using the same resource (that is, the next activity with the same colour). A

repaired schedule where the resulting perturbation is bounded (only two other activities

moved) is illustrated in Figure 1.6. Notice that in fact, for any small postponing of

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

����������������������
����������������������
����������������������
����������������������
����������������������
����������������������

������
������
������
������
������
������

������
������
������
������
������
������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

This activity must be postponed

Figure 1.6: The consequences of postponing an activity in Schedule g.

a single activity in Schedule g, no more than two activities need to be rescheduled in

response (the makespan will increase in only three cases). One can therefore conclude

that Schedule g is more stable than Schedule f .

Proactivity vs. Reactivity: Methods for dealing with changes are tradition-

ally labelled as proactive or reactive. Proactive methods are preferred choices when the

solving phase is off-line. In this case, a certain amount of time can be used to find a

11

solution with intrinsic robustness. The aim is to reduce the amount of work during

the repair phase, or even avoid it altogether. Reactive methods, on the other hand

are preferred when the changes are completely unknown, when their consequences are

too extreme to be dealt with proactively or when not enough computational time is

available during the solving phase. Here again, both approaches are clearly not fighting

each other, but rather act in synergy. Indeed an intrinsically robust solution should

require less work during the repair phase, and a good reactive method can make up for

a weakness that was not covered off-line.

Knowledge Intensity: One important criterion to take into account when

considering a method for tackling uncertainty in a problem is its reliance upon knowledge

about the environment or expertise in the domain. Ideally, no additional knowledge

over the data used to build the classical constraint network is required and no more

expertise than for solving the problem without taking uncertainty into account. For

instance, some approaches might require a list of the possible changes and an associated

probability distribution. Other methods might be specific to an application domain

and useless outside this domain. Most often a finite universe of possible changes must

be provided. However, a fully reactive approach, for instance, may not require any

specific knowledge. For instance, the JSP with uncertain release dates, described in

Example 3 can be modelled as a valued CSP where time points are attached a weight

corresponding to the probability of failure. However, in order to do so, one needs to

know the probability distribution at the modelling stage.

Other Dimensions: Clearly we do not cover all attributes. One may partition

methods on their ability to deal with a single change as opposed to a set of changes in

parallel, or a sequence of small changes. Alternatively, one may insist on the difference

between uncertainty coming from incorrect or partially known data, as opposed to

external events. Another dimension is the ability to deal with optimisation, and the

tradeoff between robustness and optimality thereof.

1.3 Fault Tolerance

We can observe that certain of these attributes promote or sometimes hinder other

attributes. For instance, it seems difficult for such a framework to be at the same time

12

Reactive
Proactive

Super Solutions

Low/high Knowledge

Mixed/stochastic CSPs

Minimal Perturbation

Reliability
Stability

Figure 1.7: Three approaches to robustness and their respective position in the space
of possible methods.

proactive and to require little knowledge about the environment. On the other hand,

a purely reactive method can only improve the stability i.e., minimise the effect of an

unexpected event but cannot improve the reliability which is intrinsically an attribute

of the initial solution. The notion of fault tolerance developed in this dissertation

is proactive whilst requiring very little or no additional knowledge. This notion does

not improve directly the reliability, but the stability of a solution, by guaranteeing the

existence of nearby alternative solutions in case of a small change. For instance, consider

a warehouse allocation problem where a number of shops need to be supplied by a set of

warehouses. Certain warehouses do not contain the necessary goods for some shops and

the cost of supplying one shop depends on the geographical location of the warehouse

and of the shop outlet, on the transportation system and so on. The problem is to

find an allocation of warehouses to shops, respecting the capacity of the warehouses

such that the cost stays within a given limit. When deploying a solution computed

off-line, it may be the case that a warehouse is temporarily unable to supply one or

several shops. That may happen because the good has not been produced on time, or

perhaps the transportation is at fault. Suppose that the solution computed during the

13

Figure 1.8: The Warehouse Allocation Problem.

solving phase involves a warehouse-to-shop assignment that is no longer valid. Another

solution satisfying the new constraint needs thus to be computed online to replace the

old solution. However, one might want this new solution to be as close as possible to the

old solution. Indeed it might be impractical to change too many routes on short notice.

A solution where a small perturbation, such as one warehouse unable to deliver a good

to a shop, can be repaired with a suitably small further alteration, such as swapping a

few assignments, is said to be fault tolerant. The notion of super-models [Ginsberg 98]

or δmodels [Roy 98] has first been defined for Boolean satisfiability problems by Roy,

Ginsberg and Parkes to exploit this idea. We quote Roy’s Ph.D. thesis:

To model this concept of fault tolerance we introduce the notion of
δmodels: these are satisfying assignments of Boolean formula for which
any small alteration, such as a single bit flip, can be repaired by another
small alteration, yielding a nearby satisfying assignment.

Preamble, page 5, [Roy 98].

We generalise this definition to constraint satisfaction on non-Boolean domains.

There are several definitions suitable for integer domains that collapse to Roy’s definition

on Boolean variables. We shall formally define and study two of these definitions in

Chapter 3. We give here a less formal definition and illustrate it through examples.

Definition 1. A (a, b)-super-solution is a solution in which any set of a or fewer vari-

ables can be assigned different values, providing that at most b other variables are also

reassigned.

14

This definition is very close to Roy’s. However, observe that in our case, when

a variable loses the value it is assigned, the existence of an alternative (along with the

repairs) is required. Another way would be to require all values in the domain to be a

valid alternative (here again with extra repairs).

Example 4. Consider the instance of the warehouse allocation problem illustrated in

Figure 1.9a, This instance involves 3 shops X, Y, Z and three warehouses a, b, c. We

suppose that all costs are identical, and that warehouse b and c can supply at most

two shops whilst warehouse a cannot supply more than one shop. Moreover, the goods

required by the shop X are not supplied by warehouse c, and the same is true for the

pairs Y -b and Z-a. We list all solutions satisfying the constraints in Figure 1.9b.

X

Y

Z

b

c

(≤ 2shops)

(≤ 2shops)

(≤ 1shop)
a

(a) Instance

〈X = a, Y = c, Z = b〉
〈X = a, Y = c, Z = c〉
〈X = b, Y = a, Z = b〉
〈X = b, Y = a, Z = c〉
〈X = b, Y = c, Z = b〉
〈X = b, Y = c, Z = c〉

(b) Solutions

Figure 1.9: An instance of the Warehouse Allocation Problem.

Consider the solution f = 〈X = a, Y = c, Z = b〉, and suppose that, for some

reason, warehouse c cannot supply shop Y anymore. The only alternative for supplying

shop Y is warehouse a. However, warehouse a already supplies the shop X and can only

supply one shop. Therefore we not only need to replace the supplier for Y , but also for

X. A valid alternative would then be 〈X = b, Y = a, Z = b〉. On the other hand, the

solution g = 〈X = b, Y = c, Z = b〉 is more stable. Indeed X = b can be replaced with

X = a, Y = c can be replaced with Y = a and finally Z = b can be replaced with Z = c,

and this without any further change. The latter therefore is a (1, 0)-super-solution whilst

the former is only a (1, 1)-super-solution.

Therefore, by choosing a (1, 0)-super-solution over other solutions, it is possible

at the outset to guarantee that we can deal with any perturbation on a single route

15

without stepping on other assignments, which is often a valuable property.

1.4 Contributions and Outline

This dissertation contributes toward better understanding, modelling and solving

problems subject to uncertainty.

• We extend the definition of super-model to the constraint satisfaction and opti-

misation framework and define a number of problems related to this definition.

Moreover, we further extend the definition to cover a larger range of problems

with a better accuracy for modelling breakages and repairs.

• We analyse the complexity of a number of decision and optimisation problems

related to finding super-solutions of constraint networks. We show that finding

super-solutions is NP-hard on several tractable classes of constraint networks.

• We introduce the first algorithms for finding super-solutions and for finding

solution with optimal stability.

This dissertation is organised as follows:

Chapter 2: Formal Background We introduce the technical background

necessary to the development of the subsequent chapters. We give some basics of com-

putational complexity theory. We briefly present the constraint satisfaction and opti-

misation problems as well as backtracking algorithms and the concepts of search and

consistency. Finally we introduce some notations and analysis methods used later in

this dissertation.

Chapter 3: Definitions and Complexity We formally define the concept of

super-solution as well as a set of related problems. Then we analyse the computational

complexity of these problems. Finally we study tractable classes of CSPs and the

complexity of finding super-solutions on these problems.

Chapter 4: Full Fault Tolerant Solutions We study a particular case of

super-solutions where no repair at all is allowed in response to a breakage. We introduce

three new methods and recall a former approach for this problem. One of these methods

is a reformulation whilst the other two rely on local consistency properties. We also

16

investigate the design of propagation algorithms for enforcing this novel type of local

consistency on some global constraints. Then we theoretically compare the filtering

power and computational complexity of these four algorithms.

Chapter 5: Weak Fault Tolerant Solutions We introduce an algorithm

for the general case, where the size of the breakages and repairs are not fixed. We first

present a naive algorithm which dynamically creates sub-problems for checking that

breakages are repairable. We subsequently show how we can make inference on the

resolution of a sub-problem in order to reduce the overall search space.

Chapter 6: Maximally Fault Tolerant Solutions We study some ways of

maximising the repairability of a solution. We introduce a set of Branch & Bound type

algorithms for the problem of minimising the maximum size of a repair, and for the

problem of maximising the number of breakages admitting a repair. These algorithms

are extensions of the algorithms introduced for the satisfaction case.

Chapter 7: Extensions to the Framework We show that the algorithm

introduced for the general case can handle more complex definitions of breakages and

repairs. We introduce the notion of a constraint for controlling the breakages and an-

other constraint for controlling the repairs. Finally we analyse the concept of symmetry

breaking within the super-solution framework. We show that symmetry breaking can

be used. However, it must be used in a slightly different way than for regular CSPs.

Chapter 8: Applications and Experimental Results We empirically in-

vestigate three main issues related to super-solutions. First we measure the increase

in computational complexity when searching super-solutions rather than regular solu-

tions. Second we compare the algorithms introduced in preceding chapters and assess

the significance of the inference methods introduced. Finally we study the more prac-

tical aspect of this framework: We use the Jobshop Scheduling Problem to assess the

tradeoff between computational effort and robustness as well as solution quality against

robustness.

Chapter 9: Conclusion and Future Work We conclude the dissertation

and discuss limitations and future work.

Chapter 2

Formal Background

2.1 Introduction

In this chapter we recall the formal background and introduce the notations used

in this dissertation. We first recall some basic notions of complexity in Section 2.2.

The problems we tackle belong either to P, NP or to the NP optimisation complexity

class (PNP). In Section 2.3 we introduce the constraint satisfaction and optimisation

problems. Then in Section 2.4 we define some concepts central to constraint program-

ming such as search and consistency processing that we use extensively in subsequent

chapters. Finally, we introduce some conventions and notations used throughout the

paper.

2.2 Worst Case Complexity

A problem is in the class P, standing for Polynomial-time, if there exists a

deterministic Turing machine deciding this problem in a number of steps polynomial

in the input size. A problem is in the class NP, standing for Non-deterministic

Polynomial-time, if it is verifiable in polynomial time by a non-deterministic Turing

machine. A non-deterministic Turing machine is a “parallel” Turing machine that can

take many independent computational paths simultaneously.

A problem is NP-hard if it is at least as hard than all problems in NP. To prove

hardness we use polynomial-time reductions. Given two problems P and Q, a Turing

reduction from P to Q is a program computable by an oracle machine, i.e., a Turing

machine with an oracle for deciding Q in one step, that can compute P . Intuitively, if

18

Q is easy then we can easily solve P , hence Q is at least as hard P . Turing reductions

are often subject to additional restrictions, for example that the oracle machine runs

in polynomial time (polynomial Turing reduction, or Cook reduction). Moreover, since

the class NP is not closed under Turing reduction, many-one reductions are often used

instead, where the additional restriction is that the oracle can only be called once, and

at the end of the computation. By transitivity, a problem is NP-hard if it is at least as

hard than another NP-hard problem. A problem which is both in NP and NP-hard is

called NP-complete.

The problems tackled in this dissertation will either be in P, NP or in PNP. The

class PNP (also written ∆2P) contains all problems P polynomially Turing reducible to

a problem Q in NP. We also classify problems in PNP[log(n)] where the Turing reduction

uses an oracle machine that runs in logarithmic time. As these problems are often func-

tional, the actual complexity classes for optimisation problems used in this dissertation

are FPNP and FPNP[log(n)].

2.3 Constraint Satisfaction and Optimisation

2.3.1 Constraint Satisfaction Problem

We first define the notion of constraint network and we define the constraint

satisfaction problem (CSP) as deciding if a constraint network accepts a solution.

Definition 2. A constraint network is a triplet P = (X ,D, C) whose components are:

• A totally ordered set of variables X = {X1, . . .Xn}.

• A mapping D : X 7→ 2Λ associating each variable Xi to a finite domain

D(Xi) ⊆ Λ, where Λ is a set of values. Typically Λ is a subset of Z.

• A set of constraints C = {C1(V1), . . . Cm(Vm)}. A constraint C(V) ∈ C is a

subset of mappings from a set of variables V to Λ: C(V) ⊆ {f | f : V 7→ Λ}.

Constraints can be defined either in intention, that is, as a predicate or in exten-

sion, that is as a list of tuples. Given a constraint C(Xi1 , . . . Xik), a tuple τ ∈ Λ|V | is

identified to the function mapping τ : Xij → τ [j]. The tuple τ satisfies a constraint

C(V), if and only if τ is an element of the associated relation, written τ ∈ C(V). We

19

impose the same restrictions as defined in [Bessiere 03] on the predicates used to define

constraints in intention:

• Given a tuple τ , the proposition “τ ∈ C(V)” can be decided by an algorithm

polynomial in the size of τ .

• The relation τ ∈ C(V) is defined over Λ|V | independently of the actual domains

of the variables in V .

By convention, we will use upper case for variables and constraints, lower case

for values, and we will index variables from 1 to n, constraints from 1 to m and values

from 1 to d when possible. Given a subset of variables E ⊆ X , an assignment of

E is a mapping f : E 7→ Λ such that, for any variable X ∈ E, f(X) ∈ D(X). A

unary assignment f : X → v is often denoted X = v. The restriction of an assignment

f : E 7→ Λ to a subset F of E, denoted f |F , is equal to f on F (f(F) = f |F (F)), and is

not defined otherwise. Assignments on disjoint domains can be composed by a simple

union. Let F, G ⊆ X be two disjoint sets of variables, and f : F 7→ Λ and g : G 7→ Λ

be two assignments for these sets. We define the union of f and g as the mapping

f ∪ g : F ∪G 7→ Λ such that (f ∪ g)|F = f and (f ∪ g)|G = g. An assignment f : E 7→ Λ

is consistent if and only if it satisfies all the constraints over E, i.e., for all C(V) ∈ C,

if V ⊆ E then f |V ∈ C(V). A solution is a consistent assignment whose domain (in

the analytical sense) is X , and the set containing all solutions of a constraint network

P is referred to as sol(P). A partial solution is defined as a mapping from variables

to subsets of values included in their domains:

ϕ : X 7→ 2Λ s.t. ϕ(X) ⊆ D(X) ∀X ∈ X

Such a partial solution defines an assignment f : A 7→ Λ, where X ∈ A if and only

if ϕ(X) = {f(X)}. We shall often identify the partial solution and the corresponding

assignment. The problem of deciding if a constraint network has a solution is known as

the Constraint Satisfaction Problem (CSP):

CSP

Instance. A constraint network P.
Question. Does P accept a solution?

20

The graph G = (X , {V | C(V) ∈ C}) is referred to as the constraint graph. No-

tice that it is an hypergraph unless all constraints are binary i.e., ∀C(V) ∈ C, |V | = 2.

We introduce the notion of distance between assignments. The distance ∆A(f, g) be-

tween two assignments over a set of variables A is defined as the number of discrepancies

or Hamming distance extended to non-Boolean domains:

∆A(f, g) = |{i | Xi ∈ A ∧ f(Xi) 6= g(Xi)}|

We shall often use ∆(f, g) instead of ∆X (f, g).

2.3.2 Propositional Satisfiability

For sake of simplicity, we shall consider the propositional satisfiability problem

(SAT) as a CSP on a Boolean constraint network. A solution of a SAT formula, referred

to as a model in this particular case, is a mapping α : X 7→ {0, 1}. Moreover, a SAT

formula is often given in Conjunctive Normal Form (CNF), i.e., a conjunction of

clauses. A clause is a disjunction of literals; it therefore forbids exactly one combination

of assignments for the involved variables.

2.3.3 Constraint Satisfaction and Optimisation Problem

We now define the constraint satisfaction and optimisation problem (CSOP).

Notice that we choose here to define this problem as a CSP augmented with a single

objective function to minimise. Other frameworks, such as Partial CSP [Freuder 89],

Valued CSP [Schiex 92] or Semi-Ring CSP [Bistarelli 95] may be preferred. However

they are all essentially amenable to a CSP with a single objective function (for instance

by merging all soft constraints). We shall focus on this simple definition throughout

this dissertation. Given a constraint network P and an objective function Φ, i.e., a

mapping Φ : sol(P) 7→ N, we denote Φ(P) the minimum value of Φ(f) for any solution

f ∈ sol(P).

CSOP

Instance. A constraint network P and an objective function Φ
Question. What is the value of Φ(P)?

In practice, the objective function Φ must take its value in a finite interval. When

a binary search on the values of Φ is possible, we only need to impose an exponential

21

bound in the size of an encoding, i.e., max(Φ) − min(Φ) ≤ kp(n) where p(n) is a

polynomial function, k a constant and n the size of the encoding notwithstanding Φ.

Within this restriction, the problem of computing the minimal value of Φ(f) for any

solution f of a constraint problem is in the complexity class PNP. Indeed, in order to

solve minimise(Φ) subject to P, one can proceed by dichotomy, alternatively solving

the satisfaction problem P augmented with the following constraint:

Φ ≤
ub − lb

2

and changing lb and ub accordingly. The number of calls to an NP oracle is therefore

bounded by log2(ub − lb), that is, p(n)log2(k), hence this construction is a polynomial

Turing reduction to a problem in NP.

2.4 Consistency and Search

The algorithms for solving constraint satisfaction problems can be partitioned

into three main classes.

Local search algorithms (e.g., Taboo Search, Simulated Annealing...) start

from a complete assignment f and iteratively apply local moves either randomly or in a

deterministic way. The process stops when f satisfies all constraints, i.e., is a solution,

or when a limit of moves or time is reached.

Algebraic algorithms (e.g., Adaptive Consistency, Bucket Elimination...)

perform operations on the constraint relations until either the problem is transformed

into a unique relation or is globally consistent.

Backtracking algorithms (e.g., Backtrack, MAC...) alternate search phases

(decision making) and inference phases where the consequences of these decisions are

evaluated. When a decision, no matter what subsequent choices are made, leads to an

inconsistency, then this decision is withdrawn and the complementary possibilities are

explored.

In this dissertation we shall focus on the third type of algorithm. More precisely

we shall often refer to the Maintain Arc Consistency (MAC) algorithm ([Gaschnig 74,

Gaschnig 79]). Most current constraint toolkits are based upon MAC. The concept of Arc

Consistency, used as inference step by this algorithm, was first introduced by Waltz

22

[Waltz 75], and subsequently studied by Mackworth and Freuder in [Mackworth 77]

and [Mackworth 85]. Although first defined on binary constraints, the extension to

non-binary constraints is not difficult. We shall define and use the extended notion of

Generalised Arc Consistency (GAC) throughout this dissertation, independently of

the constraint arity. Notice that the following definition corresponds to the notion of

Relational Arc Consistency [Dechter 96].

Definition 3. Given a constraint C(V), a GAC support for X = v on C(V) is an

assignment σ such that σ(X) = v and σ ∈ C(V).

Definition 4. A value v ∈ D(X) is generalised arc consistent with respect to a constraint

C(V) if and only if there exists a support for X = v on C(V). A variable X ∈ X is

GAC with respect to C(V) if and only if every value v ∈ D(X) is GAC with respect to

C(V). A constraint C(V) is GAC if and only if each variable in V is GAC with respect

to C(V). Finally, a constraint network is GAC if and only if all constraints are GAC.

2.4.1 Maintain Arc Consistency

As stated above, this algorithm alternates inference with search, that is, decision

making and withdrawing. The inference step consists of computing the generalised

arc consistent closure of the constraint network. We first describe the AC3 algorithm,

introduced by Mackworth and Freuder [Mackworth 85]. This procedure is often used for

its simplicity and good performance in practice. Then we introduce the MAC algorithm

that uses this inference method within a backtracking search.

Generalised Arc Consistent Closure: Let P = (X ,D, C) be a constraint

network. We say that a domain relation D′ is a subset of the domain relation D if and

only if the following holds: ∀X ∈ X , D′(X) ⊆ D(X).

Definition 5. The closure of a constraint network P = (X ,D, C) with respect to a local

consistency φ is the constraint network P ′ = (X ,D′, C) consistent for φ and such that

D′ is included in D, and any domain relation that is a strict subset of D and a strict

super set of D′ is not consistent for φ.

The generalised arc consistent closure of a set of domains D over single con-

straint C, denoted GAC(C,D), is obtained using either the propagation method de-

fined with generic closure algorithm (AC3 [Mackworth 85], AC2001 [Bessiere 05], and

23

GAC-schema [Bessiere 97] for instance), or a propagation algorithm associated to a con-

straint (AllDifferent [Régin 94], GlobalCardinality [Régin 96]). Throughout this

dissertation, we assume that the constraints are either binary or accepts a dedicated

propagation algorithm. In other words, we do not cover the case of non-binary con-

straints defined extensionally, that is, as a list of tuples. Hence, we first define an

algorithm similar to AC3 for computing the arc consistent closure on binary constraint

networks, then we discuss the slight modifications to accommodate larger arity (global)

constraints for which a propagation algorithm is available. We denote this closure algo-

rithm GAC.

Closure Algorithm: We give the pseudo code of a procedure to compute the

GAC closure of a constraint network in Algorithm 2. The return value is false if the

closure is empty and true otherwise. The closure is obtained by iterating over a stack Q

of constraints (loop 2). Q initially contains all constraints (Line 1). Moreover, because

the constraints are checked in only one direction, the dual arcs are added. At each

iteration, a constraint is selected (Line 3), and the procedure propagate (Algorithm 3)

is called (Line 4). A constraint is pushed on the stack whenever the domain of a variable

in its scope is reduced (Line 6). The process terminates when a fixed point is reached,

that is, when the stack is empty. The generic propagation method for binary constraints,

propagate, revises the domain of one variable with respect to a constraint and returns

true if and only if some values have been pruned. For non-binary constraints, we

assume that a different method propagate is associated and called in place of the

generic method. Notice that such a procedure is often not directed, hence the stack

initially contains only one occurrence of any global constraint.1

Backtracking Procedure: We give the pseudo-code of the Maintain Arc Con-

sistency (MAC) algorithm in Figure 2.1. MAC starts with a partial solution ϕ = D and

either extends to a solution (Line 1) or fails, thus proving infeasibility. A variable is

assigned if and only if its image under ϕ is a singleton. During the search phase, a unas-

signed variable is chosen (Line 2), and the problem is divided into as many branches as

values for that variable (Line 4). In each branch, an unassigned variable X is reduced

to a singleton ϕ(X) ← {v} (Line 5). During the inference phases, the domains D are

1 Actual implementations of MAC usually have far more complex management of this queue.

24

replaced by ϕ and the GAC closure is achieved (Line 6). If the closure is not empty, then

the search continues recursively (Line 7) until all variables are assigned. If the closure

is empty and if not all values have been explored for this variable, then the previous

state is restored (Line 8) to the previous saved state (Line 3). Then, a new branch

corresponding to a new value is searched. Alternatively, if none of these branches lead

to a solution, the last decision is withdrawn, we say that the algorithm backtracks

(Line 9).

2.4.2 Branch & Bound

In this section we recall the basic Branch & Bound procedure. As opposed to a

backtracking procedure applied to decision problems, the Branch & Bound algorithm

successively explores and bounds the search space in order to find the optimal outcome

for the objective function. The search part is akin to a backtracking procedure. However,

since the optimal outcome is not known until all possibilities have been exhausted, the

search does not stop when a solution is found. Instead, when a solution f is found,

its value for the objective function Φ(f) is computed (Line 1) and the upper bound

ub is updated accordingly. Then, the constraints base is augmented with the bound

Φ(P) < ub (Line 2). This bound can be used as a constraint to reduce the search space

in the procedure Filtering (Algorithm 5), queried at each node (Line 3). Notice that

this procedure may differ from a simple GAC procedure. The algorithms introduced in

Chapter 6 are such alternative Filtering procedures.

The inference method (procedure Filtering, Line 3) is called at each node of the

search tree, and performs inference with respect to the constraints and also with respect

to the objective function and the current upper bound ub. This procedure is used to

bound the search tree, that is, to guide the search toward strictly improving solutions

by pruning branches where all solutions can only be worse or equal to the upper bound

with respect to the current upper bound. In fact, since the constraint Φ(P) < ub is

added to the constraint network when an improving solution is found, a classical GAC

closure procedure can make inference with respect to the objective function. However,

since the relation Φ(P) < ub may not be a constraint in the strict sense of the term2 ,

2 For some problems tackled in this dissertation, checking the truth value of this relation is NP-
complete.

25

Algorithm 1 MAC

Data : P = (X ,D, C), ϕ, F [= X]

Result : Does P admit a solution
1 if F = ∅ then return true;
2 choose X ∈ F ;
3 save ϕ;
4 foreach v ∈ ϕ(X) do
5 ϕ(X) ← {v};
6 if GAC(P ′ = (F , ϕ, C)) then
7 if MAC(P, ϕ,F \ {X}) then return true;

8 restore ϕ;

9 return false;

Algorithm 2 GAC

Data : P = (X , ϕ, C)

Result : The GAC closure of P
1 Q ← C ∪ {C(Y, X) | C(X, Y) ∈ C};
2 while Q 6= ∅ do
3 select and delete any C(Xi, Xj) from Q;
4 pruned ← propagate(C(Xi, Xj), ϕ);
5 if ϕ(Xj) = ∅ then return false;
6 if pruned then Q ← Q ∪ {C(Xj , Xk) ∀k};

return true;

Algorithm 3 propagate

Data : C(Xi, Xj), ϕ

Result : The GAC closure of Xj with respect to C(Xi, Xj)

pruned ← false;
foreach w ∈ ϕ(Xj) do

if 6 ∃v ∈ ϕ(Xi) s.t. 〈v, w〉 ∈ C(Xi, Xj) then
ϕ(Xj) ← ϕ(Xj) \ {w};
pruned ← true;

return pruned;

Figure 2.1: The Maintain Arc Consistency algorithm.

in the problems introduced in this dissertation, we explicitly pass the objective function

and the upper bound to the procedure Filtering. Moreover, we do not describe the

actual behaviour of this procedure. Notice that we assume that the objective function

26

Algorithm 4 Branch&Bound

Data : P = (X ,D, C), ϕ, Φ, F [= X], ub[= 0]

Result : The maximum value of Φ
if F = ∅ then

1 ub ← Φ(P);
2 C ← C ∪ {Φ(P) < ub};

return;

choose X ∈ F ;
save ϕ;
foreach v ∈ ϕ(X) do

ϕ(X) ← {v};
3 if Filtering((F , ϕ, C), Φ, ub) then

Branch&Bound(P, ϕ, Φ,F \ {X}, ub);

restore ϕ;

return ub;

Algorithm 5 Filtering

Data : P, Φ, ub

Result : P ← The closure of P for some filtering method

1 return GAC(P);

Figure 2.2: The Branch & Bound algorithm.

Φ is positive. Therefore, until a first complete solution is found, the upper bound is set

to 0 and has no impact on the search.

2.5 Conventions and Notations

Throughout this dissertation, we shall study the theoretical properties of a num-

ber of algorithms. Most of these procedures are either closure or search algorithms using

closures. We are interested in three properties:

Complexity: We shall study the space and time complexity of several algo-

rithms and reformulations. We use the following notations as consistently as possible:

Given a constraint network P = (X ,D, C), we denote n the number of variables (|X |),

m the number of constraints (|C|) and d the domain size, usually assumed homogeneous

over all variables. Finally the constraint arity, that is, the cardinality of a constraint

27

scope is denoted c, notice that this value is also often assumed homogeneous across

constraints. A constraint can be defined either in extension, as a list of tuples, or in

intention, that is by a predicate that can be called to check if a tuple is satisfying or not.

The space and time complexity can be affected since the size of an instance is different

in both cases. Using these notations, the size of a constraint network is O(nd + mdc)

in extensional form and O(nd + m) if constraints are given in intention. In Chapter 4,

we consider by default the extensional cases, and sometimes restrict the result to bi-

nary networks. However, in Chapter 5 and 6, we take a more practical viewpoint and

consider by default that a constraint is non-binary and defined in intention.

Soundness and Completeness: We shall prove the soundness and complete-

ness of several reformulations, local consistencies and closure or search algorithms. To

avoid repetition and to clarify the notion of soundness and completeness in each of these

cases, we define these notions in their respective contexts. In general, an algorithm for

a decision problem is sound if and only it never answers “NO” on a satisfiable instance

and complete if and only if it never answers “YES” on an unsatisfiable instance.

A local consistency φ is sound if and only if any assignment that can participate

in a solution is consistent for φ. In other words the consistency will not rule out any

decision that can lead to a solution. Local consistencies are usually not complete in the

sense that a problem may be consistent whilst not having a solution.

A closure algorithm for a local consistency is sound if and only if it does not prune

consistent assignments and complete if it prunes all inconsistent assignments. In other

words, the result D′ of the closure of D for a local consistency φ is the domain relation

such that for every variable X, D′(X) is the largest subset of D(X) for which φ holds.

A search algorithm is sound if and only if any returned solution is valid. A search

algorithm is complete if and only if, when a solution exists, it is always eventually found.

In other words, a proof of unsatisfiability is always sound. Since all algorithms studied

in this dissertation are backtrack search algorithms, alternating decision and inference

making, and since the backtrack procedure does not hinder soundness nor completeness,

we only need to prove two properties:

• To guarantee soundness of the algorithm, since only the inference method can

discriminate an assignment, we must make sure that the inference method ap-

28

plied to a full assignment fails if this assignment is not a solution.

• To guarantee completeness we must ensure that the inference method is sound,

i.e., never prunes a valid branch of the search tree.

A reformulation is a one to one mapping over problems in NP. Given a reformu-

lation R mapping an instance P to P ′, we say that R is sound (resp. complete) if and

only if applying a sound (resp. complete) algorithm on P ′ is a sound (resp. complete)

method to solve P. In our cases, the instance being reformulated will often be a con-

straint network P for which we aim at finding a super-solution, and the target another

constraint network P ′ where we ask for a regular solution. The sound and complete

algorithm used in the proof will thus be MAC and GAC for respectively search algorithms

and consistency properties or closures.

Tightness: Last, we shall compare the filtering power, or tightness, of different

local consistencies. In line with [Debruyne 97], we say that a local consistency property

Φ is as strong as Ψ (written Φ º Ψ), if and only if, given any domains, Φ holds implies

that Ψ holds; we say that Φ is stronger than Ψ (written Φ ≻ Ψ) if and only if Φ º Ψ

but not Ψ º Φ; we say that Φ is equivalent to Ψ (written Φ ≃ Ψ) iff Φ º Ψ and Ψ º Φ;

we say that they are incomparable otherwise (written Φ ⊲⊳ Ψ).

Chapter 3

Definitions and Complexity

3.1 Introduction

In this chapter we formally define the notion of super-solution and relate it to

super-models for propositional satisfiability in Section 3.2. Then we define several re-

lated problems in Section 3.3 and discuss their complexity in Section 3.4. In particular

it is interesting to note that finding super-solutions rather than regular solutions does

not change the complexity class of the problem in general. However, we show, in Sec-

tion 3.5 that for some tractable classes of CSP, restricted either on the macro-structure

(constraint graph), or micro-structure (constraint relations) finding super-solutions may

be NP-hard.

3.2 Fault Tolerant Solutions

3.2.1 Super Models

The notion of super-models has first been defined for Boolean satisfiability prob-

lems by Roy et al. in [Roy 98]. An (a, b)-super-model α is a model of a Boolean formula

such that for any set of atoms A, if |A| ≤ a, then there exists a disjoint set B such that

|B| ≤ b and if we negate α(A ∪ B) we obtain another model. We quote the definition

of (1, 1)-super-models from Roy’s Ph.D. thesis:

Definition 6. A super-model of a Boolean formula F is a satisfying assignment α of

F , F (α) = 1, such that for every i, if we negate the ith bit of α, there is another bit

j 6= i of α which we can negate to get another satisfying assignment.

30

Chapter 1, page 6, [Roy 98].

3.2.2 Super Solutions

We shall see that the generalisation of supermodels from Boolean to finite domains

is simple and does not entail extra computational complexity. Nevertheless, the term

negate can be interpreted either as existential or universal when applied to non-

Boolean variables. For instance, negating an assignment could either mean that the

value used in assignment is no longer available and an alternative can be chosen freely,

or that a distinct value is arbitrarily forced by external circumstances. We therefore

propose two generalisations to finite domain constraint satisfaction problems. Both

definitions collapse to Roy’s definition when domains are Boolean.

Example 5. We illustrate the various concepts we introduce through the constraint

network depicted in Figure 3.1. We define variables, domains and constraints for a

simple constraint network, and list all the solutions accepted by this network.

Variables:

X1 ∈ {0, 1}

X2 ∈ {0, 1}

X3 ∈ {0, 1}

X4 ∈ {0, 1}

Constraints:

X1 ≤ X2

X3 ≤ X4

X1 = X3

X2 = X4

Solutions:

〈0, 0, 0, 0〉

〈0, 1, 0, 1〉

〈1, 1, 1, 1〉

Figure 3.1: A simple constraint network and its solutions.

We first define the notion of repairability that will be reused in subsequent

definitions. We use the notion of distance ∆A(f, g) between two assignments f and g

on a set A, defined in Section 2.3.

Definition 7. A breakage A is a subset of variables (A ⊆ X). A b-repair of a breakage

A for a solution f is a solution g such that ∆A(f, g) = |A| and ∆(f, g) ≤ |A| + b.

A breakage A is existentially b-repairable (or simply b-repairable) for a solu-

tion f if and only if there exists a b-repair of A for f .

Similarly, A is universally b-repairable iff for every assignment τ of A such

that ∆A(τ, f) = |A|, there exists a b-repair g of A for f such that g|A = τ .

31

A repair of a breakage A for a solution f is an alternative solution with a distinct

image on A and at most b discrepancies on X \ A. For instance, in Figure 3.1, the

solution 〈0, 0, 0, 0〉 is a 1-repair of the breakage {X2} for the solution 〈0, 1, 0, 1〉. A

super-solution is then defined as a solution such that any subset of a or less variables

(breakage) is repairable. A super-solution is existential if every breakage is extensionally

repairable or universal if every possible ways for that subset to change is covered by a

repair, i.e., it is universally repairable.

Definition 8. An existential-(a, b)-super-solution f is a solution of P such that for any

set A ⊆ X , if A ≤ a, then A is b-repairable for f .

Definition 9. A universal-(a, b)-super-solution f is a solution of P such that for any

set A ⊆ X , if A ≤ a, then A is universally b-repairable for f .

In the constraint network illustrated in Figure 3.1, 〈0, 1, 0, 1〉 is an existential-

(1, 1)-super-solution since 〈0, 0, 0, 0〉 is a 1-repair for the breakages {X2} and {X4} whilst

〈1, 1, 1, 1〉 is a 1-repair for the breakages {X1} and {X3}. The solution 〈0, 1, 0, 1〉 is both

an existential-(1, 1)-super-solution and a universal-(1, 1)-super-solution since domains

are Boolean. In fact it is also a (1, 1)-super-model of the equivalent Boolean formula.

Notice that there is a number of ways one can generalise the definition to non-Boolean

domains, whilst being consistent with the original definition. We cover these two natural

definitions in the present chapter. Then in subsequent chapters, we shall focus on the

former, existential-(a, b)-super-solution, which we shall refer to as (a, b)-super-solution or

simply super-solution when there are no ambiguities. Finally, we shall see in Chapter 7

that the methods introduced in this dissertation can handle variations of the classical

definition.

The main reason for focusing on existential-(a, b)-super-solutions is that the uni-

versal condition is much too strong to be practically useful. For instance, if there exists

a unary assignment X = v that does not participate in any solution, then there is

no universal-(a, b)-super-solution since the breakage {X} is not repairable. There are

similar, though weaker, conditions for existential super-solutions. For instance, a SAT

formula or a constraint satisfaction problem with a backbone variable [Schneider 96]

cannot have any existential-(a, b)-super-solution. Indeed, a variable belongs to the back-

bone if and only if it takes the same value in all solutions. Therefore, there is no alter-

32

native for this variable, hence a breakage involving this variable is not repairable for any

repair size. A last example is the case of permutation problems. In a permutation

problem a set of n variables must be assigned a set of n values such that no two variables

share the same value. These problems arise frequently in practice. However there cannot

be any (1, 0)-super-solutions, either existential or universal, for permutation problems,

since if a variable was to be reassigned, the value it was previously assigned must be

taken by some other variable, hence at least one repair is necessary. For instance the

constraint network illustrated in Figure 3.1 does not admit any (1, 0)-super-solutions,

since it contains two equality constraints.

Another important observation is that we cannot find super-solutions merely by

adding to the constraint network a given (global) constraint satisfying the conditions

defined in Section 2.3. More precisely, there is no constraint C satisfying the def-

inition in [Bessiere 03] and such that for any network P = (X ,D, C), a solution of

P ′ = (X ,D, C ∪ {C}) is a super-solution of P. Indeed, constraints are defined as poly-

nomial time checkable relations over a set of values, and should not be affected by the

actual domains D. We show through an example that the semantics of such a constraint

relation is not independent of the domains.

Example 6. For instance, consider the following constraint network:

X1 ≤ X2 ≤ X3 D(Xi) = {1, 2, 3} ∀i

The mapping f : Xi → i is a existential-(1, 0)-super-solution. However, if the domains

are changed to:

D(Xi) = {1, 2, 3} ∀i ∈ [1..2] D(X3) = {1, 3}

then f , although still a valid assignment, is no longer an existential-(1, 0)-super-solution,

as there is no repair if X3 breaks.

A constraint relation can be defined as either accepting the tuple 〈1, 2, 3〉 or

rejecting it. However it cannot be conditional on the current state of the domains.

3.2.3 Repairability

We have seen that some properties of problems and models do not allow super-solutions.

Alternatively, a constraint network can simply be too tightly constrained to accept a

33

super-solution. In such cases some solutions may still be preferred as they are “closer” to

a super-solution than others. To this end, we define the notion of partial repairability

of a solution to be the number of breakages that can be repaired.

Definition 10. The existential-(a,b)-repairability of a solution f is equal to the number

of subsets A of X with cardinality less or equal than a that are b-repairable for f .

Definition 11. The universal-(a,b)-repairability of a solution f is equal to the number

of subsets A of X with cardinality less or equal than a that are universally b-repairable

for f .

For instance, in example 3.1, the solution 〈0, 1, 0, 1〉 has a (1, 1)-repairability of 4,

whilst 〈0, 0, 0, 0〉 and 〈1, 1, 1, 1〉 have both a (1, 1)-repairability of 2. The repairability

therefore defines a relaxed notion of stability. We consider in this chapter the problem

of finding a solution with maximal repairability. There are other measures of stability,

related to the notion of super-solution, that could be useful in certain situations. We

also consider, in this dissertation the relaxation of the repair size b. In this case, we

want to find the solution for which b is minimum. However, many other possibilities

exist, for instance we could maximise the size of the repairable breakages (a), or we

could aggregate these criteria in some way.

3.3 Problem Definition

We define some problems related to the notion of super-solution. We consider

two classes of extensions besides the standard problem of deciding the existence of an

universal or existential super-solution for a constraint network. In the second class we

seek super-solutions with maximum objective value on constraint satisfaction and opti-

misation problems. Finally, we define partial problems, that can be seen as analogous

to MaxCSP or MaxSAT in the context of super-solutions: The solution returned is

not necessarily a super-solution but as close as possible to be one.

Here again we covered the problems that seemed “natural”. However many other

problems related to super-solutions could be considered.

34

3.3.1 Satisfaction Problems

We first define the problem of the existence of super-solutions, either universal or

existential.

∃(a, b)-SuperCSP

Instance. A constraint network P.
Question. Does there exist an existential-(a, b)-super-solution of P?

∀(a, b)-SuperCSP

Instance. A constraint network P.
Question. Does there exist a universal-(a, b)-super-solution of P?

3.3.2 Optimisation Problems

Next we define the problem of finding an optimal super-solution for some objective

function. Here again the super-solution may be universal or existential. Moreover, we

may ask the repairs to be themselves optimal or near optimal or even not restrict them

at all with respect to the objective function.

∃(a, b)-SuperCSOP

Instance. A constraint network P, an exponentially bounded objective
function Φ.
Question. What is the minimum value of Φ(f) where f is an existential-
(a, b)-super-solution of P?

∀(a, b)-SuperCSOP

Instance. A constraint network P, an exponentially bounded objective
function Φ.
Question. What is the minimum value of Φ(f) where f is a universal-
(a, b)-super-solution of P?

∃(a, b)-SuperCSOP∗

Instance. A constraint network P, an exponentially bounded objective
function Φ.
Question. What is the minimum value σ for which an existential-
(a, b)-super-solution and a complete set of repairs have an image under
Φ less than or equal to σ?

∀(a, b)-SuperCSOP∗

Instance. A constraint network P, an exponentially bounded objective
function Φ.
Question. What is the minimum value σ for which an universal-(a, b)-
super-solution and a complete set of repairs have an image under by Φ
less than or equal to σ?

35

3.3.3 Partial Problems

Finally, we define the problem of finding the solution with best repairability, or

minimal maximum repair size. These problems are “partial” in the sense that the robust-

ness condition is relaxed, i.e., partially enforced, as in the partial constraint satisfaction

problem [Freuder 89].

∃a-MinBCSP

Instance. A constraint network P.
Question. What is the minimum value of b for which there exists an
existential-(a, b)-super-solution of P?

∀a-MinBCSP

Instance. A constraint network P.
Question. What is the minimum value of b for which there exists a
universal-(a, b)-super-solution of P?

∃(a, b)-MaxRepairCSP

Instance. A constraint network P.
Question. What is the maximum value of existential-(a,b)-repairability(f)
for any solution f of P?

∀(a, b)-MaxRepairCSP

Instance. A constraint network P.
Question. What is the maximum value of universal-(a,b)-repairability(f)
for any solution f of P?

3.4 Complexity

3.4.1 Decision Problems

Deciding if a SAT problem has an (a, b)-super-model is NP-complete [Ginsberg 98].

Since super-solutions collapse to super-models on Boolean domains, and SAT problems

can be seen as Boolean CSPs, the NP-hardness result lifts immediately. Throughout

this section, n will denote the number of variables (|X |) of a constraint network P, and

d the domain size |D(Xi)| which we consider uniform across all variables unless stated

otherwise. The parameters a and b are considered part of the definition of the problem.

Moreover, a needs to be a constant for these proofs to be correct. However, there is no

such restriction on b. Notice that since we are not considering a and b as “data”, an

36

NP-completeness result for a given value of a or b does not necessarily extend to larger

values.

Theorem 1. ∃(a, b)-SuperCSP is NP-complete if a is constant.

Proof. ∃(a, b)-SuperCSP is in NP: The polynomial witness is the super-solution

itself and a set of repairs. The number of repairs is
∑k=a

k=1

(

n
k

)

. This a polynomial

number (≤ na) of solutions, and checking each of them can be done in polynomially

bounded time.

∃(a, b)-SuperCSP is NP-hard: In the particular case where the constraint

network is a SAT formula F , ∃(a, b)-SuperCSP is equivalent to deciding if F has an

(a, b)-super-model (NP-complete from [Ginsberg 98]).

Theorem 2. ∀(a, b)-SuperCSP is NP-complete if a is constant.

Proof. ∀(a, b)-SuperCSP is in NP: The polynomial witness is the super-solution

itself and a set of repairs. The number of repairs is
∑k=a

k=1

(

n
k

)

(d−1)a. This a polynomial

number (≤ nada) of solutions, and checking each of them can be done in polynomially

bounded time.

∀(a, b)-SuperCSP is NP-hard: In the particular case where the constraint

network is a SAT formula F , ∃(a, b)-SuperCSP is equivalent to deciding if F has an

(a, b)-super-model (NP-complete from [Ginsberg 98]).

We nevertheless give a reduction of CSP into ∃(a, b)-SuperCSP that shall be

used in some subsequent proofs. Our reduction constructs a constraint network which,

if it has any solution, has an existential-(a, b)-super-solution for any a + b ≤ n. An

example illustrating this construction is given in Figure 3.2.

Construction 1. Given a constraint network P = (X ,D, C) we first assume, without

loss of generality, that only strictly positive values are used (Λ = Z
+). We construct

P ′ = (X ,D′, C′) as follow s. The domains of each variable is concatenated to its nega-

tion: ∀X ∈ X , D′(X) = D(X) ∪ {−v | v ∈ D(X)}. Then we modify the constraints

so that they behave equivalently on the new values. For instance, we can replace every

occurrence of a variable X by its absolute value abs(X). Clearly, this constraint network

has a solution if and only if the original network also has. In addition, any breakage

37

A ⊆ X variables can be repaired by replacing the corresponding values with their negated

values and any number of reassignments (negations). Therefore, for any given a, b ≤ n,

P ′ has an existential-(a, b)-super-solution if and only if P is satisfiable.

≤6=

≤

X2 ∈ {1, 2}X1 ∈ {1, 2}

X3 ∈ {2, 3}

X2 ∈ {−2,−1, 1, 2}X1 ∈ {−2,−1, 1, 2}

abs(X1) 6= abs(X3)

abs(X1) ≤ abs(X2)

abs(X2) ≤ abs(X3)

X3 ∈ {−3,−2, 2, 3}

Figure 3.2: The reduction of an instance of CSP to (a, b)-super-SuperCSP.

Similarly, we give a reduction of CSP to ∀(a, b)-SuperCSP.

Construction 2. Given a constraint network P, we build P ′′ = (X ,D, C′′) by replacing

the set of constraints C by a singleton C′′ = {C ′′(X)} with C ′′(X) defined as follows:

τ ∈ C ′′(X) ⇔ ∃ρ | ∆(τ, ρ) ≤ a ∧ ∀C(V) ∈ C, ρ|V ∈ C(V)

First, observe that this constraint is polynomial to check, since, given a tuple τ , the

number of tuples at Hamming distance a or less is
∑

k∈[0..a](
(

n
k

)

dk), which is a polynomial

in a. Now we show that any solution f of P is a universal-(a, b)-super-solution of P ′′.

Indeed, consider any breakage A ⊆ X such that |A| ≤ a. Any assignment of A extended

so as to match f on X \ A, is by definition at a Hamming distance |A| ≤ a of f and

thus is a solution. Finally it is easy to see that if P has no solution, then neither has

P ′′ since C ′′(X) would then be empty.

We saw that the problem (a, b)-SuperCSP is in NP. Moreover, it is NP-complete

to decide if a given solution is an (1, b)-super-solution.

Theorem 3. Deciding if a solution is an existential-(1, b)-super-solution is NP-complete.

Proof. Deciding if a solution is an (1, b)-super-solution is in NP: The polynomial

witness is the set of n repairs. Checking each of them can be done in polynomially

bounded time.

Deciding if a solution is an (1, b)-super-solution is NP-hard: We reduce

the problem of deciding the existence of a clique of size at least K in a graph to our

38

problem. Given a graph G = (V, E), we introduce a constraint network P with n = |V |

Boolean variables X1, . . . Xn standing for the nodes of the graph, and one extra Boolean

variable X0. Then, for every pair of nodes vi, vj ∈ V such that (vi, vj) 6∈ E, we introduce

the constraint C(X0, Xi, Xj) = (X0 = 0 ⇒ (Xi+Xj ≤ 1)). Finally the “query” solution

will be f : Xi → 1, and the parameters a and b will be set respectively to 1 and n−K.

We show that there exists a clique of size at least K in G if and only if f is an (1, b)-

super-solution of P.

⇒: Suppose that Cl ⊆ V is such that ∀vi, vj ∈ Cl, (vi, vj) ∈ E ∧ |Cl| ≥ K.

notice that as long as X0 is assigned to 1, no constraint can be violated, hence any

breakage {Xi} such that 1 ≤ i ≤ n admits a 0-repair. Now consider the breakage {X0}.

Given a clique Cl ⊆ V of cardinality K, we define the solution g as follows:

g(Xi) =







1 if vi ∈ Cl

0 otherwise

The solution g is a b-repair for the breakage {X0}. Consider, without loss of general-

ity, a constraint C(X0, Xi, Xj), by definition, (vi, vj) 6∈ E, therefore vi and vj cannot

both belong to Cl, hence (g(Xi) + g(Xj)) ≤ 1. Consequently, C(X0, Xi, Xj) is satis-

fied. Moreover, since |Cl| = K, exactly K variables are assigned to the value 1, hence

∆(f, g) = n − K + 1.

⇐: Suppose that f is an (1, b)-super-solution. It follows that the breakage {X0}

must admit a b-repair. The only one alternative assignment for X0 is 0, therefore the

“conditional” constraints now ensure that two variables corresponding to nodes that

do not share an edge in the graph cannot be simultaneously assigned to 1. Hence the

restriction of any solution g to X1, . . . Xn corresponds to a clique in G. Moreover, since

the number of discrepancies with f (∆(f, g)) is at most n−K + 1, at least K variables

are assigned 1. Therefore the corresponding clique has cardinality K.

3.4.2 Optimisation Problems

The proofs for optimisation problems are straightforward as they use the Con-

structions 1 and 2. The only difficulty is to make sure that the objective value of a

super-solution corresponds to that of the corresponding solution and, more critically,

that the same property applies to repairs when needed.

39

Theorem 4. ∃(a, b)-SuperCSOP is PNP-complete if a is constant.

Proof. ∃(a, b)-SuperCSOP is in PNP: We need to show that a polynomial number

of calls to an NP oracle is sufficient to solve this problem. We use the following oracle:

“does there exist an existential-(a, b)-super-solution f for the constraint network P such

that Φ(f) ≤ k?”. This problem is in NP, the polynomial witness is f plus the repairs,

and checking that Φ(f) ≤ k can be done in polynomial time. We can therefore proceed

as usual by dichotomy, and only log(ub − lb) calls are needed (hence O(n)).

∃(a, b)-SuperCSOP is PNP-hard: We reduce CSOP (P, Φ) to ∃(a, b)-SuperCSOP

(P ′, Φ′). The constraint network P ′ is obtained by Construction 1 from P. We know

that any existential-(a, b)-super-solution f of P ′ is such that abs(f) is a solution of P.

Furthermore, let Φ′ be the objective function defined as Φ whereall occurrences of a

variable X are replaced by abs(X). It follows that the objective value for Φ′ of any

existential-(a, b)-super-solution of P ′ is equal to the value by Φ of the corresponding so-

lution abs(f) of P. Therefore f is an optimal existential-(a, b)-super-solution of (P ′, Φ)

if and only if abs(f) is an optimal solution of (P, Φ).

Theorem 5. ∃(a, b)-SuperCSOP∗ is PNP-complete if a is constant.

Proof. ∃(a, b)-SuperCSOP∗ is in PNP: We need to show that a polynomial number

of calls to an NP oracle is sufficient to solve this problem. We use the decision version

as oracle: “does there exist an (a, b)-super-solution f for the constraint network P

augmented with Φ ≤ k ?”. This problem is in NP (see Theorem 1). We can therefore

proceed as usual by dichotomy, and only log(ub − lb) calls are needed (hence O(n)).

∃(a, b)-SuperCSOP∗ is PNP-hard: We can reuse the same reduction as for

∃(a, b)-SuperCSOP. Indeed, the objective value by Φ′ of any repair obtained by negat-

ing a (set of) variable(s) is the same as that of the existential-(a, b)-super-solution.

Therefore f is an optimal existential-(a, b)-super-solution of (P ′, Φ′) if and only if abs(f)

is an optimal solution of (P, Φ).

Theorem 6. ∀(a, b)-SuperCSOP is PNP-complete if a is constant.

Proof. ∀(a, b)-SuperCSOP is in PNP: We need to show that a polynomial number

of calls to an NP oracle is sufficient to solve this problem. We use the following oracle:

40

“does there exist an universal-(a, b)-super-solution f for the constraint network P such

that Φ(f) ≤ k?”. This problem is in NP, the polynomial witness is f plus the repairs,

and checking that Φ(f) ≤ k can be done in polynomial time. We can therefore proceed

as usual by dichotomy, and only log(ub − lb) calls are needed (hence O(n)).

∀(a, b)-SuperCSOP is PNP-hard: We reduce a CSOP (P, Φ) to a ∀(a, b)-

SuperCSOP (P ′′, Φ). The constraint network P ′′ is obtained by Construction 2 from

P. We know that any solution f is a universal-(a, b)-super-solution of P ′′ if and only

if it is a solution of P. Moreover, the value of f by the objective function Φ does not

change. Therefore f is an optimal universal-(a, b)-super-solution of (P ′′, Φ) if and only

if it is an optimal solution of (P, Φ).

Theorem 7. ∀(a, b)-SuperCSOP∗ is PNP-complete if a is constant.

Proof. ∀(a, b)-SuperCSOP∗ is in PNP: We need to show that a polynomial number

of calls to an NP oracle is sufficient to solve this problem. We use the decision version

as oracle: “does there exist an (a, b)-super-solution f for the constraint network P

augmented with Φ ≤ k?”. This problem is in NP, see Theorem 2. We can therefore

proceed as usual by dichotomy, and only log(ub − lb) calls are needed (hence O(n)).

∀(a, b)-SuperCSOP is PNP-hard: reduce a CSOP (P, Φ) to a ∀(a, b)-SuperCSOP

(P ′′, Φ′′). The constraint network P ′′ is obtained by Construction 2 from P. The ob-

jective function is defined as follows:

Φ′′(f) =







Φ(f) if f ∈ sol(P)

max(Φ(g), ∀g | ∆(f, g) ≤ a) otherwise

It follows that any repair g of f is such that Φ′′(g) ≥ Φ′′(f). Therefore f is an

optimal universal-(a, b)-super-solution of (P ′′, Φ′′) if and only if it is an optimal solution

of (P, Φ).

3.4.3 Partial Problems

In the subsequent reductions, we will use the problem of computing the clique of

maximum size of a graph (MaxClique) which is PNP[log(n)]-complete ([Papadimitriou 94]).

MaxClique

Instance. A Graph G = (V, E).

41

Question. What is the maximum cardinality of C ⊆ V such that
∀x, y ∈ C, (x, y) ∈ E.

We denote ∃1-MinBCSP (resp. ∀1-MinBCSP) the problem of finding minimum

value of b for which there exists a existential-(1, b)-super-solution (resp. universal-(1, b)-

super-solution).

Theorem 8. ∃1-MinBCSP is PNP[log(n)]-complete.

Proof. ∃1-MinBCSP is in PNP[log(n)]: Consider the problem of deciding if a con-

straint network P has a existential-(a, b)-super-solution for b ≤ k. This problem is in

NP as f and the repairs form a valid polynomial witness. Moreover, b ranges in [0 . . . n],

therefore the number of calls to this NP oracle is bounded by log2(n).

∃1-MinBCSP is PNP[log(n)]-hard: We will reduce MaxClique to ∃1-MinBCSP.

We illustrate this reduction in Figure 3.3. Given a graph G = (V, E), we construct

a CSP P = (X ,D, C) with n + 1 variables: X = {Xi | vi ∈ V } ∪ {Y }. All Xi’s

take value in {−1, 0, 1} and Y takes value in {−1, 0}. For every pair (vi, vj) /∈ E,

we introduce a constraint C(Xi, Xj) = (Xi + Xj ≤ 1) to forbid both variables corre-

sponding to a “non-edge” to be simultaneously assigned to 1. Therefore, the variables

assigned to 1 must correspond to a clique of G. For all i, we introduce the constraint

C(Y, Xi) = (Xi = 1 ∨ Y = Xi). These constraints ensure that all Xi that are not

assigned to 1 are altogether assigned to either 0 or −1 along with Y . Notice that both

situations (all 0s or all −1s) are symmetric. Therefore we consider, without loss of

generality, the case where they are all assigned to 0. Now let K be the set of variables

assigned to 1. We know that K must correspond to a clique, moreover we will show that

the least b for which there exists a (1, b)-super-solution is n− |K|. There are 3 types of

breakage. For the two first we show that no more than n− |K| changes are required in

repair, and for the last we show that exactly n − |K| changes are required:

• A breakage on X assigned to 1: X can be reassigned to 0 and no further change

is needed.

• A breakage on X assigned to 0: X can be reassigned to −1 along with all other

variables currently assigned to 0, hence we need at most n − |K| changes.

42

• A breakage on Y : Y has only one alternative, −1. Therefore we must similarly

reassign all other variables currently assigned to 0, hence exactly n−|K| changes.

Therefore there exists a existential-(1, n − |K|)-super-solution but no existential-

(1, b)-super-solution for b < n − |K|. It follows that the existential-(1, b)-super-solution

with smallest b corresponds to the clique of maximum cardinality.

Example 7. In Figure 3.3 we give an example of a graph G and its reformulation as

a constraint network P such that the optimal value for the MinBCSP on P is equal

to the size of a maximal clique in G. The constraints standing for the “non-edges” are

represented with bold lines, whilst additional constraints linking variables standing for

nodes to the extra variable Y are represented with thin lines.

v1

v2

v3

v4 v5

(a) G

⇒

(Xi + Xj) ≤ 1

(X = 1) ∨ X = Y

X2

X1 X3

X4 X5

Y ∈ {−1, 0}

Xi ∈ {−1, 0, 1}

(b) P

Figure 3.3: The reduction of an instance of MaxClique to ∃1-MinBCSP.

Theorem 9. ∀1-MinBCSP is PNP[log(n)]-complete.

Proof. ∀1-MinBCSP is in PNP[log(n)]: We can reuse the same polynomial Turing

reduction as for ∃1-MinBCSP, substituting existential with universal.

∀1-MinBCSP is PNP[log(n)]-hard: We use the same many-one reduction as for

∃1-MinBCSP with the following changes: Prior to the construction described in the

earlier proof, we add n unconnected vertices to G. This does not essentially change the

problem as the maximum clique size is preserved. However, the maximum clique size is

n, that is, half the number of variables. Now we consider again all types of breakage:

43

• A breakage on X, assigned to 1 and forced to X = 0: No further change is

needed.

• A breakage on X, assigned to 1 and forced to X = −1: We need to reassign all

variables currently assigned to 0 to −1, hence 2n − |K| + 1 changes.

• A breakage on X, assigned to 0 and forced to X = −1: We need to reassign all

variables currently assigned to 0 to −1, hence 2n − |K| changes.

• A breakage on X, assigned to 0 and forced to X = 1: We reassign the |K|

variables currently assigned to 1 to 0, hence at most K changes (K ≤ n).

• A breakage on Y : Y has only one alternative, −1. Therefore we must similarly

reassign all other variables currently assigned to 0, hence exactly 2n − |K|

changes.

Therefore there exists a universal-(1, 2n − |K| + 1)-super-solution but no universal-

(1, b)-super-solution for any b ≤ 2n−|K|. It follows that the universal-(1, b)-super-solution

with smallest b corresponds to the clique with maximum cardinality.

Theorem 10. ∃(1, b)-MaxRepairCSP is PNP[log(n)]-complete for any b ≥ 0.

Proof. ∃(1, b)-MaxRepairCSP is in PNP[log(n)]: Consider the problem of deciding

if a constraint network P has a solution f such that there exist k distinct variables

Xi1, . . . Xik ∈ X accepting a b-repair. This problem is in NP as f and the k repairs form

a valid polynomial witness. Moreover, the maximum number of repairs is n.Therefore

the number of calls to this NP oracle is bounded by log2(n).

∃(1, b)-MaxRepairCSP is PNP[log(n)]-hard: We first prove that ∃(1, 0)-MaxRepairCSP

is PNP[log(n)]-hard by reducing MaxClique to this problem. Given a graph G = (V, E)

we construct a constraint network P as follows: We introduce a Boolean variable

Xi for each vertex vi ∈ V . For every pair (vi, vj) /∈ E, we introduce a constraint

C(Xi, Xj) = (Xi + Xj ≤ 1) to forbid both variables to be simultaneously assigned

to 1. Therefore, the variables assigned to 1 must correspond to a clique of G. We

add n2 variables and constraints to correlate the repairability with the number of vari-

ables Xi assigned to 1. For every variable Xi we add {Yi1, . . . Yin} and n constraint

C(Xi, Yik) = (Yik ≤ Xi) ∀k ∈ [1..n]. This gadget, shown in Figure 3.4, ensures that

44

for every variable Xi, the n Yik can be reassigned without further changes only if Xi is

assigned to 1. Indeed, if Xi = 0, then C(Xi, Yik) forces Yik = 0 and no alternative is

Xi

YinYi1 Yi2 . . .

∀k, Xi ≥ Yik

Figure 3.4: The gadget for correlating repairability with clique size.

possible. Moreover, if Xi = 1 then it is (1, 0)-repairable if and only if Yik = 0 for any

k. Let K be a clique of maximum cardinality and consider the solution f such that

∀i, k, f(Yik) = 0 and ∀i, f(Xi) = 1 iff vi ∈ K. The repairability of f is (n + 1)|K|

since for each Xi such that f(Xi) = 1, we know that Xi, Yi1, . . . Yin are repairable.

Now consider any solution g that assigns a strictly smaller set of Xi to 1, that is,
∑

i(g(Xi)) < |K|. Then at least n(n − |K| + 1) variables (the corresponding Yik) are

not repairable. And therefore the number of repairable variables is bounded by the

complement: n|K|. The solution f has therefore maximum repairability.

Now we show that a similar reduction can be made for every 0 ≤ b ≤ n. For

every variable Yik we add b variables Zik1 , . . . Zikb
and b constraints:

Yik = Zik1 = Zik2 = . . . Zikb

For every “vertex” variable Xi, we count the number of repairs according to the value

taken. If Xi is assigned to 1 all Yik, Zikj
assigned to 0 then Xi is repairable as it can

be reassigned to 0. Moreover, Yik and Zikj
for any 1 ≤ j ≤ b can be reassigned to 1

provided that all of them (b more) are. Now suppose that Xi is assigned to 0, then all

Yik, Zikj
must be assigned to 0. Moreover, if one breaks, then b + 1 repairs are required

(all other Yik’s, Zikj
’s and also Xi). Therefore a solution, corresponding to a clique

K, such that a number |K| of node variables (Xi’s) are assigned to 1 has |K|(bn + 1)

repairs.

Theorem 11. ∀(1, b)-MaxRepairCSP and is PNP[log(n)]-complete for any b ≥ 0.

Proof. ∀(1, b)-MaxRepairCSP is in PNP[log(n)]: The same polynomial Turing reduc-

tion as for the existential version may be used,

45

∀(1, b)-MaxRepairCSP is PNP[log(n)]-hard: The same many-one reduction as

for the existential version may be used as it involves only Boolean domains.

We summarise these complexity results in Table 3.1.

(1, 0) (1, b) (a, b)

∃SuperCSP NP-complete NP-complete NP-complete
∃SuperCSOP PNP-complete PNP-complete PNP-complete
∃SuperCSOP∗ PNP-complete PNP-complete PNP-complete

∃MinBCSP - PNP[log(n)]-complete ∈ PNP[log(n)]

∃MaxRepairCSP PNP[log(n)]-complete PNP[log(n)]-complete ∈ PNP[log(n)]

(1, 0) (1, b) (a, b)

∀SuperCSP NP-complete NP-complete NP-complete
∀SuperCSOP PNP-complete PNP-complete PNP-complete
∀SuperCSOP∗ PNP-complete PNP-complete PNP-complete

∀MinBCSP - PNP[log(n)]-complete ∈ PNP[log(n)]

∀MaxRepairCSP PNP[log(n)]-complete PNP[log(n)]-complete ∈ PNP[log(n)]

Table 3.1: The complexity of finding super-solutions.

3.5 Polynomial Classes

The complexity of finding super-models of Boolean formulae has been studied in

depth in [Roy 98]. Tractable classes for generalised satisfiability (Boolean CSPs) are

well known, and Schaefer’s theorem [Schaefer 78] indicates that any Boolean problem

is either isomorphic to 0-valid-SAT, 1-valid-SAT, 2SAT, Horn-SAT, dual Horn-

SAT, affine-SAT or is NP-complete. The complexity of finding super-models for these

classes is summarised in Table 3.2 (from [Roy 98]).

0-valid-SAT 1-valid-SAT 2SAT

(1, 1)-super-SAT NP-complete NP-complete P
(1, 2)-super-SAT NP-complete NP-complete NP-complete

Horn-SAT dual Horn-SAT affine-SAT

(1, 1)-super-SAT NP-complete NP-complete P
(1, 2)-super-SAT NP-complete NP-complete P

Table 3.2: The complexity of finding super-models for SAT tractable classes ([Roy 98]).

46

The situation is slightly less clear for non-Boolean CSP. Indeed, a similar di-

chotomy theorem exists, however, it is limited to ternary domains [Bulatov 02]. The

question remains open for domains of larger cardinality. Tractable classes of CSP can

be partitioned into two categories. The tractability may result either from proper-

ties of the network macro-structure, that is, the constraint graph, or properties of its

micro-structure, that is, the constraint relations. Examples of the first approach can be

found in [Freuder 82, Freuder 85, Gyssens 94, Montanari 91] and examples of the sec-

ond approach can be found in [van Beek 92, Cooper 94, van Hentenryck 92, Jeavons 97,

Karousis 93]. In this section we show that the archetypal tractable class defined over

the macro-structure, TreeCSP, remains NP-hard for super-solution existence. We also

show that arguably the simplest class of CSP which tractability comes from the con-

straint relations (class-0) is also NP-hard for super-solutions. Finally, we show that

the converse may also be true, i.e., for some NP-hard instances of CSP, deciding if a

super-solution exists may be done in polynomial time, although we are not aware of any

useful instance of this class. Notice that since all the problems analysed in this section

are particular cases of the problem of finding super-solutions on general constraint net-

works, the membership to the class NP is trivial. We therefore only prove NP-hardness,

hence proving NP-completeness.

3.5.1 Tractability due to the Constraint Graph

We call TreeCSP the problem of deciding if a binary constraint network whose

constraint graph is a tree has a solution. This problem can be solved in polynomial

time, as generalised arc-consistency is equivalent to global consistency on such CSPs.

Moreover, a generalisation of TreeCSP, where the constraint graph has a bounded

treewidth have been shown to be polynomial to solve in [Freuder 85]. We show in this

section that the problem of deciding if a TreeCSP has a universal-(1, b)-super-solution

(resp. existential-(1, b)-super-solution) is NP-complete for b ≥ 1 (resp. b ≥ 2). The

membership to the class NP is clear since the same witness as in a general constraint

network can be used. We therefore first prove NP-hardness for b = 1 (resp. b = 2)

and then we give a reduction from the case b = k to b = k + 1 that preserves the tree

structure, hence proving NP-completeness for any b ≥ 1 (resp. b ≥ 2).

47

Theorem 12. ∀(1, 1)-SuperTreeCSP is NP-complete.

Proof. We reduce 3-Colouring to the problem of deciding if a CSP such that the

constraint graph is a tree has a universal-(1, 1)-super-solution. Given a graph G = (V, E)

we construct the CSP P as follows: We introduce n = |V | variables X1, . . . Xn taking

values in {red, blue, green}. Then we introduce a variable Y whose domain consist of

all triplets 〈i, j, c〉 such that (i, j) ∈ E and c ∈ {red, blue, green}, plus a triplet 〈0, 0, 0〉.

Now, for all i in [1..n] we introduce a constraint C(Y, Xi) with the following relation:

Y = 〈0, 0, 0〉 ∨ (Y [1] 6= i ∧ Y [2] 6= i) ∨ Y [3] 6= Xi

Clearly, this constraint network is a tree, since the constraints overlap only on the

variable Y .

First, we show that if the 3-Colouring problem has a solution then P has a

universal-(1, 1)-super-solution. Consider a colouring of G, and let f be the solution of the

CSP such that f(Xi) = c if and only if the vertex vi takes colour c and f(Y) = 〈0, 0, 0〉.

Obviously, it is a solution as all constraints are satisfied when Y = 〈0, 0, 0〉. Now,

without loss of generality, consider a breakage on Xi. Any value (colour) is consistent,

therefore this breakage can be repaired without any extra reassignment. Finally, we

must ensure that Y can take any of the values in its domain, and reassigning only one

variable will be enough to get a solution. Without loss of generality, consider a value

〈i, j, c〉. Any constraint C(Y, Xk) such that k 6= i and k 6= j is satisfied. Thus, only

C(Y, Xi) and C(Y, Xj) are possibly violated. However, since there is an edge (i, j) ∈ E,

we know that the vertices vi and vj do not take the same colour, and consequently

Xi 6= Xj . We therefore can have Xi = c, or Xj = c (or neither) but not both. Suppose

that we have Xi = c, we reassign Xi to any value in {red, blue, green} \ {c}, this is a

solution since C(Y, Xi) will be satisfied.

Now we show that if the 3-Colouring problem has no solution then P has

no universal-(1, 1)-super-solution. There is a one-to-one correspondence between the

colourings (satisfying or not) of G and the assignments of {X1, . . . Xn}. Suppose that

there is no colouring such that every edge connect vertices of different colours. Then

for any mapping, consider one edge (ij) such that vi and vj share the same colour. The

corresponding assignment f in P is such that f(Xi) = f(Xj) = c. Moreover, since

48

(i, j) ∈ E, Y contains the value 〈i, j, c〉 where c = Xi = Xj . If Y is assigned the value

〈i, j, c〉 then we have to change both Xi and Xj . Hence there is no universal-(1, 1)-

super-solution.

Theorem 13. ∃(1, 2)-SuperTreeCSP is NP-complete.

Proof. We reduce 3-Colouring to ∃(1, 2)-SuperTreeCSP. We use the same con-

struction as in the previous proof to which we add m = 3.|E| variables, one for each

edge (i, j) ∈ E, and colour c ∈ {red, blue, green} such that Zijc ∈ {〈0, 0, 0〉, 〈i, j, c〉}.

Then we add m constraints C(Y, Zijc) with the following relation:

Zijc = 〈0, 0, 0〉 ∨ Y = Zijc

Here again, this constraint network is a tree, since the constraints overlap only on the

variable Y .

First, we show that if the 3-Colouring problem has a solution then P has a

existential-(1, 1)-super-solution. Let define f as in the previous proof, and let extend it

to the extra variables as follows: f(Zijc) = 〈0, 0, 0〉. Any variable Xi for i ∈ [1..n] can

take any value without violating the constraints. We have seen that Y can take any of

its value entailing at most 1 Xi to be reassigned. Moreover, changing Y will not violate

C(Y, Zijc) for any i, j, c. Now we consider the breakage of a variable Zijc. The only

alternative value for Zijc is 〈i, j, c〉, and the only one constraint that is violated by this

reassignment is C(Y, Zijc). We therefore reassign Y to 〈i, j, c〉, and from the last proof,

we know that at most one further reassignment will be required, for a total of 2.

Now we show that if the 3-Colouring problem has no solution then the P has

no universal-(1, 1)-super-solution, using the same argument as in the previous proof.

Consider one edge (ij) such that vi and vj share the same colour. The corresponding

assignment f in P is such that f(Xi) = f(Xj) = c. Consider now the breakage of Zijc.

The only alternative is 〈i, j, c〉 and the only way to satisfy C(Y, Zijc) is to assign Y to

〈i, j, c〉. Moreover, to satisfy respectively C(Y, Xi) and C(Y, Xj) is to reassign Xi and

Xj to some other colour. Hence we need at least 3 reassignments.

Example 8. In Figures 3.5 and 3.6 we give an example of colouring problem and the in-

stances obtained by reduction to ∃(1, 2)-SuperTreeCSP and to ∀(1, 1)-SuperTreeCSP.

49

The original instance of 3-Colouring is represented in Figure 3.5a. Its reduction to

an instance of ∀(1, 1)-SuperTreeCSP is shown in Figure 3.5b and to an instance of

∃(1, 2)-SuperTreeCSP in Figure 3.6. Observe that the domains given aside the graphs

are sets of tuples.

v1 : blue

v3 : green

v2 : red

v4 : red

(a) graph-colouring

Y

X1 X2 X3 X4

Y ∈























〈0, 0, 0〉
〈1, 2,blue〉
〈1, 2, green〉
. . .
〈3, 4, red〉























(b) ∀(1, 1)-SuperTreeCSP

Figure 3.5: The reduction of an instance of GraphColouring to ∀(1, 1)-
SuperTreeCSP.

Z12b Z12g Z12r Z13b Z34r

. . .

Y

X1 X2 X3 X4

Y ∈























〈0, 0, 0〉
〈1, 2,blue〉
〈1, 2, green〉
. . .
〈3, 4, red〉























Z12b ∈ {〈0, 0, 0〉, 〈1, 2,blue〉}
Z12g ∈ {〈0, 0, 0〉, 〈1, 2, green〉}
Z12r ∈ {〈0, 0, 0〉, 〈1, 2, red〉}
. . .
Z34b ∈ {〈0, 0, 0〉, 〈3, 4, red〉}

Figure 3.6: The reduction of an instance of GraphColouring to ∃(1, 2)-
SuperTreeCSP.

We now show that ∃/∀(1, b)-SuperCSP is easier than (can be reduced to) ∃/∀(1, b+

1)-SuperCSP. We cannot use Construction 1 since it shows that finding super-solutions

is harder than finding solutions whilst, in this case, finding solutions is polynomial. The

following construction preserves the tree structure of the constraint graph. We can

therefore conclude that finding existential (resp. universal) (1, b)-super-solutions on

tree-CSP is NP-hard for any b > 1.

Theorem 14. For any b > 0, there exists a many-one reduction from ∀(1, b)-SuperCSP

to ∀(1, b+1)-SuperCSP and another one from ∃(1, b)-SuperCSP to ∃(1, b+1)-SuperCSP,

and this reduction preserves the tree structure of the constraint network.

50

Proof. We reduce ∃(1, b)-SuperCSP to ∃(1, b+1)-SuperCSP. Without loss of general-

ity, we assume that the constraint network P = (X ,D, C) involves only positive values.

We construct P ′ = (X ′,D′, C′) defined as follows:

• We add one variable Yiv for every Xi ∈ X and every v ∈ D(Xi).

X ′ = X ∪ {Yiv | Xi ∈ X , v ∈ D(Xi)}

• The domain of an extra variable Yiv contains the value v and −1.

∀Xi ∈ X , v ∈ D(X), D′(Xi) = D(Xi) ∧ D′(Yiv) = {−1, v}

• We add one constraint for each variable Yiv that forces Yiv to take a different

value than Xi.

C′ = C ∪ {C(Xi, Yiv) | Yiv ∈ X ′} where C(Xi, Yiv) = {τ | τ [1] 6= τ [2]}

First, we show that for any (1, b)-super-solution of P we can construct a (1, b + 1)-

super-solution of P ′. Given f a (1, b)-super-solution of P, we define f ′ as follows:

f ′(X) =







f(X) if X ∈ X

−1 otherwise

We consider every possible breakage of f ′. We distinguish 3 cases:

1. If Xi ∈ X breaks: We know that there exists a b-repair of {Xi} for f therefore

at most b reassignments are required in X . Moreover, any constraint C(Xi, Yiv)

is still satisfied as f ′(Yiv) = −1.

2. Yiv ∈ X ′ \ X breaks, and f ′(Xi) 6= v: No more reassignments are required as

only C(Xi, Yiv) constrains Yiv and is still satisfied.

3. Yiv ∈ X ′ \ X breaks, and f ′(Xi) = v: The only alternative is v, thus we must

change the value assigned to Xi. At this point, the situation is similar to case

1, and we know that at most b other reassignments are required, hence a total

of b + 1 reassignments.

Now we show that for any (1, b + 1)-super-solution f ′ of P ′, its restriction to X

is a (1, b)-super-solution of P. We need to make sure that the breakage of any variable

Xi ∈ X can be repaired with at most b reassignments of variables in X . Consider a

variable Xi, and suppose that f ′(Xi) = v. We have Yiv = −1 otherwise C(Xi, Yiv)

51

would not be satisfied. Now consider a breakage of f ′ on Yiv. Since f ′ is a (1, b + 1)-

super-solution we know that there exists g such that g(Yiv) = v and ∆X ′(f ′, g) ≤ b + 2.

Moreover, we know that g(Xi) 6= v, therefore f ′(Xi) 6= g(Xi). Now, since Yiv /∈ X , we

have ∆X (f ′, g) ≤ b + 1 hence g is a b-repair of {Xi} for f ′ restricted to X .

Notice that the same construction works both for universal and existential super-solutions.

Indeed, the domain of any variable in X ′\X is binary, therefore, an “universal” breakage

is actually equivalent to an “existential” breakage.

Corollary 1. For any given b > 0, ∀(1, b)-SuperTreeCSP and ∃(1, b+1)-SuperTreeCSP

are NP-complete.

It is an open problem if ∃(1, 1)-SuperTreeCSP is polynomial. We would either

need to give a polynomial time decision procedure (based perhaps on enforcing some

level of local consistency) or come up with a new reduction.

Example 9. In Figure 3.7 we give an instance of a ∀/∃(1, b)-SuperCSP and its re-

duction to an instance of ∀/∃(1, b + 1)-SuperCSP. For every variable in the instance

depicted in Figure 3.7a we add as many variables as values in the domain in the instance

shown in Figure 3.7b. Observe that the tree width of the constraint graph is not affected

since all the constraints introduced are binary relation between a variable and its “own”

extra variables.

X1 ∈ {1, 2} X2 ∈ {1, 2, 3}

X3 ∈ {2, 3} X4 ∈ {1, 2}

(a) ∀/∃(1, b)-SuperCSP

Y11

X1 X2

X4X3

Y12

Y21

Y22

Y23

Y32

Y33

Y41

Y42

6=

6=

6=

6=

6=

6=

6= 6=

6=

(b) ∀/∃(1, b + 1)-SuperCSP

Figure 3.7: The reduction of an instance of ∀/∃(1, b)-SuperCSP to ∀/∃(1, b + 1)-
SuperCSP.

52

3.5.2 Tractability due to the Constraint Relations

We show that one of the simplest class of CSP such that a property of the

constraint relations entails tractability is NP-hard for super-solutions. It is shown in

[Jeavons 97] that the closure of the constraint relations for some types of operations

is a sufficient condition for tractability. We recall the formalism used in [Jeavons 97]

study some of the tractability classes investigated by Jeavons and Cohen in our specific

context.

Definition 12. Let ⊗ : Λk 7→ Λ be a k-ary operation on Λ, and let C be a n-ary relation

over Λ. For any collection of k tuples τ1, . . . τk ∈ C, the n-tuple ⊗(τ1, . . . τk) is defined

as follows:

⊗(τ1, . . . , τk) = (⊗(τ1[1], . . . τk[1]), . . . ⊗ (τ1[n], . . . , τk[n]))

Finally the closure ⊗(C) of C under ⊗ is defined as the n-ary relation:

{⊗(τ1, . . . τk) | τ1, . . . τk ∈ C}

We take as example a constant operation that associates the value c to any tuple:

⊗(v1, . . . vk) = c. Following the definition, it means that C is closed under ⊗ if and only

if 〈c, c, . . . , c〉 ∈ C or C = ∅. The resulting class of CSP (called class-0) is trivially

polynomial as f : Xi → c is a solution unless there is an empty constraint, in which

case the CSP is unsatisfiable. 1

Theorem 15. Deciding if a CSP in class-0 has a existential-(a, b)-super-solution is

NP-complete.

Proof. We reduce CSP to this problem. Given a constraint network P = (X ,D, C)

we construct P ′ = (X ,D′, C′) defined as follows: The domains ∀X ∈ X D′(X) =

(D(X) ∪ {v′ | v ∈ D(X)} ∪ {c}) and C′ = {C(V) ∪ {c|V |} | C(V) ∈ C}}. Notice that we

chose c so that it does not appear in any original domain.

Suppose we modify a CSP by adding an extra value to each variable, and relaxing

the constraints to permit variables to take this new value. The new CSP has all the

solutions of the old, plus the solution that assigns the new value to each variable. As

1 Notice that the domains are here considered as unary constraints and must therefore contain c

53

it always has at least one solution, CSP is polynomial. However, (a, b)-SuperCSP is

NP-hard as it requires finding the super-solutions of the original CSP.

As a second example we consider the language of constraints closed under a

majority operation. As defined in [Jeavons 97], the majority operation ⊗ is ternary and

has the following semantic

⊗(v1, v2, v3) =







v2 if v2 = v3

v1 otherwise

The class of CSP whose constraints are all closed under this majority operation

is tractable ([Jeavons 97]). However this is not the case with SuperCSP:

Theorem 16. Deciding if a CSP has a existential-(1, b)-super-solution is NP-hard even

if all constraints are closed under a majority operation.

Proof. Deciding if a 2-SAT formula admits a (1, b)-super-solution is NP-complete for

b > 1 [Roy 06]. 2-clauses are trivially closed under the majority operation. Therefore

the closure for the majority operation is not a sufficient condition for tractability of

SuperCSP.

We now summarise the results on the complexity of finding super-solutions for

some tractable classes of CSPs. We report the complexity results for the class of

constraint networks that are tractable because the language of constraints is closed

under a constant operation in Table 3.3 and a majority operation in Table 3.4. Finally

the complexity results for the problem of finding super-solution when the constraint

graph is a tree is summarised in Table 3.5.

∃ (closure: constant) ∀ (closure: constant)

∀b (1, b)-super-CSP NP-complete NP-complete

Table 3.3: The complexity of finding super-solutions on languages of constraint closed
under a constant operation.

3.6 Tractable super-CSP

In this section we state that (1, 0)-super-solutions TreeCSP (both existential and

universal) can be computed in polynomial time, however since it requires a reformulation

54

∃ (closure: majority) ∀ (closure: majority)

(1,≤ 1)-super-CSP ? ?
(1, > 1)-super-CSP NP-complete NP-complete

Table 3.4: The complexity of finding super-solutions on languages of constraint closed
under a majority operation.

introduced and detailed in Chapter 4, we refer the reader to section 4.2.2 for a proof.

Theorem 17. ∃(1, 0)-SuperTreeCSP is in P

Proof. See section 4.2.2.

Theorem 18. On binary constraint networks, ∀(1, 0)-SuperCSP is in P

Proof. Consider a tuple 〈v, w〉 that does not satisfy a constraint C(X, Y) (i.e., a nogood,

〈v, w〉 6∈ C(X, Y)). The assignment X = v (resp. Y = w) cannot participate in

a universal-(1, 0)-super-solution since assigning Y to w (resp. X to v) would violate

C(X, Y). Therefore, only non constrained values can be part of a universal-(1, 0)-

super-solution. Checking which values are not constrained can be done in polynomial

time, by listing all tuples. Clearly, if at least one such value exists for each variable,

then a universal-(1, 0)-super-solution exists.

So far, we have seen that several tractable classes of CSP are no longer tractable

in the super-solution framework. However, tractable classes for SuperCSP are not

necessarily tractable classes for CSP. We give a counter example.

Theorem 19. There exist classes of CSPs for which CSP is NP-complete but (a, b)-

SuperCSP is polynomial.

Proof. Suppose we add to any CSP a variable with a singleton domain and no con-

straints on it. CSP is still NP-complete. However, any breakage involving this variable

is unrepairable. Such a problem has no (a, b)-super-solution for any a or b. Thus (a, b)-

SuperCSP is trivially polynomial.

55

∃Tree ∀Tree

(1, 0)-super-CSP P P
(1, 1)-super-CSP ? NP-complete
(1, 2)-super-CSP NP-complete NP-complete
(1, b)-super-CSP NP-complete NP-complete

Table 3.5: The complexity of finding super-solutions of CSPs whose constraint graph
is a tree.

3.7 Summary and Limitations

In this chapter we defined the notion of super-solution as well as some related de-

cision, optimisation and partial problems. The subsequent complexity analysis showed

that computing super-solutions rather than regular solutions does not change the com-

plexity class of the problem in general. However, as it was observed in [Roy 98] for

propositional satisfiability, polynomial classes of CSP often become NP-hard when com-

puting super-solutions. This seems to indicate that whilst the type of robustness pro-

posed in this dissertation tends to increase the complexity of a problem, it does not

dramatically change it. Several questions remain open. For instance, the complexity

of the (1, 1)-TreeCSP problem, or the complexity of finding (1, 0)-super-solutions and

(1, 1)-super-solutions on constraint languages closed under a majority operation, are not

known. We did not find an example of a non-trivial class of constraint network that

would be tractable for the SuperCSP problem whilst NP-hard for the CSP problem.

Moreover, throughout this chapter, we gave several complexity results assuming that

the parameter a was equal to 1. This is obviously a particular case, hence in these

cases the more general version of the same problem where a may be set to any value

between 1 and some constant k, is harder, however this may not be the case for some

particular values of a. For instance, using Construction 1 we proved that the (a, b)-

SuperCSP is NP-complete for any pair of value a ∈ [1..k], b ∈ [0..n], where k is a

constant, and the same was possible for other problems. However, for the problem of:

deciding if a solution is an (a, b)-super-solution; deciding if a constraint network whose

constraint graph is a tree admits an (a, b)-super-solution; finding the minimum value

of b such that there exists an (a, b)-super-solution; finding the solution with maximal

(a, b)-repairability; there may exist some values of a, in the interval [2..n], for which a

56

polynomial algorithms exists. In fact, this is unlikely, however we did not prove the

opposite.

Chapter 4

Full Fault Tolerance

4.1 Introduction

In this chapter we extensively study a particular case, the existential-(1, 0)-super-solutions.

The first reference to this particular type of super-solutions appears in [Weigel 98], where

it is referred to as fault tolerant solutions. Any variable of a (1, 0)-super-solution

can be assigned an alternative value without any further change. This is therefore an

important case, useful when no extra repair is allowed in case of a breakage. The notion

of substitutability and interchangeability [Freuder 91] are closely related to full

fault tolerance. Given two values v, w ∈ D(X) we say that w is substitutable for v if

and only if for any solution f such that f(X) = v, there exists a solution g such that

g(X) = w and g(X \ {X}) = f(X \ {X}). Furthermore, v and w are interchangeable if

and only if v is substitutable for w and vice versa. Notice that interchangeable values

are equivalent alternative choices. In fact, a solution f such that for any variable X,

there exists v ∈ D(X) substitutable for f(X) is a (1, 0)-super-solution. However the

relation is in one direction only since the alternative value need not be interchangeable,

or even substitutable for the original assignment. The reason for this is that, for (1, 0)-

super-solutions, the substitution need to be consistent with respect to a unique solution

whilst interchangeable or substitutable values are so for all solutions.

Example 10. We give an example of (1, 0)-super-solution in Figure 10. Among all

solutions, only one, namely 〈1, 2, 3〉 is a (1, 0)-super-solution. Indeed for each breakage

of size 1, there exists an alternative solution where all other variables stay unchanged.

All solutions are listed in Figure 4.1b and the 0-repairs for all breakages of 〈1, 2, 3〉 are

58

listed in Figure 4.1c.

X2

X3

X1 ≤

≤6=

(a) Constraint network

〈1, 1, 2〉 〈1, 1, 3〉

〈1, 2, 2〉 〈1,2,3〉

〈1, 3, 3〉 〈2, 2, 3〉

〈2, 3, 3〉 〈3, 3, 3〉

(b) Solutions

{} : 〈1, 2, 3〉

{X1} : 〈2, 2, 3〉

{X2} : 〈1, 3, 3〉

{X3} : 〈1, 2, 2〉

(c) Breakages/repairs

Figure 4.1: A constraint network, its solutions, and the repairs of its unique (1, 0)-
super-solution.

We shall see that in the full fault tolerance case, the concept of super-solution

can be given a local characterisation, while for any a, b ≥ 1 an (a, b)-super-solution is

essentially a global concept. The intuitive idea is that we can enforce a local property

which guarantees that any solution found is a (1, 0)-super-solution. By analogy to local

consistency, we will refer to this property as super-GAC. This principle cannot easily

be extended to (a, b)-super-solution because the discrepancies between a b-repair and

a (a, b)-super-solution may not be local, i.e., may be arbitrarily distributed across the

network. Therefore it is difficult to assert that a repair exists without having a global

view. In this chapter we introduce some methods for taking advantage of this local

reasoning. We shall see that this approach is closely related to the notion of local

consistency for classical CSPs. Moreover we shall see that these consistency methods

may be more or less difficult to adapt to non-binary and/or global constraints. Whenever

the approach we are presenting applies only to binary constraint network, we state it

explicitly.

In Section 4.2 we recall a reformulation approach for finding (1, 0)-super-solutions

from [Weigel 98], then we introduce a new reformulation approach. In Section 4.3 we

introduce two methods using this property of locality, and we define the notion of

super-GAC. We define the respective closures for these local consistencies and introduce

some algorithms to enforce them in Section 4.4. In Section 4.5 we compare formally

the different methods introduced as well as the reformulation method from [Weigel 98].

59

Finally, in Section 4.6, we give the complete search algorithm using the consistency

property defined earlier.

4.2 Reformulation Methods

4.2.1 Previous Method: P + P Reformulation

We first review the previous method described in [Weigel 98] to find (1, 0)-super-solutions

that we shall denote P + P. Notice that in [Weigel 98] this reformulation is given for

binary constraint networks. In fact, as we show in this section, the same construction

can be made for network with constraints of arbitrary large arity. Given a constraint

network P = (X ,D, C), P + P = (X+,D+, C+) is defined as follows:

Definition 13. The reformulation P + P of the constraint network P is a triplet

(X+,D+, C+) such that: X+ contains two copies Xi and X+
i of every variable Xi ∈ X .

The domains of original and duplicate variables are equal and unchanged. C+ contains

all constraints in C plus a constraint Xi 6= X+
i for each variable Xi ∈ X . Moreover, for

every constraint C(V) ∈ C, and every variable Xi ∈ V , a constraint C(V ∪{X+
i }\{Xi})

is added to C+.

P P + P

Variables: X X+ = X ∪ {X+
i | Xi ∈ X}

Domains: D D+(Xi) = D(Xi) ∀Xi ∈ X
D+(X+

i) = D(Xi) ∀Xi ∈ X

Constraints: C C+ = C ∪ {Xi 6= X+
i | Xi ∈ X}

∪{C(V \ {Xi} ∪ {X+
i }) | C(V) ∈ C}

Table 4.1: The P + P reformulation summary.

Example 11. We give an example of the P +P reformulation in Figure 4.2. A simple

constraint network P is shown in Figure 4.2a and its reformulation is given in Fig-

ure 4.2b. The bold arcs stand for the original constraints, the thin arcs stand for the ex-

tra constraints (one for each variable of each original constraint) and finally, the dashed

arcs stand for the disequality constraints between original and duplicated variables.

Theorem 20. The reformulation P + P is sound and complete and has a space com-

plexity in O(nd + cmdc).

60

X2

X3 X4

≤

≤

X1
≤

≤

(a) A constraint net-
work P

X3

X1 X2

X4

X+
1

X+
3

X+
2

X+
4

6= 6=

6= 6=

(b) The reformulation P + P of P

Figure 4.2: A constraint network P and its reformulation P + P.

Proof. We show that the solutions of P+P restricted to X are exactly (1, 0)-super-solutions

of P.

Soundness: Any solution f : X+ 7→ Λ of the reformulation P +P is such that

its restriction f |X to the variables of P is a (1, 0)-super-solution of P. Let f be solution

of P + P, for any Xi we can substitute the image given to Xi with the image given to

X+
i , which must be different, whilst keeping all constraints in C satisfied. Indeed for

any constraint C(V) such that Xi ∈ V , we know that C(S \ {Xi} ∪ {X+
i }) is satisfied.

Therefore, for any breakage on a variable Xi in P, the value assigned to X+
i is a valid

alternative, that requires no reassignment. In other words, the solution g equal to f on

X \ {Xi} and such that g(Xi) = f(X+
i) is a 0-repair of Xi for f .

Completeness: Conversely, if f is a (1, 0)-super-solution of P, then for any

variable Xi there exists a 0-repair of Xi for f . Now consider the assignment g of P +P

such that for any i, g(Xi) = f(Xi) and g(X+
i) is equal to the image of Xi by the 0-

repair of Xi for f . We have g(X+
i) 6= g(Xi), and moreover any duplicated constraint is

satisfied as substituting the f(Xi) with its alternative does not violate any constraint

in P.

Space Complexity: The number of variables is 2n, the number of constraints

(c + 1)m: To the original constraint C(V) is added one constraint for each element of

V . The domains and constraint relation do not change. The space complexity therefore

is in O(nd + cmdc), i.e. exactly 2nd + 3md2 for binary constraint networks.

61

4.2.2 New Method: P × P Reformulation

We now present a second and new reformulation approach. This reformulation

increases the amount of pruning a local consistency like GAC would achieve as well as the

space complexity. Notice also that this reformulation is restricted to binary constraint

networks. Indeed, this construction relies on the observation that the restriction of a

super solution to a pair of variables always follows the same pattern. An assignment

〈X = v1, Y = w1〉 is a (1, 0)-super-solution on the network restricted to X, Y if and only

if there exists v2 ∈ D(X) and w2 ∈ D(Y) such that 〈X = v1, Y = w1〉, 〈X = v1, Y = w2〉

and 〈X = v2, Y = w1〉 are all consistent. We illustrate this pattern in Figure 4.3.

v1

v2

w1

w2

X Y

Figure 4.3: A (1, 0)-super-solution over two variables.

For non-binary constraints with bounded arity, it is possible to isolate the same

pattern. For a 3-tuple to be a (1, 0)-super-solution over 3 variables, 4 tuples need to be

consistent: the tuple itself plus three repairs sharing all but one value. We illustrate

this pattern in Figure 4.4.

X Y Z

Figure 4.4: A (1, 0)-super-solution over three variables.

However this approach relies on enumerating tuples, therefore it is likely to scale

badly when the arity of constraints grows. Moreover, the question of whether for some

global constraints this reasoning can be done without enumerating tuples, is beyond

the scope of this dissertation. We therefore limit our study of this method to binary

constraint networks. Given a binary constraint network P = (X ,D, C) we define P×P =

(X×,D×, C×) as follows:

62

Definition 14. The reformulation P × P of the constraint network P is a triplet

(X×,D×, C×) such that: The variables are unchanged X× = X . The domains D×

are cross products of the original domains D, minus all pairs of identical values. C× is

such that the constraint graph is equal to that of C, however the constraint relations are

changed to accept a tuple 〈〈vi, vj〉, 〈vk, vl〉〉 iff 〈vi, vk〉, 〈vi, vl〉 and 〈vj , vk〉 are all allowed

tuples in the corresponding constraint in C.

P P × P

Variables: X X× = X

Domains: D D×(Xi) = D(Xi)
2 \ {〈v, v〉 | v ∈ D(Xi)}

Constraints: C C× = {C×(V) | C(V)} s.t. 〈〈vi, vj〉, 〈vk, vl〉〉 ∈ C×(V) ⇔
〈vi, vk〉 ∈ C(V) ∧ 〈vi, vl〉 ∈ C(V) ∧ 〈vj , vk〉 ∈ C(V)

Table 4.2: The P × P reformulation summary.

Example 12. We give an example of the P ×P reformulation in Figure 4.5. The first

figure (Figure 4.5a) shows the microstructure of a single constraint C(X1, X2) between

two variables X1 and X2. Every arc corresponds to a tuple allowed by the constraint, i.e.,

there is an arc between vi and vj if and only if the tuple 〈vi, vj〉 belongs to C(X1, X2).

The same constraint, after reformulation into P × P is shown in Figure 4.5b. The

variables domains are changed and the arcs are changed accordingly.

v1 v2 v3X1 :

v1 v2 v3X2 :

(a) A constraint in P

X1 : 〈v1, v2〉〈v2, v1〉〈v1, v3〉 〈v2, v3〉〈v3, v1〉 〈v3, v2〉

〈v1, v2〉〈v2, v1〉〈v1, v3〉 〈v2, v3〉〈v3, v1〉 〈v3, v2〉X2 :

(b) The reformulation of this constraint in P × P

Figure 4.5: A constraint C(X1, X2) in P and its reformulation C×(X1, X2) in P × P.

Theorem 21. The reformulation P × P is sound and complete and has a space com-

plexity in O(nd2 + cmd2c).

Proof. We show that the solutions of P × P projected onto X are exactly (1, 0)-

super-solutions of P.

63

Soundness: Consider a solution f : X 7→ Λ2 of the reformulation P × P, and

let g : X 7→ Λ be the solution of P such that a variable is assigned the first element of

the tuple assigned by f , i.e., g(Xi) = f(Xi)[1]. We show that g is a (1, 0)-super-solution.

Clearly, g is solution as 〈g(Xi), g(Xj)〉 ∈ C×(Xi, Xj) ⇒ 〈g(Xi)[1], g(Xj)[1]〉 ∈ C(Xi, Xj).

Now we need to show that for every variable there exists an alternative assignment that

satisfies all constraints. Consider a variable Xi and all constraints C(Xi, Y) over this

variable on P. By definition of P × P, we have 〈f(Xi)[2], f(Y)[1]〉 ∈ C(Xi, Y), more-

over, we have f(Xi)[1] 6= f(Xi)[2]. Since we assumed that f(Y)[1] = g(Y), the second

element of the tuple assigned to Xi in P × P is thus a valid alternative for g(Xi) in P.

Completeness: Let g be a (1, 0)-super-solution of P, for every variable Xi

there is an alternative value to the assignment g(Xi) (say vi). We show that f : Xi →

〈g(Xi), vi〉 is a solution of P ×P. Consider a constraint C×(Xi, Xj) of P ×P, we have

〈g(Xi), g(Xj)〉 ∈ C(Xi, Xj). Moreover, since vi (resp. vj) can be substituted to g(Xi)

(resp. g(Xj)), we also have 〈vi, g(Xj)〉 ∈ C(Xi, Xj) (resp. 〈g(Xi), vj〉 ∈ C(Xi, Xj)).

Therefore, by definition of C×(Xi, Xj) we have 〈f(Xi), f(Xj)〉 ∈ C×(Xi, Xj).

Space Complexity: The number of variables and the number of constraints

do not change, whilst the domains size are squared (d2). Therefore the space complexity

of this reformulation is in O(nd2 + md2c).

We are now in a position to prove Theorem 17, from Chapter 3, using this refor-

mulation.

(Proof of Theorem 17). Using this construction we can prove that deciding if a con-

straint network whose constraint graph is a tree accepts a existential-(1, 0)-super-solution

can be done in polynomial time. Indeed, given a constraint network P, the P × P re-

formulation does not change the constraint graph, hence is a tree if and only if the

constraint graph of P is a tree. Therefore enforcing GAC is enough to solve this prob-

lem, and this can be done in O(md4), since the GAC closure on P can be achieved in

O(md2).

64

4.3 Local Consistencies for Robustness

In this section we introduce two local consistencies (GAC+ and super-GAC) that

can be used in MAC-like algorithms to efficiently find (1, 0)-super-solutions. We relate

these two consistencies to the notion of multiconsistency introduced in [Elbassioni 05].

4.3.1 Arc Consistency Extended: GAC+

If a constraint network accepts a (1, 0)-super-solution, then by definition, every

variable has a valid alternative assignment, i.e., at least two values in its domain are

consistent with the rest of the super-solution. Therefore, given a constraint network

P = (X ,D, C) closed under generalised arc consistency, if there exists a variable X ∈ X

such that |D(X)| ≤ 1 then P has no (1, 0)-super-solution. We define GAC+ for a

constraint network as follows:

Definition 15. A constraint network cn = (X ,D, C) is GAC+ if and only if it is GAC

and there is no variable X ∈ X whose domain’s GAC closure is a singleton.

Notice that this consistency method is not limited to binary constraint networks

in any way. Indeed, the definition is based on generalised arc consistency and does not

make any assumption about the constraint arity.

Theorem 22. GAC+ is sound.

Proof. We show that if a constraint network P = (X ,D, C) admits a (1, 0)-super-solution

f , then there exists a domain relation D′ included in D, i.e., ∀X ∈ X , D′(X) ⊆ D(X),

such that P ′ = (X ,D′, C) is GAC+ and f is a solution of P ′.

Let f be a (1, 0)-super-solution of P = (X ,D, C). It therefore is a solution, hence

any assignment X = f(X) is GAC. Moreover, since f is a (1, 0)-super-solution, we know

that for every variable X ∈ X , there exists another solution g such that f(X) 6= g(X).

Since g is also a solution, the generalised arc consistent domain of X contains both f(X)

and g(X). The same reasoning can be done for all variables in X . As a consequence, we

can construct a domain relation D′ containing, for a variable Xi, both f(Xi) and gi(Xi),

where gi is a 0-repair for the breakage {Xi}. Observe that f is a (1, 0)-super-solution of

(X ,D′, C).

65

Example 13. Consider the constraint X < Y and suppose that X and Y both take

value in {0, 1}. The GAC closure of this constraint grounds X to 0 and Y to 1, hence

it is not GAC+.

4.3.2 Super Arc Consistency: super-GAC

We now define the concept of super-GAC. Given a constraint C(V), an assignment

X = v is super-consistent with respect to a constraint C(V), if and only if it can be

extended to a (1, 0)-super-solution of C(V). As for GAC we first define the notion for an

assignment and lift this notion to variables, constraints and finally constraint networks.

Notice that this process is not straightforward since a variable can be super-GAC whilst

not every value in its domain is so. When computing the closure of a variable, a

difference needs to be made between the values that are super-GAC and those that are

not.

Definition 16. Given a constraint network P = (X ,D, C), and a constraint C(V) ∈ C,

where X ∈ V , an assignment X = v is super-GAC if and only if there exists an

assignment σ of V such that σ(X) = v and σ is a (1, 0)-super-solution of the constraint

network defined by (V,D, {C(V)}).

A variable is super-GAC if and only if all values in its domain are either super-GAC

or participate in a 0-repair of super-GAC support. A constraint is super-GAC if and

only if all variables in its scope are super-GAC. A constraint network is super-GAC if

and only if all its constraints are super-GAC.

As for GAC+, the definition does not make any assumption about the constraint

arity. However, we shall see that the closure algorithm we propose for this local consis-

tency is restricted to binary constraint networks.

Theorem 23. super-GAC is sound.

Proof. We show that if a constraint network P = (X ,D, C) admits a (1, 0)-super-solution

f , then there exists a domain relation D′ included in D, i.e., ∀X ∈ X , D′(X) ⊆ D(X),

such that P ′ = (X ,D′, C) is super-GAC and f is a solution of P ′.

Let f be a (1, 0)-super-solution of P = (X ,D, C). We construct the same domain

as in the soundness proof for GAC+: For every variable Xi ∈ X , D′(Xi) will contain

f(Xi) and gi(Xi), where gi is a 0-repair for the breakage {Xi}.

66

Now, for every constraint C(V), if we restrict the network to (V,D′, {C(V)}),

the corresponding restriction f |V of f is still a (1, 0)-super-solution. Indeed, for any

variable Xi the restriction gi|V of gi is a solution of (V,D′, {C(V)}). As a consequence,

any value of any variable either participates in a super-GAC support or a 0-repair of

such a support.

Example 14. Consider the constraint X 6= Y and suppose that X takes a value in

{0, 1} whilst Y takes a value in {0, 1, 2}. There are two (1, 0)-super-solutions for this

constraint: 〈0, 2〉 and 〈1, 2〉. Therefore, the assignments Y = 0 and Y = 1 are not

super-GAC. However, consider the first (1, 0)-super-solution, 〈0, 2〉: A breakage on Y is

repaired by the 0-repair 〈0, 1〉. Similarly, a breakage of 〈1, 2〉 on Y can be repaired by

〈1, 0〉. Consequently, although some assignments are not super-GAC, the variables X

and Y are super-GAC, as well as the constraint X 6= Y .

To take this subtlety into account, we introduce, when defining a closure algorithm

for this consistency, two domain relations to replace the classical domain D.

4.3.3 k-multiconsistency

In [Elbassioni 05] the authors introduce k-multiconsistency, a generalisation of

generalised arc consistency. Given a constraint C(V), an assignment X = v is k-

multiconsistent if and only if it has k distinct supports. This notion may be used as

a value ordering heuristic, as choosing a value with multiple supports may lead to a

solution more quickly. Moreover, it is linked to the notion of robustness as defined in

this dissertation since the extra supports are in fact alternative assignments. We recall

the definition from [Elbassioni 05]:

Definition 17. A unary assignment X = v is k-multiconsistent on a constraint C(V)

iff there exist k distinct supports for X = v on C(V).

The notion of k-multiconsistency and (1, 0)-super-solutions are closely related.

However, as pointed out in [Elbassioni 05], an assignment such that all values are 2-

multiconsistent is not necessarily a (1, 0)-super-solution.

Example 15. For instance consider the variables X1 ∈ {1, 2}, X2 ∈ {1, 2}, X3 ∈ {3, 4}

and X4 ∈ {3, 4} subject to an AllDifferent constraint, X1, X2, X3 and X4 must be

67

assigned 4 distinct values. The complete list of solutions is as follows:

〈1, 2, 3, 4〉 〈1, 2, 4, 3〉 〈2, 1, 3, 4〉 〈2, 1, 4, 3〉

All unary assignments have two distinct supports hence any solution is 2-multiconsistent,

yet there is no (1, 0)-super-solution.

Multiconsistency therefore is weaker than super-GAC. Moreover, in the previous

example, any of the GAC tuples are 2-multiconsistent, therefore in a search algorithm

using multiconsistency, we must check that the solution is indeed a (1, 0)-super-solution

at each leaf of the search tree. In this dissertation we do not study an algorithm based

on this method, however such algorithm may be considered for future work.

4.4 Algorithm for Achieving Closure

4.4.1 Differences with Classical Closures

Local consistencies are usually defined over values or assignments, and then lifted

to variables, constraints and a constraint network by computing the closure. For in-

stance, a variable Xi is GAC iff all values in Xi are GAC a constraint is GAC iff all

its constrained variables are GAC and finally a constraint network is GAC iff all con-

straints are GAC. When a value is arc inconsistent, a constraint forbidding it (X 6= v)

can be added to the constraint network without removing any solution. This constraint

will result in pruning in the context of a search algorithm. However, in the case of

super-GAC or multiconsistency values that are essential for providing support may not

themselves be super-GAC or multiconsistent. Therefore, posting such a constraint for

an assignment that is not multiconsistent or super-GAC may remove multiconsistent

solutions or (1, 0)-super-solutions. In [Elbassioni 05] the notion of multiconsistency is

defined only for values, and the authors study the problem of finding an assignment

such that all values are k-multiconsistent. However, this notion is not explored in the

context of search and therefore no closure property is given.

Example 16. We give an example to show that one cannot compute the 2-multiconsistent

closure in a similar way as for GAC, i.e., by iteratively pruning inconsistent values.

68

Indeed, such a closure over a constraint network P can be empty even though a 2-

multiconsistent assignment exists. Consider the following problem P:

X, Y ∈ {1, 2} X ≤ Y

The tuple 〈1, 2〉 is 2-multiconsistent since X = 1 (resp. Y = 2) has two supports on Y

(resp. on X). However, if we compute the closure, X = 2 and Y = 1 are first pruned

as they have only one support. Then, after these removals, X = 1 and Y = 2 are no

longer 2-multiconsistent, therefore the closure is empty. Similarly, even though there

exists a (1, 0)-super-solution (〈1, 2〉) the super-GAC closure is empty: Since X = 2 does

not participate in a (1, 0)-super-solution one may want to add the constraint X 6= 2,

however, there is no (1, 0)-super-solution to the resulting constraint network.

We shall see that super-GAC can be enforced by computing not one but two inter-

related closures. One will contain all values that may be part of a (1, 0)-super-solution

whilst the second may also contain values contributing only to the repair of a (1, 0)-

super-solution. These two closures are defined with respect to each other and can thus

only be computed together. The closure algorithm that we introduce in this section

are restricted to binary constraint networks. Indeed, though the GAC+ closure algo-

rithm could easily be extended to non-binary constraints, this is not the case for the

super-GAC algorithm. The reason is that we use the same observation made in Sec-

tion 4.2.2, i.e., for a tuple of values to be a (1, 0)-super-solution over two variables, they

must each have two distinct supports, and support each other. The situation is more

complex, although similar, for non-binary constraints. Since we aim at comparing these

approaches, we restrict our study to the binary case for all consistency and reformula-

tion methods, even though GAC+ and to a lesser extent GAC(P + P) can easily deal

with non-binary and global constraints.

4.4.2 GAC+ Closure

The GAC+ closure is very similar to the GAC closure.

Definition 18. A domain relation D is closed under GAC+ if and only if it is closed

under GAC and for any variable X, the cardinality of D(X) is at least 2.

69

Defining a closure algorithm is therefore straightforward as it only requires to

check the extra condition stating that no domain can be singleton. However, devising

a closure algorithm that can be used within a backtrack search is slightly more tricky.

Indeed, we defined the Maintain Arc Consistency algorithm (MAC, Algorithm 1) as a

procedure iteratively reducing the current domains, or partial solution, ϕ and comput-

ing the GAC closure. As a grounded variable has, by definition, a singleton domain, the

closure method used during search cannot be as simple as the stand alone algorithm

suggested above. To solve this apparent contradiction, when computing the GAC+ clo-

sure during search, it is convenient to consider not one, but two partial solutions i.e., set

of domains. We thus use two mappings sD(X) and rD(X), standing for super-domain

and repair-domain. The former is in every respect equivalent to the partial solution,

usually denoted ϕ. The latter, rD, is used to keep track, for grounded variables, of valid

alternative values. The GAC+ closure within a backtracking procedure, can thus be

defined using sD and rD and the following constraints, for any variable X ∈ X :

GAC(sD) (4.1)

v ∈ rD(X) ⇔ (∀Y ∈ X , ∃w ∈ sD(Y) s.t. 〈v, w〉 ∈ C(X, Y)) (4.2)

|rD(X)| ≥ 2 (4.3)

The first and third conditions enforce the closure defined in this section, whilst the

second condition makes sure that rD contain all values consistent with the current

search assignment.

Example 17. For instance consider the following constraint network:

X = {X, Y },D(X) = {1, 2, 3},D(Y) = {1, 2, 3}, C = {(X + Y > 2)}

This constraint network is generalised arc consistent. Now consider the search for a

solution. In the first branch, the MAC algorithm might commit to the assignment X = 1,

hence reduce the partial solution as follows ϕ(X) = {1}, and compute the GACclosure

leading to:

ϕ(X) = {1}, ϕ(Y) = {2, 3}

Whilst the corresponding GAC+ closure, using sD and rD, is:

sD(X) = {1}, sD(Y) = {2, 3}, rD(X) = {1, 2, 3}, rD(Y) = {2, 3}

70

We give the pseudo-code for a GAC+ closure algorithm in Figure 4.6. This

algorithm is very similar to the classical GAC algorithm. The main difference is that

instead of the usual partial domain relation ϕ, this algorithm computes the closure on

two domain relations sD and rD. A second difference is that a failure occurs if a domain

becomes singleton after propagation (Line 1). The procedure propagate (Algorithm 7)

is slightly modified so as to perform the same pruning on both relations (lines 1 and 2).

However, observe that sD and rD may differ since they are not reduced in the same way

during the search step of a backtrack algorithm. When used statically (that is, outside

of a search process) Algorithm 6 does nothing more than GAC apart from checking for

singleton domains (and consequently failing).

Algorithm 6 GAC+

Data : P = (X ,D, C), sD[= D], rD[= D]

Result : sD, rD (the GAC+ closure of P)

Q ← C ∪ {C(Y, X) | C(X, Y) ∈ C};
while Q 6= ∅ do

select and delete any C(Xi, Xj) from Q;
pruned ← propagate+(C(Xi, Xj), sD, rD);

1 if sD(Xj) = ∅ ∨ |rD(Xj)| ≤ 1 then return false;
if pruned then Q ← Q ∪ {C(Xj , Xk) | C(Xj , Xk) ∈ C};

return true;

Algorithm 7 propagate+

Data : C(Xi, Xj), sD, rD

Result : The GAC+ closure of Xj with respect to C(Xi, Xj)

pruned ← false;
foreach w ∈ rD(Xj) do

if 6 ∃v ∈ sD(Xi) s.t. 〈v, w〉 ∈ C(Xi, Xj) then
1 sD(Xj) ← sD(Xj) \ {w};
2 rD(Xj) ← rD(Xj) \ {w};

pruned ← true;

return pruned;

Figure 4.6: An algorithm for computing the GAC+ closure of a constraint network
based on AC3.

71

4.4.3 super-GAC Closure

In order to define a closed form that preserves all (1, 0)-super-solutions, we intro-

duce an intermediate degree of consistency. The usual domains D will here again be

replaced by two mappings sD(X) and rD(X). The super-GAC domain sD(X) will con-

tain all super-GAC values of X whilst rD(X) will contain all values that participate in a

0-repair of a (1, 0)-super-solution but not necessarily to the super-solution itself. As for

generalised arc consistency, computing this closure for constraints with arbitrary large

arity may be difficult. However we shall see that for binary constraints, this closure can

be achieved in the same time complexity as for regular arc consistency. Initially sD, rD

and D are equal, then we enforce the following rules until a fixed point is reached:

1. A value v is in sD(X) iff for every C(X, Y) ∈ C there exists w ∈ sD(Y) and

r ∈ rD(Y), r 6= w such that 〈v, w〉 and 〈v, r〉 are allowed tuples.

2. A value v is in rD(X) iff for every C(X, Y) ∈ C there exists w ∈ sD(Y) such

that 〈v, w〉 is an allowed tuple.

Once rD(X) and sD(X) can no longer be reduced by rule 1 or 2, then sD maps

variables to super-GAC assignments.

We introduce an algorithm for computing the super-GAC closure of a constraint

network. Algorithm 8 is inspired by AC3 hence has a non-optimal time complexity.

We therefore give another version of the same algorithm (Algorithm 10) based on

AC4. This algorithm is the first optimal arc consistency closure procedure proposed

in the literature by Mohr and Henderson ([Mohr 86]). We detail the complexity of

these algorithms in Section 4.5.5.2. The procedure managing the constraint queue is

identical to the GAC closure procedure (Algorithm 2), described in Chapter 2. The

only difference is again the pair of domain relations replacing the classical domain. The

procedure propagate-sup (Algorithm 9), on the other hand, is very different. This

procedure revises the super and repair domains of the variable Xj with respect to the

constraint C(Xi, Xj). For every value w in the repair domain of Xj , we compute the

subset of rD(Xi) participating to a GAC support of Xj = w (loop 1). Then, if this set

of support has a cardinality less than 2, we deduce that this value cannot participate in

a (1, 0)-super-solution, hence we remove it from sD(Xj) (Line 3). In the next step, we

72

check if there is a supporting value for X = w in sD(Xi). If not then the assignment

X = w is removed from rD(Xj) (Line 5). Finally, since the relation sD(Xj) ⊆ rD(Xj)

should always hold, we set sD(Xj) to the intersection of both domains (Line 6).

Example 18. We give an example of the closure computed with super-AC in Figure 4.7.

Consider the constraint network involving two variables X and Y , with respectively

domains {v1, v2, v3} and {w1, w2, w3}. The allowed tuples correspond to edges in Fig-

ure 4.7a. The super and repair domains are initially equal to the original domains. In

the first iteration (Figure 4.7b), the constraint C(X, Y) is propagated. The assignments

Y = w2 and Y = w3 have only one support in rD(X) and sD(X), therefore they are

removed from sD(Y). We represent values that belong to both super and repair domain

in black, values that belong only to the repair domain in grey and values that do not

belong to either domain in white.

v1 w1

w2

X Y

v2

v3 w3

(a) Initial state

v1 w1

w2

X Y

v2

v3 w3

(b) Iteration 1

v1 w1

w2

X Y

v2

v3 w3

(c) Iteration 2

Figure 4.7: A constraint over two variables.

In the second iteration (Figure 4.7c), the constraint C(Y, X) is propagated. The

assignments X = v1 and X = v2 have only one support in rD(Y) and sD(Y), therefore

they are removed from sD(Y). Moreover, the assignment X = v3 has no support in

sD(Y), therefore it is removed from both rD(X) and sD(X). Hence, sD(X) is empty

and the algorithm fails.

We briefly explain the AC4 version of the super-GAC closure algorithm (super-GAC4).

First, the internal structures used to remember supporting values on neighbouring vari-

ables are initialised in Algorithm 11. The structure S[i, v] is initialised to the set of

pairs (j, w) such that the tuple 〈Xi = v, Xj = w〉 is consistent (〈v, w〉 ∈ C(Xi, Xj)),

exactly as in the AC4 algorithm. Furthermore, the structure countsup[(i, j), v] (resp.

73

Algorithm 8 super-AC

Data : P = (X ,D, C), sD[= D], rD[= D]

Result : sD, rD (the super-GAC closure of P)

Q ← C ∪ {C(Y, X) | C(X, Y) ∈ C};
while Q 6= ∅ do

select and delete any C(Xi, Xj) from Q;
pruned ← propagate-sup(C(Xi, Xj), sD, rD);
if sD(Xj) = ∅ then return false;
if pruned then Q ← Q ∪ {C(Xj , Xk) | C(Xj , Xk) ∈ C};

return true;

Algorithm 9 propagate-sup

Data : C(Xi, Xj), sD, rD

Result : The super-GAC closure of Xj with respect to C(Xi, Xj)

pruned ← false;
foreach w ∈ rD(Xj) do

sup ← ∅;
1 foreach v ∈ rD(Xi) do

if 〈v, w〉 ∈ C(Xi, Xj) then sup ← sup ∪ {v};

2 if |sup| < 2 then
3 sD(Xj) ← sD(Xj) \ {w};

pruned ← true;

4 if sup ∩ sD(Xi) = ∅ then
5 rD(Xj) ← rD(Xj) \ {w};

pruned ← true;

6 sD(Xj) ← sD(Xj) ∩ rD(Xj);
return pruned;

Figure 4.8: An algorithm for computing the super-GAC closure of a constraint network
based on AC3.

74

countrep[(i, j), v]) stores the number of supporting values for Xi = v in the super do-

main (resp. repair domain) of Xj . Then the counters are checked, and there are two

types of outcome:

1. countsup[(i, j), v] = 0 (Algorithm 11 line 1 and 2): The assignment Xi = v has

no GAC support in sD(Xj). It means that Xi = v can neither participate in

a (1, 0)-super-solution nor in a repair. Therefore it is removed from both super

and repair domains.

2. countrep[(i, j), v] < 2 (Algorithm 11 Line 2): The assignment Xi = v has only

one GAC support in sD(Xj) and rD(Xj). It means that Xi = v cannot in a

(1, 0)-super-solution, whilst it can still possibly participate in a repair.

Now, to propagate these events, we use two queues Qrep and Qsup. The first, Qrep, con-

tains the values that have been removed from their repair domain, whilst Qsup contains

the values that have been removed from their super domain. In Algorithm 10 the events

in the queues Qrep and Qsup are recursively propagated. In the first case (Line 1), v

was removed from rD(Xi), hence only values in sD(Xj) can be affected, as values in

rD(Xj) only require a support in sD(Xi). In the second case (Line 2), v was removed

from sD(Xi). If a value has no GAC support in sD(Xi) it must be removed from both

sD(Xj) and rD(Xj).

4.5 Theoretical Properties:

Theorem 24. The closure algorithm GAC+ is sound and complete and runs in O(md2)

on binary constraint networks.

Proof. Soundness: We show that if a value is GAC+, then the GAC+ closure algo-

rithm does not prune it. A value v is GAC+ only if it is GAC and there is no singleton

domains in the GAC closure. Since the procedure GAC+ prunes a value only if it does

not have a GAC support for a given constraint, the first condition holds. Moreover the

second condition is clearly satisfied since the only other condition for failure is precisely

a domain becoming singleton.

Completeness: We show that if a value is not GAC+, then the GAC+ closure

algorithm prunes it. A value v may not be GAC+ either because it is not GAC or

75

Algorithm 10 super-GAC4

Data : P = (X ,D, C), sD[= D], rD[= D]

Result : sD, rD (the super-GAC closure of P)

〈Qsup, Qrep〉 ← initialise(P);
while |Qsup| + |Qrep| > 0 do

if |Qrep| > 0 then
1 select and delete a pair (i, v) from Qrep;

foreach (j, w) ∈ S[i, v] do
countrep[(j, i), w] ← countrep[(j, i), w] − 1;
if countrep[(i, j), v] < 2 then

sD(Xj) ← sD(Xj) \ {w};
Qsup ← Qsup ∪ {(j, w)};

else
2 select and delete a pair (i, v) from Qsup;

countsup[(j, i), w] ← countsup[(j, i), w] − 1;
if countsup[(j, i), w] = 0 then

rD(Xj) ← rD(Xj) \ {w};
Qrep ← Qrep ∪ {(j, w)};
if w ∈ sD(Xj) then

sD(Xj) ← sD(Xj) \ {w};
Qsup ← Qsup ∪ {(j, w)};

Algorithm 11 initialise(P)

∀i, v S[i, v] ← 0;
∀i, j, v countsup[(i, j), v] ← countrep[(i, j), v] ← 0;
Qsup ← Qrep ← ∅;
foreach C(Xi, Xj) ∈ C do

foreach 〈v, w〉 ∈ C(Xi, Xj) do
S[i, v] ← S[i, v] ∪ {(j, w)};
S[j, w] ← S[j, w] ∪ {(i, v)};
countsup[(i, j), v] ← countsup[(i, j), v] + 1;
countsup[(j, i), w] ← countsup[(j, i), w] + 1;
countrep[(i, j), v] ← countrep[(i, j), v] + 1;
countrep[(j, i), w] ← countrep[(j, i), w] + 1;

1 if countsup[(i, j), v] = 0 then
rD(Xi) ← rD(Xi) \ {v};
Qrep ← Qrep ∪ {(i, v)};

2 if countrep[(i, j), v] < 2 ∨ countsup[(i, j), v] = 0 then
sD(Xi) ← sD(Xi) \ {v};
Qsup ← Qsup ∪ {(i, v)};

return 〈Qsup, Qrep〉;

Figure 4.9: An algorithm for computing the super-GAC closure of a constraint network
based on AC4.

76

because the GAC closure is such that the domain of a variable is reduced to a single

value. If the value is not GAC then it will be pruned since GAC+ checks values for

GAC supports. If the GAC closure is such that the domain of a variable is reduced to a

singleton, this will be discovered when checking the domain size after pruning, in Line 1

of Algorithm 6.

Complexity: The worst case time complexity is equal to that of enforcing

GAC. The further check on the domain size is in constant time, and can only happen

when a value is pruned, hence O(nd) times. The worst case time complexity thus is

equal to the GAC closure algorithm that we are using. Optimal closure algorithms for

GAC run in O(md2) on binary constraint networks.

Theorem 25. The closure algorithms super-GAC and super-GAC4 are sound and com-

plete and super-GAC4 runs in O(md2) on binary constraint networks.

Proof. Notice that we restrict our proof to the propagation of one constraint. The

iterative process over multiple constraints is essentially the same as in GAC closure

algorithms, that is, a stack containing the changes that have not yet been taken into

account.

Soundness: We prove that if a value belongs to a (1, 0)-super-solution of the

restriction of a constraint network to a single constraint, applying the closure algorithm

super-GAC does not prune this value from the super domain. Consider a constraint

C(Xi, Xj) ∈ C, and let v, w be two values such that 〈v, w〉 is a (1, 0)-super-solution

of the constraint network P = ({Xi, Xj},D, {C(Xi, Xj)}). By definition of (1, 0)-

super-solution, the three following conditions must hold:

• 〈v, w〉 ∈ C(Xi, Xj)

• ∃w′ ∈ D(Xj) \ {w}, s.t.〈v, w′〉 ∈ C(Xi, Xj)

• ∃v′ ∈ D(Xj) \ {v}, s.t.〈v′, w〉 ∈ C(Xi, Xj)

We consider the values v and w, and show that the AC3-based version of super-GAC

does not remove them from sD(Xi) and sD(Xj). Since initially sD = rD = D, the

values v′ and w′ will not be removed from respectively rD(Xi) and rD(Xj), unless v

and w are removed from sD(Xi) and sD(Xj). We consider the value w. The set sup,

77

computed in Line 1 of Algorithm 9 contains at least v and v′ so neither Condition 2 nor

Condition 4 is triggered. Then when checking the constraint in the opposite direction,

the same reasoning can be done for v. Hence v and w are not pruned from sD(Xi)

and sD(Xj). The same property holds for the AC4-based version of super-GAC. Indeed,

the counter countrep[(i, j), v
′] is greater than or equal to 1 since 〈v′, w〉 ∈ C(Xi, Xj).

Similarly the counter countrep[(i, j), w] is initialised to a value greater than equal to 2,

and will stay positive as long as v′ is not removed from rD(Xi).

Completeness: We prove that given a constraint C(Xi, Xj), if a value v is

not pruned from sD(Xi), then it participates in a (1, 0)-super-solution of the constraint

network P = ({Xi, Xj},D, {C(Xi, Xj)}).

We first consider the AC3-based version of super-GAC. Since, after the algorithm

reached a fixed point, we still have v ∈ sD(Xi), it implies (condition 2) that v has at least

two GAC supporting values, say w and w′, in rD(Xj). Moreover, at least one of these

supporting values, say w, is in sD(Xj) (condition 4). Therefore by the same reasoning

w also has at least two supports in rD(Xi), one of them is v, and let v′ be another one.

Clearly, the tuple 〈v, w〉 is a (1, 0)-super-solution of P = ({Xi, Xj},D, {C(Xi, Xj)}),

and 〈v, w′〉 and 〈v′, w〉 are the 0-repairs.

Now we consider the AC4-based version of super-GAC. After the initialisation

phase, the number of supports are counted and since v is not pruned, we have countrep[(i, j), v] ≥

2 and countsup[(i, j), v] ≥ 1. Now the counters are decreased if and only if a GAC sup-

porting value of Xi = v is removed from respectively rD(Xj) or sD(Xj). Since after a

fixed point is reached, we assumed that v ∈ sD(Xi) still holds, it means that we still

have countrep[(i, j), v] ≥ 2 and countsup[(i, j), v] ≥ 1. Hence v has at least two support-

ing values in rD(Xj) and at least one in sD(Xj). The same reasoning can be done to

show that this last value also has two supports in rD(Xi). Hence we can construct the

same (1, 0)-super-solution as in the AC3 case.

Complexity: Since the worst case time complexity of the AC4-based version

is better, we restrict our result to this case. As in the classical AC4, all structures and

counters are monotonically decreasing during the iterative process, and the updates are

done in constant time. There are two sets of counters and lists, therefore the worst case

time complexity is twice as large. In conclusion this algorithm runs in O(md2), hence

78

is optimal.

4.5.1 Notations for consistency comparison

We now formally study the local consistency properties introduced in Section 4.3,

along with arc consistency on the two reformulations described earlier, applied to binary

constraint networks. We first compare the filtering level and then the complexity of

achieving the corresponding closure, using the framework described in Section 2.5.

We consider the following consistencies:

• GAC+ as defined in Section 4.3.1. The generalised arc consistent closure is

computed. GAC+(P) holds iff the GAC closure is such that all domains contain

at least 2 values.

• super-GAC as defined in Section 4.3.2. The closure over the whole constraint

network is computed using Algorithm 8. super-GAC(P) holds iff for every

variable X ∈ X , we have sD(X) 6= ∅.

• GAC(P+P): We compute the GAC closure on P+P, obtained by reformulation

of the constrain network P. GAC(P + P) holds iff this closure is not empty.

• GAC(P×P): We compute the GAC closure on P×P, obtained by reformulation

of the constrain network P. GAC(P × P) holds iff this closure is not empty.

Notice that in the proofs below we always consider constraint networks where all

variables are constrained (X ∈ X ⇒ ∃Y C(X, Y) ∈ C). Although this is required for

the proof to be correct, it could easily be worked around by considering domains as

unary constraints and adapting the consistency and closure definitions accordingly.

4.5.2 Static vs. Dynamic context

Local consistencies can have rather different behaviour when seen statically, i.e.,

as stand alone procedures, or dynamically, i.e., as part of a backtrack search algorithm.

For instance certain local consistency algorithms may have amortised time complexity

along one branch of the search tree, whilst other are essentially repeating all the work

done in the previous step. With the local consistencies introduced in this chapter, the

79

difference is even more acute. In fact, the critical point is that decisions, or assignments

made during search are not exactly akin to domain reduction in the strict sense. We

work with two domain relations, sD and rD instead of a unique partial solution ϕ, and

whilst filtering algorithms manipulate both domains, decisions are always reduction of

sD, and never affect directly rD. For instance, as seen in Section 4.4.2, the GAC+

closure algorithm never prune sD and rD differently, yet these relation can possibly

be different during search, since the decisions are made on sD and not on rD. We

first compare the filtering level of the various local consistencies in the classical, static

context, then we show that the relation between GAC+ and the GAC on the P + P

reformulation changes if used within or outside a search algorithm.

4.5.3 Filtering Level: static context

Using the notation defined in Section 2.5, the relation between the different con-

sistency properties introduced in Section 4.3 is as follows:

Theorem 26 (Static context).

GAC+ ≃ GAC(P + P) (4.4)

super -GAC ≻ GAC+ (4.5)

GAC(P × P) ≻ super -GAC (4.6)

Proof. Let P = (X ,D, C) be a constraint network, we prove the three propositions

above:

Proposition 4.4:

(GAC+ º GAC(P +P)) Suppose that GAC+(P) holds, D is closed under GAC,

and D is such that |D(X)| > 1 ∀X ∈ X . Now consider the reformulation P + P. The

original constraints are GAC since P is GAC. The duplicated constraints are GAC since

they are identical to the original ones, and the domains of a variable X and its duplicate

X+ are identical. The not-equals constraints between original and duplicated variables

are GAC since any variable has at least 2 values.

(GAC(P + P) º GAC+) Suppose that P is not GAC+, then in the generalised

arc consistent closure of P, there exists at least one variable Xi such that |D(Xi)| ≤ 1.

Since P +P contains P, we have |D(Xi)| ≤ 1 as well when computing the GAC closure.

80

We suppose, without loss of generality, that D(Xi) = {v}, and we consider the duplicate

X+
i of Xi. Since X+

i and Xi are linked to the same neighbouring variables with the

same constrains, any value that is not GAC for Xi cannot be so for X+
i . Now consider

the assignment X+
i = v, it has no support on Xi since 〈v, v〉 does not satisfy Xi 6= X+

i .

Therefore, the GAC closure is empty.

Proposition 4.5:

(super -GAC º GAC+) Suppose that GAC+ does not hold. Then there exists a

variable X whose domain contains at most one arc consistent value. Since the second

rule for enforcing super-GAC requires a GAC support in sD for any value in rD, all arc

inconsistent values will be pruned from rD(X). Now consider a constraint C(X, Y), any

value in sD(Y) has at most one support in sD(X) for C(X, Y), hence can be removed

from sD(Y). As a consequence, super-GAC does not hold.

(GAC+ 6º super -GAC) See counter-example in Figure 4.10. The first graph

shows the micro-structure of a simple constraint network with two variables, each with

a ternary domain. A link represents an allowed combination. An intermediate step

as well as the final super-GAC closure are represented through colours. For a variable

X, a “black” value belongs to sD(X), a “grey” value to sD(X) and a “white” value

is pruned. P is GAC+ since the network is arc consistent and every domain contains

3 values. However, P is not super-GAC since the greyed values (in the second graph)

are not in sD, they have only one support. In the second step, the whitened variables

(in the third graph) are also removed from both rD and sD since they do not have a

support in a sD.

v1 w1

w2

X Y

v2

v3 w3

(a) Initial state

v1 w1

w2

X Y

v2

v3 w3

(b) Iteration 1

v1 w1

w2

X Y

v2

v3 w3

(c) Iteration 2

Figure 4.10: A counter example for GAC+ º super -GAC.

Proposition 4.6:

81

(GAC(P ×P) º super -GAC) Suppose that GAC(P ×P) holds, then for any two

variables X, Y ∈ X there exist two pairs 〈v1, r1〉 ∈ D×(X), 〈v2, r2〉 ∈ D×(Y), such that

〈v1, r2〉, 〈r1, v2〉 and 〈v1, v2〉 are allowed tuples for C(X, Y). Therefore v1 belongs to

sD(X) and v1 and r1 belong to rD(X). Thus, we have sD(X) 6= ∅ and |rD(X)| > 1

and similarly sD(Y) 6= ∅ and |rD(Y)| > 1. Therefore, P is super-GAC.

(super -GAC 6º GAC(P × P)) See counter-example in Figure 4.11. The first

graph shows the micro-structure of a simple constraint network with three variables,

each with a quaternary domain. A link represents an allowed combination and the

super-GAC closure is represented through colours. For a variable X, a “black” value

belongs to sD(X) and a “grey” value to sD(X). P is super-GAC since every variable

X is such that sD(X) 6= ∅ and |rD(X)| > 1. The second graph shows P × P, which is

not GAC.

Y

v1

X Z

v2

v3

w1

w2

w3

v4 w4

u1

u2

u3

u4

(a) super-GAC closure

YX Z

〈u1, u3〉

〈u1, u4〉

〈u2, u3〉

〈u2, u4〉

〈w1, w3〉

〈w1, w4〉

〈w2, w3〉

〈w2, w4〉

〈v1, v3〉

〈v1, v4〉

〈v2, v3〉

〈v2, v4〉

(b) P × P reformulation

Figure 4.11: A counter example for super -GAC 6º GAC(P × P).

4.5.4 Filtering Level: dynamic context

The essential difference with the static case is that when making a decision, the

current “state”, represented by the domain relations sD and rD, can be changed in a

way that is not possible for the consistency closure algorithm. In fact, only GAC+ has

this property: whilst sD and rD are filtered exactly in the same way in the closure

procedure, a decision during search reduces sD and leaves rD unchanged. However,

within GAC+, this difference between sD and rD does matter. On the other hand,

with super-GAC there is not such a difference between the static and dynamic case

82

since sD and rD are not filtered in the same way. In particular, a reduction of sD

without any change in rD can be simulated in a static constraint network. Indeed

suppose that we want to simulate the fact that the decision X = v has been made

by the search algorithm. We introduce an extra variable X ′ and extend the domain

relations sD and rD as follows:

sD(X ′) = {s}, rD(X ′) = {s, r}

Then we introduce the constraint C(X, X ′), defined as follows:

∀w ∈ rD(X), 〈w, s〉 ∈ C(X, X ′) ∧ 〈v, r〉 ∈ C(X, X ′)

Any value except v will be removed from sD(X) when propagating super-GAC and this

new variable will not have any more impact. We therefore revise the static relations

stated for GAC+ in Section 4.5.3 using the same framework, except that the initial that

we also provide the initial values of sD and rD. The corresponding decisions applied to

the domain of the reformulation method need be applied on P + P as follows:

D+(X) = sD(X), D+(X+) = rD(X) (4.7)

(4.8)

The relations between consistencies change slightly when observed within a dy-

namic context.

Theorem 27 (Dynamic context).

GAC(P + P) ≻ GAC+ (4.9)

super -GAC ≻ GAC(P + P) (4.10)

GAC(P × P) ≻ super -GAC (4.11)

Proof. Let P = (X ,D, C) be a constraint network, and let sD, rD represent the current

state of the search procedure, we prove the three propositions above:

Proposition 4.4:

(GAC(P + P) º GAC+) Suppose that P is not GAC+. Then, once GAC has

been propagated on sD and each domain rD(X) has been made arc consistent with

83

sD, there exists a variable Xi such that |rD(Xi)| ≤ 1. Now, within P + P, consider

the sub-problems defined respectively over the set of variables X and X \ {Xi}∪ {X+
i }.

Both are equivalent to the original constraint network P, except that the domain of Xi

and X+
i are respectively equal to sD(Xi) and rD(Xi). Therefore, in both cases, the

same propagation of GAC will lead to the same result, D+(Xi) and D+(X+
i) will both

be reduced to the same singleton. Consequently the disequality constraint between Xi

and X+
i is generalised arc inconsistent.

(GAC+ 6º GAC(P + P)) Consider the constraint network P and its P + P

reformulation as shown in Figure 4.13. The domains are initially all equal to {1, 2}.

Both P and P+P are GAC, moreover, all domains contain at least two values, hence P is

GAC+. Now we assume the following domain relations for P and P+P before applying

respectively GAC+ and GAC. These domains correspond to the decision X = 1.

sD(X) = {1}
sD(Y) = {1, 2}
sD(Z) = {1, 2}
rD(X) = {1, 2}
rD(Y) = {1, 2}
rD(Z) = {1, 2}

D+(X) = {1}
D+(Y) = {1, 2}
D+(Z) = {1, 2}
D+(X+) = {1, 2}
D+(Y +) = {1, 2}
D+(Z+) = {1, 2}

Figure 4.12: A counter example for (GAC(P + P) 6º GAC+) (within search).

We apply GAC+ on sD and rD. First, sD is made generalised arc consistent, no

value is removed. Since the value 2 for X has one support on Y (1) and another on Z

(1), it is not removed from rD. Since sD ⊆ rD, no more value can be pruned. Now,

if GAC is enforced on P + P, the domain relation D+ is wiped out. Indeed, we have

X 6= X+, hence X+ 6= 1:

D+(X+) = {2}

Then propagating the constraints X+ + Y ≤ 3 and X+ + Z ≤ 3 leads to:

D+(Y) = {1}, D+(Z) = {1}

In turn, the constraints Y 6= Y + and Z 6= Z+ are triggered:

D+(Y +) = {2}, D+(Z+) = {2}

However, both the constraints Y = Z+ and Z = Y + are now unsatisfiable, hence a

failure.

84

Y

X

Z

X + Y ≤ 3 X + Z ≤ 3

=

(a) A constraint network P

Y

Y +

X+

X

Z

Z+

X + Z ≤ 3X + Y ≤ 3

=

6=

6= 6=

(b) P + P

Figure 4.13: An example of the consequences of the same decision for MAC+ and MAC on
P + P.

Proposition 4.5:

(super -GAC º GAC(P+P)) As shown in the preamble of this proof, any domain

reduction made during search can also happen during the propagation phase, hence the

proof of the static case holds.

(GAC+ 6º super -GAC) We can reuse the same counter-example (see Figure 4.10).

Proposition 4.6:

Here again, the proof of the static case is still valid.

(super -GAC 6º GAC(P × P)) We can reuse the same counter-example (see Fig-

ure 4.11).

4.5.5 Complexity

4.5.5.1 Complexity of super-GAC on Global Constraints

We study the complexity of enforcing super-GAC on three examples of global

constraints: AllDifferent, Among and Sum.

Definition 19. The constraint AllDifferent(V) holds if and only if all variables in

V are assigned to distinct values.

τ ∈ AllDifferent(V) ⇔ |{τ(X) | X ∈ V }| = |V |

Definition 20. The constraint Among(V, N, S) holds if and only if exactly N variables

in V are assigned to values represented in the set S.

85

τ ∈ Among(V, N, S) ⇔ |{X | X ∈ V ∧ τ(X) ∈ S}| = τ(N)

Definition 21. The constraint Sum(V, N) holds if and only if the values assigned to

variables in V add up to N .

τ ∈ Sum(V, N) ⇔
∑

X∈V τ(X) = τ(N)

The complexity of computing a super-GAC support is incomparable to the com-

plexity of finding a generalised arc consistent support. In [Elbassioni 05] the authors

show that computing a super-GAC support on an AllDifferent constraint is NP-hard.

On the other hand, consider for instance a Sum constraint. Such constraints do not have

super-GAC support as if we modify one variable the sum must change, hence enforcing

super-GAC is trivial. However it is NP-hard to enforce GAC on a Sum constraint.

Finally there exists constraints for which super-GAC and generalised arc consistency

are both polynomial to compute. For instance consider the Among constraint. For a

set S of values, the solution f satisfies Among(X1, . . . Xn, S, N) if and only if there are

exactly f(N) variables Xi such that f(Xi) ∈ S. Computing a GAC support can be done

in polynomial time, moreover, computing a super-consistent support can also be done in

polynomial time. First we observe that, for any variable X, if a value v is the only one

element of S in D(X), then it cannot participate in any (1, 0)-super-solution. Indeed,

consider a solution f such that f(X) = v, there is no alternative for the assignment

X = v, as changing it to any other value in D(X) would require to change the value

of N . Similarly, if v is the only one value not in S, then again it does not participate

in any (1, 0)-super-solution. On the other hand, suppose that for any variable X, and

any value v there exists another value w 6= v in D(X) such that v ∈ S ⇔ w ∈ S. now

consider any solution f satisfying Among(X1, . . . Xn, S, N). To any assignment X = v,

we can substitute the assignment X = w and the constraint remains satisfied, hence

f is a (1, 0)-super-solution. Now, assuming that the algorithm among returns a GAC

assignment (or fails) in polynomial time, we can devise super-among (Algorithm 12) for

super-GAC. We summarise these complexity results in Table 4.3.

4.5.5.2 Binary Constraint Network

Now we give the complexity of the different approaches developed in this chapter

on binary constraint networks. Throughout this section, m stands for the number of

86

Algorithm 12 super-among

Data : X1, . . . Xn, S, N

Result : Is there a (1, 0)-super-solution f satisfying Among(X1, . . . Xn, S, N)

foreach i ∈ [1..n] do
if |S ∩ D(Xi)| = 1 then D(Xi) ← D(Xi) \ S;
if |S ∩ D(Xi)| = |D(Xi)| − 1 then D(Xi) ← D(Xi) ∩ S;

return among(X1, . . . Xn, S, N);

Figure 4.14: An algorithm for finding (1, 0)-super-solutions of an Among constraint.

consistency AllDifferent Among Sum

GAC P P NP-complete
super-GAC NP-complete P O(1)

Table 4.3: The complexity of computing (1, 0)-super-solutions for some global con-
straints.

constraints (m = |C|) and d for the domain size, which we shall consider uniform across

all variables (d = |D(X)| ∀X ∈ X). We shall also consider that the number of variables

(n = |X |) is always smaller than the number of constraints (n < m).

GAC+: Computing the GAC closure can be done in O(md2) which dominates

the complexity of checking that every domain contains at least two values (O(n)).

Therefore the GAC+ closure can be computed in O(md2).

GAC(P + P): The number of constraints in P + P is 3m + n, the domains are

unchanged. Therefore, computing the GAC closure on P + P can be done in O(md2).

super-GAC: Algorithm 8 is based on AC3. The same arguments used for AC3

can be adapted. It is easy to see that propagate runs in O(d2). Moreover, a constraint

is revised only if the mappings sD and rD have changed for one of the constrained

variables, i.e, a value is removed from sD(X) or rD(X). This can happen at most 2d

times for each variable, hence 4d times. The complexity of super-AC is therefore O(md3).

However, this closure can be computed with an AC4 based procedure, hence with an

optimal worst time complexity of O(md2). Algorithm 10 is such an optimal algorithm

for computing the super-consistent closure. The support counters (one for every value

of both variables of every constraint) are duplicated. One will stand for the number of

87

supports currently in sD whilst the second will stand for the number of supports in rD.

Notice that at each step in the process, at least one of these counters is decreased, there

are 4md counters whose initial values are at most d, hence the complexity in O(md2).

GAC(P×P): The number of constraints in P×P is unchanged, and the domains

are squared. Therefore, computing the GAC closure on P ×P can be done in O(md4).

Figure 4.15 illustrates the relations stated in Theorem 26, whilst Table 4.4 shows

the worst case complexity of computing the closure for these consistencies.

GAC+(P)

≻

≃

super -GAC(P)

GAC(P + P)

≻

GAC(P × P)

≻

(a) Static context

≻

≻

≻

GAC(P × P)

super -GAC(P)

GAC(P + P)

GAC+(P)

(b) Dynamic context

Figure 4.15: The relation between consistencies (reads if tail holds then head holds).

GAC+(P) GAC(P + P) super-GAC(P) GAC(P × P)

complexity: O(md2) O(md2) O(md2) O(md4)

Table 4.4: The complexity of computing some local consistency closures for finding
(1, 0)-super-solutions.

4.6 Search Algorithms

We now present two new search algorithms: MAC+ and super-MAC, maintaining

respectively the GAC+ and super-GAC closure during search. One difference to keep

in mind between MAC on one hand and MAC+ or super-MAC on the other hand, is that

the notion of decision, or choice point, is different. For MAC, a decision of the form

88

X = v translates to a reduction of the corresponding domain in the constraint network

(D(X) = {v}). For MAC+ or super-MAC, the same decision X = v, will translate to

sD(X) = {v}, whilst rD(X) is unchanged. The super domain sD plays the same role

as ϕ in the regular MAC algorithm, whilst the repair domain rD is not reduced when a

decision is taken.

4.6.1 Maintain GAC+ (MAC+)

This algorithm establishes GAC+ at each node. That is, it maintains GAC and

backtracks if a domain wipes out or becomes singleton. The domains are managed as

follows:

• For any variable X, if X is assigned, that is, a decision X = v has been made,

then sD(X) = {v}.

• For any variable X, if X is not assigned, then sD(X) = rD(X).

• For any variable X, we have w ∈ rD(X) if and only if X = w has a GAC

support for any constraint C(X, Y) ∈ C.

In MAC, only future variables are pruned, since the values assigned to past variables are

guaranteed to have a support in each future variable. Here, this property holds for

values in sD, but not for values in rD. Therefore a domain of a variable X that is

already assigned may become a singleton because of an assignment further down in the

search tree. Therefore, GAC is established on rD, and on the whole network (Line 1),

and not only on the future variables. Algorithm 13 implements MAC+.

4.6.2 Super Maintain Arc Consistency (super-MAC)

The pseudo code for super-MAC (Algorithm 14) is similar to MAC+, decisions are

here again reductions of sD. Notice that here again, the consistency closure is computed

on the whole constraint network (Line 1) instead of its restriction to future variables.

4.6.3 Soundness and Completeness

We have established an ordering relation on the different filtering methods. Since

MAC(P × P) always backtracks when one of the other algorithms does, whilst MAC+

89

Algorithm 13 MAC+

Data : P = (X ,D, C), sD[= D], rD[= D], F [= X]

Result : Does P admit a (1, 0)-super-solution

if F = ∅ then return true;
choose X ∈ F ;
save sD and rD;
foreach v ∈ sD(X) do

sD(X) ← {v};
1 if GAC+(P, sD, rD) then

if MAC+(P, sD, rD,F \ {X}) then return true;

restore sD and rD;

return false;

Figure 4.16: An algorithm for finding (1, 0)-super-solution using GAC+.

Algorithm 14 super-MAC

Data : P = (X ,D, C), sD[= D], rD[= D], F [= X]

Result : Does P admit a (1, 0)-super-solution

if F = ∅ then return true;
choose X ∈ F ;
save sD and rD;
foreach v ∈ sD(X) do

sD(X) ← {v};
1 if super-AC(P, sD, rD) then

if super-MAC(P, sD, rD,F \ {X}) then return true;

restore sD and rD;

return false;

Figure 4.17: An algorithm for finding (1, 0)-super-solution using super-GAC.

never backtracks unless all the other algorithms do. Therefore any solution found by

MAC(P × P) will eventually be found by the others, and MAC+ will only find solutions

found by one of the other algorithms. We prove that MAC+ is correct and MAC(P ×P)

is complete. Hence all four algorithms are correct and complete.

Theorem 28. For any given CSP P, the sets of solutions of MAC+(P), of super-MAC(P),

of MAC(P × P), and of MAC(P + P) are identical and equal to the (1, 0)-super-solutions

of P.

90

Proof. Since there is a total ordering in filtering power between all algorithms (MAC(P×

P) º super-MAC º MAC(P + P) º MAC+), we only need to prove that:

• The strongest closure algorithm is sound, hence the strongest search algorithm

is complete (finds a solution if any).

• The weakest closure algorithm applied to a full assignment decides this as-

signment, hence the weakest search algorithm is sound (does not return an

inconsistent solution).

MAC+ is sound: We prove that given a full assignment f , GAC+ succeeds only

if f is a (1, 0)-super-solution. Suppose that f is not a (1, 0)-super-solution, then there

exists a variable X such that f(X) = v and ∀w ∈ D(X), v 6= w, f|X=w is not a solution.

Therefore when all the variables are assigned, and so there remain in the domains only

the values that are GAC, D(X) = {v} and thus f is not returned by MAC+.

MAC(P × P) is complete: We prove that applying GAC to P × P does not

remove values participating in a (1, 0)-super-solution. In other words, it does not remove

a tuple 〈v1, r1〉 such that v1 participates in a (1, 0)-super-solution and r1 in the corre-

sponding repair. Let f be a (1, 0)-super-solution, for any variables X, Y , let f(X) = v1

and r1 one of its possible repairs. Similarly v2 is the value assigned to Y and r2 its

repair. It is easy to see that the pairs 〈v1, r1〉 and 〈v2, r2〉 are GAC, i.e, 〈v1, v2〉, 〈v1, r2〉

and 〈r1, v2〉 are allowed tuples.

4.7 Summary and Limitations

In this chapter we introduced three new methods for finding (1, 0)-super-solutions.

In the P ×P reformulation, we change all domains to be a cross-product of themselves

and change the constraints so that the only valid tuples are those corresponding to the

restriction of a (1, 0)-super-solution over two variables. The two other methods are local

consistency properties. The first, GAC+, is a slight extension over GAC whilst the

second, super-GAC, allows stronger inferences by using the same type of reasoning as

used in the P × P reformulation. An earlier reformulation method, P + P as well as a

local consistency technique closely related to GAC+ and super-GAC are also discussed.

91

We introduced two closure algorithms, for GAC+ and super-GAC. We proved

that a backtracking algorithm using these procedures as inference methods is a sound

and complete method for finding (1, 0)-super-solutions. Moreover we show that their

computational complexity does not exceed that of closure algorithms for GAC, and

hence is optimal.

We then compared the three new methods, along with the P + P reformulation.

A classical MAC algorithms searching the P × P reformulation is shown to explore the

smallest search tree, although this comes at the cost of a greater time complexity at

each node. The second strongest method is super-GAC followed by MAC on P + P and

finally GAC+ is showed to be the weakest approach. However, as we shall see in the

experimental results in Chapter 8, the approach that seems to offer the best tradeoff is

super-GAC.

There are numerous open and unexplored questions about (1, 0)-super-solutions.

For instance, we restricted our analysis to binary constraint networks. Even though

P + P, super-GAC, and GAC+ have been defined on unrestricted networks, the clo-

sure algorithms that we introduced are restricted to binary constraints. This limitation

is easy to handle with GAC+ since this method is a slight extension over GAC. How-

ever, extending super-GAC whilst keeping a reasonable computational complexity seems

challenging. As a first attempt in this direction we showed that specific propagation

algorithms achieving super-GAC on some global constraints can sometimes be easier

(Sum) or just as hard (Among) as propagating GAC on the same global constraints.

However, in [Elbassioni 05], Elbassioni and Katriel showed that propagating super-GAC

on the AllDifferent is NP-hard.

Chapter 5

Weak Fault Tolerance

5.1 Introduction

Fault tolerant solutions are a very restricted type of robustness. When repairing

a solution, we are only allowed to change the variable that breaks. In this chapter

we consider how to drop this restriction by developing a backtracking algorithm for

computing existential-(a, b)-super-solutions for a, b ≥ 1. In such solutions, a set of

variables of cardinality b can be reassigned in order to repair a breakage of size at most

a. As opposed to (1, 0)-super-solutions, the consequences of a breakage are not restricted

to the “broken” variables, any variable in the network can potentially be reassigned in

response to a breakage. There can be a + b discrepancies between a super-solution and

its repairs, and their exact location is not known. Consequently, it is difficult to use

similar local consistency properties, such as GAC+ and super-GAC used in Chapter 4.

We therefore take a different approach to devise an effective algorithm for finding (a, b)-

super-solution with arbitrary a and b. Instead of checking each constraint separately,

we check the breakages, i.e., combinations of k ≤ a variables, to assert repairability.

This algorithm relies on a decomposition of the problem into a master-problem, on

which the main procedure develops a search tree, and a set of dynamically created

sub-problems, each one witnessing the repairability of a breakage with respect to

the current partial solution. The numbers of breakages may be large and solving each

sub-problem is not a priori an easy task. However, we introduce several ways of making

inferences in order to:

• Solve less sub-problems by identifying feasibility without search in some cases.

93

• Solve sub-problems more efficiently.

• Infer inconsistency in the master-problem whilst solving sub-problems.

When solving a sub-problem in order to find a repair of a partial solution, two types

of decisions are to be made. The first type of decision is whether or not a variable

should be reassigned, and the second is the value assigned to such a variable. We shall

see that some inference can be made on the first type, that is, we may be able to

decide, before solving a sub-problem that a variable cannot be reassigned. This kind of

inference, i.e., equality constraints is very valuable, because it allows both to reduce

the sub-problem, and to infer inconsistencies in the master-problem itself. An important

notion for the point above is the neighbourhood of a breakage. We define the distance

between two variables (or two sets of variables) as the shortest path that links these

variables (or sets) in the constraint graph. We shall see that for an (a, b)-super-solution,

the changes required to repair a breakage A must be at distance at most b of A. Given

such a neighbourhood, we know that all variables outside cannot be reassigned for repair.

This is a very weak form of “locality” since the constraint network may be dense and

thus the neighbourhood of a variable may be arbitrarily large. However we shall see

that even for dense constraint networks, some additional inference rules may be used

for pruning the master problem thus greatly reducing search.

In Section 5.2, we describe a very simple and basic version of this decomposi-

tion algorithm. Then, in Section 5.3 we introduce two ways of discovering equality

constraints, one based on the notion of neighbourhood, and the second on a simple con-

sistency preprocessing. In Section 5.4, 5.5 and 5.6 respectively, we use this last notion to

achieve the three goals announced earlier, i.e., solving fewer sub-problems, solving them

faster, and taking advantage of them to infer inconsistencies in the master-problem.

Then we give the pseudo code of the algorithm taking the above improvements into

account and we discuss its implementation. Finally, in Section 5.7 we theoretically

compare this algorithm, restricted to (1, 0)-super-solutions with the specific algorithm

introduced in Chapter 4.

94

5.2 The Decomposition Algorithm

In this section, we introduce an algorithm for computing (a, b)-super-solutions of

a constraint network. An (a, b)-super-solution is defined as a solution such that any

breakage, i.e., subset of variables with arity a or less, has a b-repair. The number of

breakages grows exponentially with their size. The exact number of breakages of size

k ≤ a, over n variables is:
k=a
∑

k=1

(

n

k

)

Notice that this number has no closed form. However, it is clearly bounded by a

polynomial of degree a.

Let first consider a naive generalisation of the P + P reformulation approach

discussed in Chapter 4. Informally this approach duplicated the variables, so that the

copies will take as value the alternative in case of breakage. Now, in the general case, a

repair is not limited to a single variable, but can potentially affect any variable in the

network. Following the same line, not only one variable, but the entire network is there-

fore duplicated for every breakage. Moreover, every duplicated network is constrained

to have a completely disjoint assignment for the variables contained in the breakage and

to share at least n − (a + b) assignments otherwise.

Example 19. In Figure 5.1 we illustrate such an encoding. For each breakage (two

breakages of size two are given in the example) the whole network needs to be duplicated.

For each break A, a constraint is posted on the set of variable A and on the corresponding

set of duplicated variables, to ensure that the duplicates are assigned different values.

Finally a constraint whose scope contains all original variables and their duplicates

ensures that no more than |A| + b variables are assigned differently.

The size of such an encoding would be prohibitive. An algorithm somewhat

emulating this encoding has been introduced in [Hebrard 04]. Notice that this algorithm

is restricted to (1, b)-super-solutions and hence to a linear number of breakages. The idea

is to keep as many partial solutions as breakages, and extend all of them in parallel. Each

of these partial solutions is consistent with respect to the constraints on a corresponding

implicit duplicate network. One solution stands for the super-solution, whilst the n other

stand for b-repairs, and are extended using a backtrack procedure. During search, if any

95

Figure 5.1: A naive reformulation approach for solving an (a, b)-SuperCSP.

of these solutions cannot be extended to the next variable, then a backtrack occurs on all

of them, including the super-solution. This method avoids explicitly representing every

duplicate network. However, it introduces many partial solutions. Since the number of

breakage can be exponentially large, this method is again not viable for large values of

a.

We therefore avoid the use of any data-structure that would grow with the number

of breakages. The approach that we develop in this chapter follows the same principle,

but does not store a constraint network nor a solution for each breakage and thus

remain polynomial in size, for any a and b. It is essentially equivalent to the naive

reformulation, except that the duplicate networks are created on the fly. For each

breakage, we dynamically create the corresponding sub-problem, process it and “forget”

it. This solves the space complexity issue, but obviously not the time complexity issue.

This next step, i.e. improving the scalability and efficiency, is the focus of the rest of

this chapter.

5.2.1 Decomposition Approach

We now introduce an algorithm implementing the decomposition approach. The

basis is a backtracking algorithm that augments generalised arc consistency processing

with a further check of repairability. At each node in the search tree, i.e., after each

decision, a copy of the problem being solved is created for every breakage A ⊆ X such

that all variables in A are assigned. The domain of any variable in A is reduced so

that the value currently assigned in the master problem cannot be chosen. Moreover, a

96

Similarity constraint is posted, ensuring that the extended Hamming distance to the

current partial solution is small enough. Given a partial solution ϕ and an integer N , this

constraint ensures that the number of discrepancies with respect to ϕ is bounded by N .

As the solution of this sub-problem is thus a partial b-repair, N is set to |A|+ b. Notice

that we may pass a complete solution f as parameter of the Similarity constraint as

well, which will be treated as the corresponding partial solution ϕ where ϕ(X) = {f(X)}

for all X.

Definition 22. The constraint Similarity(X , ϕ, A, b) holds if and only if at most |A|+b

variables in X are assigned to values not represented in ϕ.

τ ∈ Similarity(X , ϕ, A, b) ⇔ |{Xi | Xi ∈ X ∧ τ(Xi) 6∈ ϕ(Xi)}| ≤ |A| + b

Now, let consider a constraint network P = (X ,D, C), a partial solution ϕ over

k ≤ |X | variables and a breakage A ⊆ X . We define the sub-problem Pϕ,A as follows:

Definition 23. (see Table 5.1) Let P = (X ,D, C) be a constraint network, and ϕ a

partial solution of P, Pϕ,A is a triplet (Xϕ,A,Dϕ,A, Cϕ,A) such that: Xϕ,A = {Xϕ,A | X ∈

X}, Dϕ,A = D, and Cϕ,A is equal to C augmented with the constraints ∀X ∈ A (X 6=

Xϕ,A) and Similarity(Xϕ,A, ϕ, A, b).

P Pϕ,A

Variables: X Xϕ,A = {Xϕ,A | X ∈ X}

Domains: D Dϕ,A(Xϕ,A) = D(X)

Constraints: C Cϕ,A = C ∪ {∀X ∈ A (X 6= Xϕ,A)}
∪{Similarity(Γb(A), ϕ, A, b)}

Table 5.1: The sub-problem Pϕ,A (Brute-force approach).

Given a sub-problem Pϕ,A one can check for the existence of a partial solution

of the same length as in the master problem in polynomial time providing that a and

b are constant. The number of assignments that satisfy the Similarity constraint is

bounded by na+bda+b where d is the maximum domain size. Indeed, there are less than

na breakages, and for each, there are at most nb subset of variables used as repair.

Hence less than na+b sets of variables assigned differently, each containing at most a+ b

variables and thus da+b possible assignments. Therefore it is possible to generate and

test all such assignments in polynomial time. During the search phase, the partial

97

solution ϕ is reduced, exactly as in the MAC algorithm. During the inference phase we

first compute the GAC closure of P = (F , ϕ, C), where F ⊆ X contains all unassigned

variables plus the variable involved in the last decision. Then for each breakage whose

variables are all assigned, i.e., for any subset A ⊆ (X \ F) such that |A| ≤ a, we

create Pϕ,A. If Pϕ,A is unsatisfiable, then the breakage A cannot be repaired. We do

not actually compute a solution of Pϕ,A, since searching the variables that are not yet

assigned in the master-problem can be a costly procedure. Instead, we solve Pϕ,A up

to the same level in the search tree as we currently are in the master-problem. In other

words, we use as witness of satisfiability a partial solution ψ, closed under generalised

arc consistency and such that all variables assigned in ϕ are also assigned in ψ, i.e.,

X ∈ (X \ F) ⇒ |ψ(X)| = 1. If there is no such partial solution then we fail, withdraw

the last decision and backtrack in the master-problem. Notice that we create a sub-

problem Pϕ,A only for the breakages A involving only assigned variables. We do so

because for a breakage A such that A ⊆ F , the resolution of the corresponding sub-

problem cannot fail. In fact, the constraints X 6= Xϕ,A are GAC when |ϕ(X)| > 1.

Therefore, a breakage A such that X ∈ A is not assigned yields a sub-problem Pϕ,A

whose solutions are a strict super set of the sub-problem Pϕ,A\{X}.

5.2.2 Explanation of the Algorithm

Main Backtracker: Algorithm 15 (decomposition-backtrack) implements

the decomposition approach described in Section 5.2.1. This procedure develops a search

tree on the master-problem and the procedure repairability is called at each node

(Line 1), creating and solving sub-problems.

Enforcing repairability: Algorithm 16 (repairability) ensures that each

breakage of the partial solution ϕ has a b-repair. For every set A of k ≤ a assigned

variables (A ⊆ (X \ F) and |A| = k), the sub-problem Pϕ,A is created. Then the

restriction of Pϕ,A to the variables assigned in the master-problem (X \ F) is solved

(Line 1). The procedure repairability returns true if all sub-problems are satisfiable,

and false otherwise. The procedure solve may be any algorithm deciding constraint

satisfaction problems. We assume that MAC is used. The notation solve(P|S) means

that the solving method is only required to assign variables in S ⊆ X . For instance,

98

Algorithm 15 decomposition-backtrack

Data : P = (X ,D, C), ϕ, F [= X], a, b

Result : Does P admit an (a, b)-super-solution

if F = ∅ then return true;
choose X ∈ F ;
save ϕ;
foreach v ∈ ϕ(X) do

ϕ(X) ← {v};
1 if GAC(P ′ = (F , ϕ, C)) & repairability(P, ϕ,F \ {X}, a, b) then

if decomposition-backtrack(P, ϕ,F \ {X}, a, b) then return true;

restore ϕ;

return false;

Figure 5.2: A backtracking algorithm for finding (a, b)-super-solutions.

when using MAC, the partial solution ϕ will be closed under generalised arc consistency,

and such that for any variable X ∈ S |ϕ(X)| = 1.

Algorithm 16 repairability

Data : P = (X ,D, C), ϕ, F [= X], a, b

Result : Check the repairability of grounded breakages

foreach A ⊆ (X \ F) such that |A| ≤ a do
1 if ¬solve(Pϕ,A|X\F) then return false;

return true;

Figure 5.3: An algorithm for checking the repairability of a partial solution.

5.3 Repair Localisation

In Chapter 4, we showed that local reasoning was sufficient for finding (1, 0)-

super-solutions. In this section we show that it is still possible in certain cases to

restrict the computation involved in checking a repair to a smaller part of the constraint

network. However, the size of the sub-problem increases with a, b and the density of the

network, and therefore cannot be bounded in general. The observation that we make is

that there must be at least n− (a + b) variables assigned equally in the master problem

99

and any sub-problem, where n = |X |. Therefore, being able to know beforehand (that is,

before starting a search process on a sub-problem) whether a given variable is within the

set of n− (a+ b) equally assigned variables is very valuable information. In this section

we show how one can deduce such equalities, then in Section 5.4.2 and 5.6, we explore

two ways of taking advantage of them. Notice that all the inference methods introduced

in this chapter are not restricted to binary or even bounded arity constraints. However

some equalities are deduced by reasoning on the topology of the network, therefore the

existence of constraints with large arity is likely to affect these methods.

Example 20. We instantiate this concept through an example. Suppose that we are

looking for a (1, 0)-super-solution f for a constraint network P. We know that for any

breakage {X}, a solution g of Pf,{X} must be so that n−1 variables are assigned equally

in both solutions, i.e., ∆(f, g) = 1. Moreover, we know that X cannot be assigned to

the same value. Therefore, given a partial solution ϕ of P that can be extended to f ,

the Similarity constraint reduces the domains of Pf,{X} as follows:

Df,{X}(X \ {X}) = ϕ((X \ {X})

Consider the constraint network in Figure 5.4. The domains of X1, X2 and X3 are all

equal to {1, 2, 3} and the domain of X4 is {1, 2, 4}. Suppose that we begin the search by

making the decision X1 = 1. We reduce ϕ(X1) to {1} and compute the generalised arc

consistent closure of ϕ (see Figure 5.4).

X4

X1 X3

X2

≤

≥ (X3 + X4 ≤ 5)

6=

D(X1) = {1, 2, 3}

D(X2) = {1, 2, 3}

D(X3) = {1, 2, 3}

D(X4) = {1, 2, 4}

ϕ(X1) = {1}

ϕ(X2) = {1}

ϕ(X3) = {1, 2, 3}

ϕ(X4) = {2, 4}

Figure 5.4: An example of neighbourhood-based inference making.

We then check the breakage {X1}. We show the initial domains as created fol-

lowing the definition, as well as the partial solution ψ equal to the GAC closure, with

the domain reduction due to the Similarity constraint (see Figure 5.5). In Pϕ,A, the

domain of X1 (ψ(X1)) is changed to {2, 3}. Then when propagating GAC, the value 1

is removed from ψ(X3) hence 4 is removed from X4.

100

X4

X1 X3

X2

≤

≥ (X3 + X4 ≤ 5)

6=

Dϕ,{X1}(X1) = {2, 3}

Dϕ,{X1}(X2) = {1, 2, 3}

Dϕ,{X1}(X3) = {1, 2, 3}

Dϕ,{X1}(X4) = {1, 2, 4}

ψ(X1) = {2, 3}

ψ(X2) = {1}

ψ(X3) = {2, 3}

ψ(X4) = {2}

Figure 5.5: The resolution of the sub-problem Pϕ,{X1} for the partial solution ϕ and
the breakage {X1}.

Making such an inference can greatly reduce the sub-problems, but more impor-

tantly, the same reasoning can be done in the reverse direction. For instance here,

for any solution f such that f(X1) = 1 we have f(X2) ∈ {1}, f(X3) ∈ {2, 3} and

f(X4) ∈ {2}. Therefore we can prune X3 = 1 and X4 = 4 in the master-problem.

However, the situation is more complex when the number of allowed changes is not null

(b > 0). In this case, it is no longer possible to intersect the domains of variables that

are not involved in a break with the current partial solution. We still have the property

that n − (a + b) variables must be assigned with the same value for the super-solution

and a repair, but identifying these variables is more difficult. Indeed, since one or more

changes are allowed, any variable can, at the outset, be assigned differently than in the

master problem. In Section 5.3.1 and 5.3.2 we investigate two inferences rules to deduce

such equality constraints between a variable in the master-problem and its homologue

in a sub-problem. We shall denote Eqϕ,A the set of variables that must be assigned

equally in the master-problem P and in Pϕ,A. Once we have identified a set Eq of

equality constraints, the following pruning rule can thus be enforced:

ϕ(Eq) = Dϕ,A(Eq).

We now explore two ways for deducing the membership of a variable X to Eqϕ,A.

The first one takes advantage of the fact that the repairs for a breakage A cannot be

topologically too distant from the variables in A in the constraint network. The second

is a simple deduction on the states of the domains after enforcing a consistency property

on the sub-problem. We shall see that both methods can be combined to achieve more

than the sum of the individual pruning.

101

5.3.1 Breakage Neighbourhood

The first idea is that, intuitively, a change must be close to the breakage in the

constraint graph. For instance, in a (1, 1)-super-solution, any “repaired” variable must

share a constraint with the “broken” variable (say X). Indeed if it was not the case,

then it would mean that all the constraints involving X are satisfied by the solution f

for both X = f [X] and X = v for a value v 6= f [X]. Moreover, we know that f satisfies

all constraints, since it is a solution, therefore, the breakage {X} need no repair at all,

a valid alternative is X = v.

Example 21. For instance consider the constraint network in Figure 5.6, and suppose

now that we are looking for a (1, 1)-super-solution. We make the same decision in the

master-problem, namely: X1 = 1. The same domains Dϕ,{X1} are created, however,

since there is a constraint C≥(X1, X2) and another C≤(X1, X3) we cannot make the

intersection with ϕ(X2) nor ϕ(X3). However, we can still intersect Dϕ,{X1}(X4) with

ϕ(X4):

X4

X1 X3

X2

≤

≥ (X3 + X4 ≤ 5)

6=

Dϕ,{X1}(X1) = {2, 3}

Dϕ,{X1}(X2) = {1, 2, 3}

Dϕ,{X1}(X3) = {1, 2, 3}

Dϕ,{X1}(X4) = {1, 2, 4}

ψ(X1) = {2, 3}

ψ(X2) = {1, 2, 3}

ψ(X3) = {2, 3}

ψ(X4) = {2}

Figure 5.6: A second example of neighbourhood-based inference making.

Let us introduce some necessary notation in order to formalise this reasoning to

any a, b. The notion of path between two variables is defined as the corresponding

graph concept in the constraint graph.

Definition 24. A path linking X, Y ∈ X is a sequence of constraints C(V1), . . . C(Vk)

such that i = j + 1 ⇒ Vi ∩ Vj 6= ∅ and X ∈ V1 and Y ∈ Vk.

The length of a path is equal to the cardinality of the sequence of constraints. The

distance between two variables δ(X, Y) is the length of the shortest path between these

variables. The neighbourhood up to a distance d of X, denoted Γd(X), is defined as

the set of variables linked to X by a path of length d or less.

102

Definition 25. Γd(X) = {Y | δ(X, Y) ≤ d}.

Similarly, we define the neighbourhood Γd(A) of a set of variables A as the union of

the neighbourhoods; Γd(A) =
⋃

X∈A Γd(X). Moreover, we define the orbit at distance

d of a set A ⊆ X , denoted Ωd(A), as the set of variables such that the shortest path

with any element of A is exactly d.

Definition 26. Ωd(A) = Γd(A) − Γd−1(A).

Example 22. In Figure 5.7, we illustrate the neighbourhood of a variable. The neigh-

bourhood of X1 at distance 0 (solid line) is {X1}, the neighbourhood at distance 1 (dashed

line) is the set {X1, X4, X6} and the neighbourhood at distance 2 (dash-point line) con-

tains {X1, X2, X4, X5, X6, X7}.

Γ0(X1)

Γ1(X1)

Γ2(X1)

X1

X2

X3

X4

X5

X6

X7

Figure 5.7: The neighbourhood of a variable.

We now state the theorem central to the subsequent use of neighbourhood in

the decomposition algorithm. Informally, it shows that if there exists a b-repair for a

particular breakage A, then all necessary reassignments are within the neighbourhood

of A up to a distance b, but first we prove the following Lemma:

Lemma 1. Let A ⊆ X be a set of variables, f : Γd(A) 7→ Λ and g : X \ Γd−1(A) 7→ Λ

two consistent assignments such that f(Ωd(A)) = g(Ωd(A)). Then any assignment h

constructed from f and g such that ∀X (h(X) = f(X) ∨ h(X) = g(X)) is consistent.

Proof. Let g : Γd(A) 7→ Λ and f : X \Γd−1(A) 7→ Λ be two consistent assignments such

that f(Ωd(A)) = g(Ωd(A)). Moreover, let h be an assignment such that ∀X (h(X) =

f(X) ∨ h(X) = g(X)). Without loss of generality, consider any constraint C(V) on

a set of variables V . There is a path of length one, (C(V)), between any two variables

103

in V . Therefore, the variables in V belongs to at most two orbits Ωd1(A) and Ωd2(A)

such that d1 ≤ d2 are consecutive or equal. We consider the three possible cases:

1. d1 < d and d2 < d: h(V) = g(V) and g(V) ∈ C(V) hence h(V) ∈ C(V).

2. d1 ≥ d and d2 ≥ d: h(V) = f(V) and f(V) ∈ C(V) hence h(V) ∈ C(V).

3. d1 = d − 1 and d2 = d: h(V) = g(V) and g(V) ∈ C(V) hence h(V) ∈ C(V).

Theorem 29. Let f be a solution of a constraint network P = (X ,D, C) and A ⊆ X a

set of variables. If g is a solution such that ∆A(f, g) = |A| and ∆(f, g) ≤ |A| + b then

there exists h, such that ∆A(f, h) = |A|, ∆(f, h) ≤ |A| + b and ∆Γb(A)(f, h) = ∆(f, h).

Proof. Let f and g be two solutions satisfying the premise, that is, there exists a set

of variables A, such that ∆A(f, g) = |A| and ∆(f, g) ≤ |A| + b. We construct another

solution h that satisfies the conclusion, that is, all changes with respect to f are within

the set Γb(A). Let d be the smallest integer such that f(Ωd+1(A)) = g(Ωd+1(A)). Since

all orbits are disjoint, there must be at least |A| + d discrepancies between f(Γd(A))

and g(Γd(A)). Therefore, as the total number of discrepancies is less or equal than

|A|+ b, we have d ≤ b. Now consider the restriction of f to X \Γd(A) and g to Γd+1(A).

We define h to be equal to g on Γd(A) and equal to f on the complement X \ Γd(A).

By definition we know that f(Ωd+1(A)) = g(Ωd+1(A)) therefore by Lemma 1, h is a

solution. Since h is defined with respect to g and f we clearly have ∆(h, f) ≤ ∆(g, f).

Moreover, by definition, all the discrepancies are located within Γb(A).

5.3.2 Preprocessing of the Similarity Constraint

The second idea is simply to preprocess Pϕ,A, by enforcing a local consistency.

As a result of this preprocessing, the domains may be reduced so that |A|+ b variables

have their domain disjoint with their image by the partial solution ϕ. If this is the case,

then all other variables must be assigned as in the master-problem.

Example 23. For instance consider the constraint network in Figure 5.8. Here again,

we start the search by making the decision ϕ(X1) = {1}. We show the initial domains,

104

the GAC closure of the partial solution ϕ as well as the domains of Pϕ,A after enforcing

generalised arc consistency as a preprocessing. Since Dϕ,{X1}(X2) and ϕ(X2) are dis-

X1 X3

X2

(X1 + X2 = 4)

≥

D(X1) = {1, 2, 3}

D(X2) = {1, 2, 3}

D(X3) = {1, 2, 3}

ϕ(X1) = {1}

ϕ(X2) = {3}

ϕ(X3) = {1}

Dϕ,{X1}(X1) = {2, 3}

Dϕ,{X1}(X2) = {1, 2}

Dϕ,{X1}(X3) = {1, 2, 3}

Figure 5.8: An example of preprocessing-based inference making.

joint, we can deduce that X3 should be assigned the same value in a (1, 1)-super-solution

f of P and in a solution of Pf,{X1}. Therefore we can prune X3 = 2 and X3 = 3, hence

Dϕ,{X1}(X3) = {1}. Let ϕ be a partial solution, closed under generalised arc consis-

tency, and Pϕ,A the sub-problem for this partial solution and a breakage A. If the set

Dff = {X | (ϕ(X) ∩ Dϕ,A(X)) = ∅} is such that |Dff | = |A| + b then we can safely set

Eqϕ,A to X \ Dff .

Notice that stronger local consistencies properties may be used as preprocess-

ing. For instance, Singleton Arc Consistency [Debruyne 97], [Prosser 00] is a good

candidate to replace GAC in this preprocessing.

The notion of neighbourhood, introduced in Section 5.3.1, can be used to further

exploit the inference due to a preprocessing of the Similarity constraint. Suppose that

the set of discrepancies Dff is such that |A| < |Dff | < |A| + b. We normally cannot

infer any equality constraint. However, let k = |Dff | − |A|, we show that this situation

is in fact equivalent to searching a b − 1-repair for the breakage Dff , hence the set

X \ Γb−k(Dff) can be added to Eqϕ,A.

Theorem 30. If Similarity(X1, . . . Xk, ϕ, A, b) accepts a solution f , and if there is a

set Dff of variables such that X ∈ Dff ⇒ ϕ(X) ∩ D(X) = ∅ and A ⊂ Dff , then it also

accepts a solution g such that all variables in Γb−(|Dff |−|A|)(Dff) take their values in ϕ.

Proof. This is an almost immediate application of Theorem 29. If we assume that the

domains are made generalised arc consistent, or any other sound local consistency, then

all variables in the set Dff must be assigned values outside ϕ. Moreover, if there exists

105

a solution, then the number of discrepancies with ϕ is less than or equal to |A|+b, hence

|Dff |− |Dff |+ |A|+ b. Let f be a solution extending ϕ, and suppose that there exists a

solution g such that the number of discrepancies with f is less than or equal to |A|+ b.

By applying Theorem 29, using Dff as the set of variables with domains disjoint to ϕ,

then we know that there exists a third solution h, such that all discrepancies are within

the set Γb−(|Dff |−|A|)(Dff).

5.4 Avoiding Unnecessary Checks

5.4.1 Multidirectionality

Multidirectionality is a concept used for implementing general purpose algorithms

for enforcing generalised arc consistency. The idea is that when a tuple supporting a

value is found, the same tuple can be used to support other values it involves. In the

same way as a tuple σ ∈ C(V) is a support for any value involved in σ, a b-repair g of a

breakage A is actually a b-repair for several subsets of variables taken from A and the

variables reassigned in g.

Example 24. For instance, suppose that we look for a (2, 2)-super-solution and sup-

pose that g is a 2-repair of the breakage {X, Y } that requires reassigning the variables

{V, W}, that is, f(V) 6= g(V) and f(W) 6= g(W). Then g is also a 2-repair of

{X, V }, {X, W}, {Y, V }, {Y, W} and {V, W}. We therefore need not to look for repair

for these breakages.

Theorem 31. If g is a b-repair of A for f and B ⊆ X is such that ∆X\B(f, g) = 0,

then for all A′ ⊆ B ∧ |A′| ≥ |B| − b, g is also a b-repair of A′.

Proof. Let g be a b-repair of A for f , and let B be the subset of X such that f(X) 6=

g(X) ⇔ X ∈ B. Moreover, let A′ ⊆ B. Recall that a b-repair of a breakage A′ for

a solution f is a solution h such that ∆A′(f, h) = |A′| and ∆(f, h) ≤ |A′| + b. We

show that g is b-repair of a A′ for f . By definition of A′ we have ∆A′(f, g) = |A′|.

Now ∆(f, g) = |B|, therefore g is a valid repair if and only if |B| ≤ |A′| + b, hence

|A′| ≥ |B| − b.

106

5.4.2 Ground Neighbourhood

Here we show that it is possible to avoid checking some breakages because the

necessary checks have been done earlier in the search tree.

Theorem 32. Let ϕ, ψ be two partial solutions of P, both closed under GAC, such that

∀X ψ(X) ⊆ ϕ(X). If Γb+1(A) ⊆ G where G = {X | |ϕ(X)| = 1} then Pϕ,A is satisfiable

if and only if Pψ,A is satisfiable.

Proof. Let f be a solution of P extending ψ, that is, ∀X ∈ X f(X) ∈ ψ(X) and g a

solution of Pϕ,A. Let G be the set of variables assigned in ϕ, i.e., G = {X | |ϕ(X)| = 1},

now, by definition of Pϕ,A, we have ∆G(f, g) ≤ |A|+b. Therefore, if we apply Theorem 29

to the restrictions of f and g to G, we know that there exists h : G 7→ Λ such that

∆G(f, h) = ∆Γb(A)(f, h) ≤ |A| + b. Moreover, using Lemma 1 we can extend h to be

equal to f on X \ G. Clearly, h is then a solution of Pψ,A since it is consistent with the

constraints of P, ∆(f, h) ≤ |A| + b and ∆A(f, h) = ∆A(f, g) = |A|.

Using this Theorem, we can simply avoid solving a sub-problem Pψ,A, if ψ extends

ϕ and the neighbourhood of A up to a distance b + 1 is entirely assigned in the master-

problem. Indeed we know that this repair will hold in any subtree, hence we do not

need to check it unless we backtrack beyond this point.

5.5 Sub-problems Solving

Each sub-problem is a regular constraint satisfaction problem. In this section

we first introduce a propagation algorithm for the Similarity constraint. Then we

show how one can obtain a better propagation of the Similarity constraint by using

neighbourhood based inference. Finally we show how can we can take advantage of the

same reasoning and propagate it back to the master problem.

5.5.1 Propagation Algorithm for the Similarity Constraint

First, notice that using Theorem 29, given a sub-problem Pϕ,A, we can infer

equality constraints on the set of variables equal to X \ Γb(A). Therefore, the domains

outside Γb(A) can be made equal, in the sub-problem, to the partial solution ϕ when

107

creating Pϕ,A, i.e.,

∀i, Xi 6∈ Γb(A) ⇒ Dϕ,A(Xi) = ϕ(Xi)

Moreover, the Similarity constraint can be posted on Γb(A) instead of X , as the set

{i | Xi ∈ (X \ Γb(A)) ∧ D(Xi) ∩ ϕ(Xi) = ∅} is empty. As a result we can change the

definition of a sub-problem Pϕ,A in the following way:

P Pϕ,A

Variables: X Xϕ,A = {Xϕ,A | X ∈ X}

Domains: D Dϕ,A(Xϕ,A) = ϕ(X) if X 6∈ Γb(A)
D(X) otherwise

Constraints: C Cϕ,A = C ∪ {∀X ∈ A (X 6= Xϕ,A)}
∪{Similarity(Γb(A), ϕ, A, b)}

Table 5.2: The sub-problem Pϕ,A (Neighbourhood-based inference).

Algorithm 17 (Similarity-propagate) enforces generalised arc consistency on

the variables of a Similarity constraint. This algorithm first computes the smallest

expected set Dff of discrepancies to ϕ (Line 1):

Dff = {X | D(X) ∩ ϕ(X) = ∅}

We then have three cases:

1. If |Dff | > |A| + b then the constraint cannot be satisfied (Line 2). In that

case, the domains are wiped out so that the overall closure algorithm will fail

in Line 3.

2. If |Dff | = |A| + b then we can set the domain of any variable Xi such that

D(Xi) ∩ ϕ(Xi) 6= ∅ to D(Xi) ∩ ϕ(Xi).

3. If |Dff | < |A| + b then the constraint is GAC as every variable can be assigned

any value providing that all Xi not in Dff take a value included in ϕ(Xi), and

we will still have |Dff | ≤ |A| + b, therefore nothing happens. However, if A

is a strict subset of Dff , then we can infer equality constraints as explained in

Section 5.3.2. We show how to soundly perform the corresponding pruning in

Algorithm 18.

108

Algorithm 17 Similarity-propagate

Data : X = {X1, . . . Xn}, ϕ, A, b

Result : The GAC closure of X with respect to Similarity

pruned ← false;
1 Dff = {Xi | D(Xi) ∩ ϕ(Xi) = ∅};
2 if |Dff | > |A| + b then

pruned ← true;
3 D ← (D : Xi → ∅);

else
4 if |Dff | = |A| + b then

foreach Xi ∈ (X \ Dff) do
if D(Xi) 6⊆ ϕ(Xi) then

pruned ← true;
D(Xi) ← (D(Xi) ∩ ϕ(Xi));

return pruned;

Figure 5.9: An algorithm for computing the GAC closure of a Similarity constraint.

5.5.2 Neighbourhood Inference for the Similarity Constraint

In Figure 5.10, we give another version of the same algorithm. The procedure

Similarity-propagate-Γ also uses the neighbourhood based inference to deduce equal-

ity constraints and perform the corresponding pruning. In Line 1, the neighbourhood of

Dff at a distance b−(|Dff |−|A|) is computed. Then the value of Dff , which previously

stood for the variables necessarily different, is set to this neighbourhood, that is, the

set of variables possibly different. Notice that if |Dff | = |A| + b then the condition

in Line 4 of Algorithm 17 would be satisfied, and the same pruning would take place.

Otherwise, either |Dff | = |A|, and then nothing will happen, since the value of Dff

will be set to the whole scope of the constraint, or |Dff | > |A| and then some equality

constraints may be inferred and immediately propagated (Line 3).

5.6 Master-problems Solving

It has been showed through an example in Section 5.3 that the notion of equality

between a variable in P and its homologue in Pϕ,A can be used for pruning both Pϕ,A

109

Algorithm 18 Similarity-propagate-Γ

Data : X = {X1, . . . Xn}, ϕ, A, b

Result : The GAC closure of X with respect to Similarity

pruned ← false;
Dff = {Xi | D(Xi) ∩ ϕ(Xi) = ∅};
if |Dff | > |A| + b then

pruned ← true;
D ← (D : Xi → ∅);

else
1 Dff ← Γ|A|+b−|Dff |(Dff);
2 foreach Xi ∈ (X \ Dff) do

if D(Xi) 6⊆ ϕ(Xi) then
pruned ← true;

3 D(Xi) ← (D(Xi) ∩ ϕ(Xi));

return pruned;

Figure 5.10: An algorithm for computing the GACclosure of a Similarity constraint
using neighbourhood-based inference.

and P. In this section we give an example of pruning on the master-problem that

dramatically reduces the search, then we discuss how to handle this inference method

in the repairability algorithm.

Example 25. Consider the following constraint network and suppose that we are looking

X4

X1 X3

X2

6=

3 ≤ X1 + X2 ≤ 4

3 ≤ X1 + X3 ≤ 4

C(X2/3, X4) =















〈1, 1〉
〈1, 2〉
〈2, 2〉
〈3, 3〉

D(X1) = {1, 2, 3}

D(X2) = {1, 2, 3}

D(X3) = {1, 2, 3}

D(X4) = {1, 2, 3}

Figure 5.11: An example of inference making from a sub-problem to the master-problem.

for a (1, 1)-super-solution, the first decision is to assign X1 = 1, in the next Figure, we

show the partial solution ϕ equal to the generalised arc consistent closure of this decision,

as well as the GAC closure of Pϕ,A. We then apply the inference rule described in

Section 5.3 and thus intersect ϕ with D on Eqϕ,A = X \ Γ1(A).

110

ϕ(X1) = {1}

ϕ(X2) = {2, 3}

ϕ(X3) = {2, 3}

ϕ(X4) = {2, 3}

Dϕ,{X1}(X1) = {2, 3}

Dϕ,{X1}(X2) = {1, 2}

Dϕ,{X1}(X3) = {1, 2}

Dϕ,{X1}(X4) = {1, 2}

ϕ(X1) = {1}

ϕ(X2) = {2, 3}

ϕ(X3) = {2, 3}

ϕ(X4) ∩ Dϕ,{X1}(X4) = {2}

Figure 5.12: Continuation of figure 5.11.

We have seen that the equality constraints can be inferred while preprocessing

a sub-problem. We can therefore modify repairability by taking into account the

previous observations. We use a set Eq in which variables participating to equality

constraints discovered while preprocessing the Similarity constraint. Moreover, their

domains at that time are stored as well using an array DEq. If the resolution of the

sub-problem succeed, then for any variable X ∈ Eq, can have its domain intersected to

DEq(X). Algorithm 19 (repairability-Γ) implements these modifications.

First the set covered is initialised as the empty set in Line 1. This set will be used

to store the indices of the breakages that are known to be repairable by multidirection-

ality. The set G contains all assigned variables (Line 2). We checked only the breakages

which are not known to be repairable by multidirectionality (Line 3) and such that their

neighbourhood up to a distance b + 1 is not entirely contained into G (Line 4). Then

every breakage A satisfying these two preconditions are checked as follows:

• The sub-problem Pϕ,A is created as shown in Table 5.2.

• The generalised arc consistent closure of Pϕ,A is computed, if this closure is

empty, then the algorithm fails (Line 5).

• All variables that must be equal in P and Pϕ,A are stored in the set Eq and

have their domain stored in the array DEq (line 6, 7 and 8).

• A solution of Pϕ,A, restricted to variables assigned in the main solution ϕ is

computed, if no such solution exists, the algorithm fails (Line 9).

• The variables of P have their domain intersected with the domains stored in

Eq (Line 10).

111

• If some values have been removed, the main partial solution ϕ is made gener-

alised arc consistent (Line 11).

Algorithm 19 repairability-Γ

Data : P = (X ,D, C), ϕ, F [= X], a, b

Result : Check the repairability of grounded breakages

1 covered ← ∅;
2 G ← {X | |ϕ(X)| = 1};

foreach A ⊆ (X \ F) such that |A| ≤ a do
3 if A 6∈ covered then
4 if Γb+1(A) 6⊆ G then
5 if ¬preprocess(Pϕ,A) then return false;
6 Dff ← {Xi | D

ϕ,A(Xi) ∩ ϕ(Xi) = ∅};
7 Eq ← (X \ Γ|A|−|Dff |+b(Dff));

8 foreach X ∈ Eq do DEq(X) ← Dϕ,A(X);
9 if ¬solve(Pϕ,A|X\F) then return false;

pruned ← false;
10 foreach X ∈ Eq do

if ϕ(X) 6⊆ DEq(X) then
pruned ← true;;
ϕ(X) ← DEq(X);

11 if pruned & ¬GAC(P, ϕ,F) then return false;
12 foreach A′ ⊆ (A ∪ B) ∧ |A′| ≥ |A ∪ B| − b do

covered ← (covered ∪ {A′});

return true;

Figure 5.13: An algorithm for checking the repairability of a partial solution using
neighbourhood-based inference.

5.6.1 Implementation

We now discuss the implementation and complexity of the improvements due to

the techniques described in Sections 5.4, 5.5 and 5.6 over the repairability algorithm.

Neighbourhood: For every variable X ∈ X , the neighbourhoods Γk(X) for

all values of k between 1 and b+1 included are computed and stored. This is done as a

preprocessing step by a simple breadth first search on the constraint graph and n(b+1)

sets of size at most n are required to store the result. We need to run n(b + 1) times

a breadth first search algorithm (O(n2)) on the constraint graph. The complexity of

112

the preprocessing procedure thus is O(bn3) where n = |X | is the number of variables,

i.e., nodes in the constraint graph. However, this cost is amortised over the possibly

exponential sized search tree so is often negligible. The neighbourhood Γb(A) of a

breakage A is computed dynamically (during search) by performing a union operation

over the neighbourhood of the elements in A.

Multidirectionality: The notion of multidirectionality (Section 5.4.1) is im-

plemented using a set covered (Algorithm 19, Line 1). This set contains a reference to

any breakage that is covered through multidirectionality (Algorithm 19, Line 12) break-

ages in this set are not checked (Algorithm 19, Line 3). We used a simple algorithm

introduced by Knuth [Knuth 04] to generate all breakages, i.e., combinations of k ≤ a

variables. This algorithm generates the combinations in lexicographic order and there-

fore constitutes an ordering on these combinations. Moreover, given one combination

in input, one can compute the rank of this combination in the ordering in linear time

on the size of the tuple. For instance given the combination c = (x1, x2, . . . xk) of k

elements amongst n, the rank of c in the lexicographical ordering is:

rank(c) =
i=k
∑

i=1

(

xi

i

)

The size of the tuple is in our case a small constant, we thus have an efficient way

of knowing if the breakage that we currently consider is covered by an earlier repair.

Each time a new repair is computed, all breakages it covers are added to covered,

then when we generate a combination, we simply check that its index is not in this set

otherwise we do not need to find a repair for it. Notice that this set is potentially large

(
∑k=a

k=1

(

n
k

)

), however, each element is a simple integer and this proved manageable in

practice. Moreover, we can bound this set and yet keep soundness and completeness

of the main algorithm, although this means that we may solve unnecessarily some sub-

problems.

Assigned neighbourhood: The sub-problems corresponding to breakages

such that their neighbourhood up to a distance b+1 is entirely assigned are not checked

as well (Algorithm 19, Line 4, as described in Section 5.4.2). This test is a simple set

inclusion operation.

Equality Constraints: Following Section 5.3.2, some equalities (set Eq) are

either deduced from the preprocessing of the sub-problem, using the neighbourhood

113

notion as described in Section 5.3 (Algorithm 19, Line 7).

Pruning on the Master-problem: Finally, the partial solution on the master-

problem is reduced accordingly to Section 5.6. After preprocessing the sub-problem (Al-

gorithm 19, Line 5) the partial solution on variables linked with “equality” constraints

are reduced to match the domains of the sub-problem (Line 10).

The search procedure decomposition-backtrack-Γ (Algorithm 20) is basically

unchanged with respect to Algorithm 15, the call to the inference method repairability

is simply replaced by repairability-Γ.

Algorithm 20 decomposition-backtrack-Γ

Data : P = (X ,D, C), ϕ, F [= X], a, b

Result : Does P admit an (a, b)-super-solution

if F = ∅ then return true;
choose X ∈ F ;
save ϕ;
foreach v ∈ ϕ(X) do

ϕ(X) ← {v};
if GAC(P ′ = (F , ϕ, C)) & repairability-Γ(P, ϕ,F \ {X}, a, b) then

if decomposition-backtrack-Γ(P, ϕ,F \ {X}, a, b) then return true;

restore ϕ;

return false;

Figure 5.14: A backtracking algorithm for finding (a, b)-super-solutions.

5.7 Theoretical Properties

5.7.1 Soundness and Completeness

We did not explicitly define a level of consistency for which repairability-Γ

would be the closure algorithm. Moreover, since we do not restrict the “classical” consis-

tency used in conjunction with this procedure, the exact level of consistency is not prop-

erly defined. Therefore we restrict our proofs to the soundness of the closure algorithm,

i.e., this algorithm does not prune values that can participate to (a, b)-super-solutions

and to the soundness and completeness of the decomposition-backtrack-Γ algorithm.

114

Theorem 33. repairability-Γ is a sound algorithm for filtering domains for the

(a, b)-SuperCSP problem.

Proof. Applying GAC is clearly sound since (a, b)-super-solutions are solutions. We

show that if the current partial solution ϕ is extendable to an (a, b)-super-solution f of

P, then repairability-Γ does not fail. Consider the (a, b)-super-solution f to which

ϕ can be extended. Without loss of generality, let A ⊆ X be a breakage (|A| ≤ a). We

show that is there exists g a b-repair of A for f , then the sub-problem Pf,A is satisfiable:

• g is a solution of P and therefore satisfies all constraints in C.

• g is such that ∆A(f, g) = |A| therefore ∀X ∈ A f(X) 6= g(X).

• The constraint Similarity(Xϕ,A, f, A, b): is satisfied, since ∆(g, f) ≤ |A| + b.

It follows that g is a solution of Pf,A. Therefore, if there exists an (a, b)-super-solution

then repairability-Γ does not fail.

Theorem 34. decomposition-backtrack-Γ is a sound and complete algorithm for

solving the (a, b)-SuperCSP problem.

Proof. Soundness: We show that if F = ∅ then the partial solution ϕ actually is an

(a, b)-super-solution. For every breakage A, the sub-problem Pϕ,A has been solved in

the previous level of the search tree. Now consider the solution f defined by ϕ, that is,

f(Xi) = v ⇔ ϕ(Xi) = {v} and a solution g of Pϕ,A.

• g is clearly a solution of P as Pϕ,A is strictly tighter than P, indeed we have:

∀X ∈ X Dϕ.A(X) ⊆ D(X) and C ⊆ Cϕ.A.

• ∆A(f, g) = |A| since ∀X ∈ A f(X) 6∈ Dϕ.A(X).

• ∆(g, f) ≤ |A| + b since g satisfies the constraint Similarity(Xϕ.A, ϕ, A, b).

Completeness: We show that if there exists an (a, b)-super-solution then the

algorithm decomposition-backtrack-Γ will succeed. The procedure repairability-Γ

is sound, therefore no decision leading to a solution can be pruned. Therefore, if there

exists an (a, b)-super-solution then decomposition-backtrack-Γ will eventually find

it.

115

5.7.2 Complexity

We study the complexity of the procedure repairability-Γ. In Figure 5.15 we

show a simplified form of the procedure repairability-Γ, where unessential parts that

do not contribute to the worst case complexity are omitted.

Algorithm 21 repairability-Γ

Data : P = (X ,D, C), ϕ, F [= X], a, b

Result : Check the repairability of grounded breakages

1 covered ← ∅;
2 foreach A ⊆ (X \ F) such that |A| ≤ a do

if A 6∈ covered then
3 if ¬solve(Pϕ,A|X\F) then return false;

return true;

Figure 5.15: An abstracted version of the repairability-Γ procedure.

Worst Case Time Complexity

This procedure cycles potentially through all breakages in loop 2. Since the

number of breakages has no closed form, we define the function T (n, k) as the number

of subsets of cardinality k or less in a set of cardinality n. This number is equal to the

sum of the binomial coefficients,
(

n
i

)

for 1 ≤ i ≤ n.

T (n, k) =
i=k
∑

i=1

(

n

i

)

This number will also conveniently been used to express the maximum number of repairs.

Given a constraint network P and a partial solution ϕ, let l be the number of grounded

variables in ϕ, n the total number of variables n = |X |, d the domain size and m the

number of constraints m = |C|. 1

The GAC closure of ϕ is computed, the worst case complexity of an optimal

GAC algorithm on binary constraints is O(md2). Breakages are checked in turn. The

number of breakages is, as shown in Section 5.2, is T (l, a), hence loop 2 cycles at most

T (l, a) times. The procedure solve is typically carried out by a backtracking algorithm

such as MAC, hence its worst case complexity is in general exponential. However, in

1 We assume here that all domains have the same cardinality

116

this case, the Similarity constraint restricts the search space to a polynomial in b.

Moreover the depth of the search tree is limited to l. Consider a breakage A and the

corresponding sub-problem Pϕ,A. As a consequence of the Similarity constraint, at

most b variables, besides those in A, can be assigned differently than in ϕ. There are less

than T (l, b) such sets of variables, and at most da+b possible assignments for the a + b

“reassigned” variables. Therefore the total number of solutions of Pϕ,A is bounded above

by T (l, b)da+b. The overall worst case complexity of the inference method introduced in

this chapter therefore is O(T (l, a)T (l, b)db). Since T (n, k) is itself bounded by nk, the

complexity can be seen as O(la+bda+b).

Space complexity

The procedure repairability-Γ sequentially solves a number of sub-problems.

These sub-problems have the same space complexity as the master problem since the

Similarity is defined in intention. In fact, since they are solved sequentially, and since

the constraints are shared with the master problem, only an additional domain relation

need to be stored on memory (O(nd)). Moreover, repairability-Γ uses a few data

structures to store necessary information:

• The future breakages that are covered by multidirectionality are stored in the set

covered. The number of breakages can in principle be T (n, a) =
∑k=a

k=1

(

n
k

)

which

is in contradiction with our condition to keep a space complexity polynomial

even when a grows. However, in practice this set needs relatively little space

since only the indices of the breakages are stored. Moreover, the set covered is

not necessary for soundness or completeness, therefore we can bound its space

complexity arbitrarily.

• The indices of assigned variables are stored in the set G, hence a space com-

plexity in O(n).

• The indices of variables that are assigned differently (Dff) and that are involved

in an equality constraint (Eq) are also bounded by the total number of variables

O(n).

• The array DEq, storing the domains of variables participating in an equality

constraint has a O(nd) space complexity in the worst case.

117

Therefore, notwithstanding the set covered, the space complexity of the procedure

repairability-Γ is not larger than that of the main backtracking procedure.

5.7.3 Comparison with Full Fault Tolerance Algorithms

In this section we compare the decomposition algorithm introduced in this chapter

with the algorithms dedicated to full fault tolerance in Chapter 4. Here again we

differentiate the static (closure as stand alone procedure) from the dynamic (closure

within search) context, since, similarly to GAC+, applying the repairable procedure has

different behaviour according to the context. We define the consistency repairable as

the consistency resulting from the application of the procedure repairability-Γ in

conjunction with generalised arc consistency.

Definition 27. A constraint network cn = (X ,D, C) is said repairable if and only if it

is GAC and the closure of P by repairability-Γ is P.

Theorem 35 (Static viewpoint). repairable ≃ GAC+

Proof. Let P = (X ,D, C) be a constraint network,

(repairable º GAC+) Suppose that GAC+ does not hold. Then either P is not

GAC in which case repairable(P) clearly does not hold, or there exists a domain D(X)

such that its GAC closure is a singleton {v}. In this case, the sub-problem PD,{v} has

no solution since the constraint X 6= v cannot be satisfied whilst all other constraints

stay the same.

(GAC+ º repairable) Suppose that GAC+ holds. Then the constraint network

is GAC and any domain contains at least 2 values The procedure repairability-Γ

checks only breakages for which all variables are ground. Therefore, after achieving the

GAC closure, if no domain is reduced to a singleton, no breakage will be checked, hence

repairable holds.

Theorem 36 (Dynamic viewpoint). repairable ≃ GAC(P + P)

Proof. Let P = (X ,D, C) be a constraint network,

(repairable º GAC(P + P)) Suppose that for some partial solution ϕ on P re-

pairable holds. We consider the same partial solution extended to P + P. The con-

straints in P are GAC since ϕ is GAC. Without loss of generality, let X be a vari-

118

able, and consider the sub-problem Pϕ,X . There exists a partial solution ψ such that

ψ(X \ X) = ϕ(X \ X) and ψ(X) 6= ϕ(X) since repairable holds. Therefore, if GAC is

enforced on P + P, the domain of X+ will contain at least the value assigned to X in

ψ: (ϕ(X)∪ψ(X)) ⊆ D+(X+). The duplicate constraints are GAC since ϕ is GAC and

the disequality constraints are GAC since ϕ(X) 6= ψ(X).

(GAC(P +P) º repairable) suppose that for some partial solution ϕ on (P +P),

GAC(P + P) holds.

First, we show that all breakages checked by repairability-Γ produces sat-

isfiable sub-problems. We consider, without loss of generality, a breakage {X} on ϕ

restricted to the variables in P. If |ϕ(X)| 6= 1, this breakage is not checked, hence we

can assume that the image of X by ϕ is a single value v. Now, since GAC(P +P) holds

for the partial solution ϕ, there exists a value w 6= v such that w ∈ D+(X+). Moreover,

consider the partial solution ψ, equal to ϕ on any variable Y 6= X, and mapping X

to {w}. First, observe that (X , ψ, C) is GAC since (X \ {X} ∪ {X+}, ϕ, C) is GAC.

Moreover, all variables that are assigned in ϕ are assigned in ψ, and since ϕ and ψ agree

on all variables but X, ψ is a solution for Pϕ,{X}.

Second we show that if the algorithm repairability-Γ was to prune a value,

this value would not be GAC in P + P with respect to ϕ. In fact, for a breakage

{X}, there is an equality constraint on all variables in X \ {X}. Therefore, a value

needs to be pruned if it has no GAC support on D(X) \ ϕ(X) after the GAC closure is

computed. However the GAC closure of D(X) \ ϕ(X) is identical to the GAC closure

of D+(X+), since the same constraints apply, with the exception of X 6= X+ which is

already propagated in D(X) \ ϕ(X).

5.8 Summary and Limitations

We have introduced a new algorithm for finding super-solutions. This procedure

is, to our knowledge, the only available method for finding (a, b)-super-solutions for

unrestricted values of a and b. We first introduced a brute force backtracking procedure,

decomposition-backtrack. This procedure dynamically creates, at each node in the

search tree, a sub-problem for every breakage such that a solution of this sub-problem

119

GAC+(P)

≻

≃

super -GAC(P)

GAC(P + P)

≻

GAC(P × P)

≻

repairable≃

≻ ≻

(a) Static context

≻≻

≻

GAC(P × P)

≻

≃GAC(P + P)

super -GAC(P)

GAC+(P)

repairable

≻ ≻

(b) Dynamic context

Figure 5.16: The relation between consistencies (reads if tail holds then head holds).

is a repair of the main solution. We showed that it is possible to take advantage of the

resolution of sub-problems in order to reduce the overall search space. We can deduce

that some variables must be equal in the master problem and in a given sub-problem.

In order to do so, we proposed a propagation algorithm for the Similarity constraint.

The idea is that when a variable need to be reassigned as a response to a breakage,

there must be an uninterrupted chain of changes to the breakage, that is, a path in the

constraint graph. This reasoning, in conjunction with a classical consistency processing,

can be used to infer a number of equality constraints. When, for a variable involved

in an equality constraint, some pruning occurs in the sub-problem while preprocessing,

the same pruning can be done in the master problem. This, in consequence, reduces

the search space of the master problem, hence the number of sub-problems that need

be solved.

We then analysed the theoretical properties of this algorithms. The worst case

time complexity for an inference step is in O(na+bda+b). It is thus very dependent on

the size of the parameters a and b. We compared this algorithm with the methods for

finding (1, 0)-super-solutions introduced in Chapter 4.

We believe that this algorithm could be further developed in several dimensions.

For instance, for large values of the parameters a and b we may need a radically different

approach. Another drawback is that if the method has some “look-ahead” aspects it

120

relies too heavily on a “look-back” reasoning which is often not as efficient. Indeed,

part of the reasoning applies to the future, i.e., not already assigned, variables, such as

the GAC processing and the pruning due to equality constraints, however the resolu-

tion itself of sub-problems is essentially a “look-back” technique since it checks already

assigned variables. We believe that the difficulty of designing a purely “look-ahead”

inference method is linked to the fact that the (a, b)-repairability is not a local property,

hence requires global reasoning.

Chapter 6

Partial Fault Tolerance

6.1 Introduction

In this chapter we introduce a number of algorithms for optimising solution ro-

bustness. The algorithms introduced in Chapters 4 and 5 have several drawbacks. First

and most importantly there is not always an (a, b)-super-solution for some given a and b.

It also appears that finding (a, b)-super-solution is significantly more difficult than find-

ing solution on problems of comparable sizes. It was shown, in Chapter 3 that several

tractable classes of constraint satisfaction problems become NP-hard when searching

super-solutions. Moreover it was shown in Chapter 5 that local consistency properties,

largely responsible for the effectiveness of constraint programming in general, cannot be

applied directly to ensure the repairability of solutions.

The situation is very close to that faced with over-constrained problems. A

constraint network is said to be over-constrained if it admits no solution. Notice that

in practice, a problem may be considered over-constrained because no solution can be

found with the available methods, whilst one or more solutions could possibly exist. To

answer this problem, a number of frameworks have been introduced, for instance Par-

tial Constraint Satisfaction, [Freuder 89, Freuder 92], or Weighted Constraint

Satisfaction, to deal with such problems. The idea behind all these frameworks is to

relax the constraints, and to find a solution satisfying as much as possible the relaxed

constraints. The same idea can be applied to super-solutions. We consider two ways of

relaxing the robustness condition, both introduced and analysed in Section 3.3.3. These

approaches solve most of the drawbacks mentioned earlier. Indeed the resulting Branch

122

& Bound algorithms will typically be “anytime”. We typically start from a solution

found via the best classical method for solving the problem, and then only tighten the

robustness condition in a Branch & Bound process. Therefore, even if no super-solutions

exist, a solution can be returned any time after the base algorithm provided one. The

more time we spend on searching, the more robust the solution eventually returned will

be.

In the first partial problem, MinBCSP, we want to find a solution minimising

the value of b for which it is an (a, b)-super-solution. In fact, this problem can be

solved as a sequence of regular SuperCSP problem, using the algorithm introduced

in Chapter 5. We discuss in Section 6.2 the respective merits of using a “top-down”

strategy where the value of b is decreased until no existential-(a, b)-super-solution can

be found, or a “bottom-up” strategy where instead the value of b is increased until the

first existential-(a, b)-super-solution is found.

The second partial problem, MaxRepairCSP, has several advantages over the

first approach. The idea here is to find the solution with greatest repairability. The

existential-(a, b)-repairability of a solution is defined in Section 3.2.3 (def. 10), as the

number of breakages that can be repaired. We introduce three Branch & Bound algo-

rithms for maximising the solution robustness. The first and second, are restricted to

(1, 0)-super-solutions. They are described in Section 6.3, and respectively use the closure

algorithms introduced in Section 4.4.2 and 4.4.3, extending the corresponding satisfac-

tion algorithms. The third algorithm maximises the existential-(a, b)-repairability of a

solution, with unrestricted a and b, and extends the satisfaction algorithm introduced

in Chapter 5. The inference mechanisms, introduced in the same chapter cannot, how-

ever, be used exactly as stated and needs to be adapted to this algorithm. We show,

in Section 6.4, that the same type of inference can still be achieved, however, using a

more complex system of counters.

In Section 6.2, we introduce an algorithm for minimising the value of b for

which there exists a (1, b)-super-solution and discuss the complexity of this problem.

In Section 6.3, we introduce two Branch & Bound algorithms for maximising the

(1, 0)-repairability of a solution, extending respectively MAC+ and super-MAC. Finally,

in Section 6.4, we introduce a Branch & Bound algorithm for maximising the (a, b)-

123

repairability of a solution extending the algorithm decompose-backtrack-Γ.

6.2 Minimising the Repair Size

This relaxation of SuperCSP has been introduced in Chapter 3. We still insist

that the solution should be an (a, b)-super-solution, however the value b is relaxed. An

optimal solution for this problem is an (a, b)-super-solution with minimal value of b.

6.2.1 Objective Function

Given a constraint network P = {X ,D, C}, the objective function Φ that we want

to minimise is the value of b for which P admits an (a, b)-super-solution.

Φ(f) = min{b | f is an (a, b)-super-solution of P}

The problem of computing Φ(f), even when provided with a solution f is NP-hard.

This problem has been introduced in Section 3.3.3.

6.2.2 Inference Method: “bmin-repairable”

The search is controlled by the following relation that bounds the search space

toward improving solutions:

ub > min{b | ∃f an (a, b)-super-solution of P}

This is the regular condition that we add to a CSP for finding (a, b)-super-solutions. In

fact, we show that we can bound the search using the regular inference method for Su-

perCSP, i.e., the procedure repairability-Γ introduced in Chapter 5 (Algorithm 19).

We denote bmin-repairable this inference method within a Branch & Bound context.

6.2.3 Closure Algorithm for “bmin-repairable”

The procedure repairability-Γ can be used without modification as inference

method for this objective function. We can therefore solve MinBCSP with a Branch

& Bound algorithm using the Filtering procedure shown in algorithm 22. However,

there is a notable difference when using this algorithm in this dynamic context. In the

previous chapter, the value of b was fixed and often assumed to be a small constant.

124

This is no longer the case here since we typically start the search with b set to an

upper bound and progressively decrease its value. Propagating the consequences of the

relation Φ(ϕ) < ub on a partial solution ϕ, or even computing the value of Φ(f) when a

new solution f is found is considerably harder because the value of b is not bounded. We

showed in Theorem 3 that given a constraint network P, a solution f of P and an integer

b, the problem of deciding if f is indeed an (a, b)-super-solution of P is NP-complete.

Algorithm 23 computes this value using the repairability-Γ procedure and a binary

search, whilst algorithm 22 implements the filtering method for MinBCSP using the

procedure repairability-Γ introduced in Section 5.6 (Algorithm 19).

6.2.3.1 Commented Pseudo Code

Algorithm 22 bmin-repairable

Data : P = (X ,D, C), ϕ, Φ, F , ub

Result : Is the GAC closure of P ub-repairable

return(GAC(P ′ = (F , ϕ, C)) & repairability-Γ(P, ϕ,F \ {X}, a, ub − 1));

Figure 6.1: An inference method for MinBCSP.

Algorithm 23 min-B

Data : P = (X ,D, C), f , a

Result : Φ(f) = min{b | f is an (a, b)-super-solution of P}

1 ub ← n + 1;
2 lb ← 0;

while ub > lb do
3 if repairability-Γ(P, f, a, ⌊ub+lb

2 ⌋) then

4 ub ← ⌊ub+lb
2 ⌋;

else
5 lb ← ⌊ub+lb

2 ⌋ + 1;

return ub;

Figure 6.2: An algorithm for computing the minimum maximum repair size of a solution.

Both algorithms are straightforward implementations using the procedure repairability-Γ.

125

In algorithm 22, given an upper bound ub, apply exactly the filtering done by the satis-

faction algorithm described in the previous chapter. In algorithm 23 the value of Φ(f)

for a solution f is computed in a binary search. At any given time, ub is greater or equal

than Φ(f) whilst lb is less than or equal to Φ(f). Indeed when the condition in Line 3

succeeds then ub is set to ⌊ub+lb
2 ⌋, however f is ⌊ub+lb

2 ⌋-repairable. Similarly, when it

fails, then lb is set to ⌊ub+lb
2 ⌋ + 1, however f is not ⌊ub+lb

2 ⌋-repairable.

6.2.4 Theoretical Properties

Theorem 37. bmin-repairable is a sound inference method for the MinBCSP problem.

Proof. We show that no value that can participate in an improving solution is pruned

when applying the procedure bmin-repairable. Let ub be the current upper bound, i.e.,

ub is greater then or equal to Φ(f) for any solution f found so far. An improving

solution therefore is (ub− 1)-repairable, hence since the procedure repairability-Γ is

sound, applying it with b set to ub − 1 does not remove any value participating in an

(a, ub − 1)-super-solution.

Theorem 38. A Branch & Bound algorithm using bmin-repairable is a sound and

complete method for solving MinBCSP.

Proof. Soundness: We show that the solution returned is optimal. Let ub be the

optimal value of the objective function as found by a Branch & Bound algorithm using

bmin-repairable as inference method. The algorithm stops when the constraint network

P augmented with {Φ(P) < ub} is exhausted and proved unsatisfiable. Therefore, P

does not admit an (a, ub − 1)-super-solution.

Completeness: This method is complete since the Branch & Bound search is

sound and complete and the procedure repairability-Γ is sound.

This problem (MinBCSP) has been classified into the NP optimisation complex-

ity class (PNP[log(n)]). However, whilst, in most optimisation problems, computing the

objective value of a solution and propagating with respect to this value can typically be

achieved in polynomial time, this task is itself PNP[log(n)]-complete here. Therefore the

algorithm we are introducing for this problem is unlikely to be very efficient.

126

Theorem 39. Computing the minimum value of b for which a solution is an (a, b)-

super-solution of a constraint network is PNP[log(n)]-complete

Proof. Computing the minimum value of b is in PNP[log(n)]: We need to show

that a polynomial number of calls to a NP oracle is sufficient to solve this problem. We

use the following oracle: “does there exists a b-repair for each breakage?”. This problem

is in NP, the polynomial witness is the set of repairs. We can proceed by dichotomy on

the value of b. Since b is bounded by n, only log(n) calls are needed.

Computing the minimum value of b is PNP[log(n)]-hard: We reuse the

construction described in the proof of Theorem 3 to reduce MaxClique to the problem

of computing the minimum value of b for which a solution f is an (a, b)-super-solution.

Given a graph G = (V, E), we introduce a constraint network P with n = |V | Boolean

variables X1, . . . Xn standing for the nodes of the graph, and one extra Boolean variable

X0. Then, for every pair of nodes vi, vj ∈ V such that (vivj) 6∈ E, we introduce the

constraint C(X0, Xi, Xj) = (X0 = 0 ⇒ (Xi + Xj ≤ 1)). Finally the “query” solution

will be f : Xi → 1, and the parameters a and b will be set respectively to 1 and n−K.

As shown in the NP-completeness proof, there exists a b-repair of {X0} for f if and only

if there exists a clique of size n − b in G. Therefore, since all other breakages admit a

0-repair, computing the minimum value of b is equivalent to computing the size of the

maximum clique.

Consequently, the inference method based on repairability-Γ may be pro-

hibitive. Indeed it requires one to solve this NP-hard problem when a solution is found

and then performs inference with the repairability-Γ procedure, which has exponen-

tial time complexity when b is not bounded.

6.2.5 Alternative Approaches

The classical Branch & Bound algorithm can be seen as a top-down approach

since we start with a large, pessimistic value for the objective function, and gradually

decrease it until no more solutions can be found. The advantage of this approach is that

the search tree is explored only once. On the other hand if we start with an optimistic

value for the objective function and increase it until a solution is found, a sequence of

search trees need to be exhausted. Moreover, the algorithm is no longer anytime since

127

the optimal solution is found first. It may however be worthwhile using such a bottom-

up approach for the MinBCSP problem since the complexity of the inference method

is exponential in the value of the objective function. Alternatively, we may want to use

a binary search procedure.

6.3 Maximising Full Fault Tolerance

In this section, we study the problem of finding partial (1, 0)-super-solutions and

extend two satisfaction algorithms introduced in Chapter 4 to find maximally (1, 0)-

repairable solutions.

6.3.1 Objective Function

The objective function Φ0 that we want to maximise is the (1, 0)-repairability

(see Definition 10, Section 3.2.3). Grounded to the case where a = 1 and b = 0, yields

the following formula, where f is a solution of the constraint network P = {X ,D, C}.

Φ0(f) = |{X|X ∈ X ,∃g ∈ sol(P) s.t. g(X) 6= f(X) ∧ ∀Y 6= X g(Y) = f(Y)}|

We shall instead minimise the complement of Φ0 to the total number of breakages:

Φ(f) =
k=a
∑

k=1

(

n

k

)

− Φ0(f)

6.3.2 Inference Method: “GAC+max”

Here, contrary to the situation in Section 6.2, the inference method used in the

satisfaction algorithm cannot be used without modification. However, we shall see

that the principles used for reasoning about fault tolerant solutions can be adapted to

optimise (1, 0)-repairability instead. We first describe a simple filtering method based

on GAC+. The idea is, after the current partial domains have been made generalised arc

consistent, to count the number of singleton domains. Any variable whose domain is

singleton cannot be repaired. For any solution f achievable with the current domain

(sD), the following inequality holds:

|{X | (1 = |rD(X)|)}| ≤ Φ(f)

128

The inference method GAC+max therefore prunes any branch of the search tree where

the number of singleton repair-domains is greater than or equal to ub.

6.3.3 Closure Algorithm for “GAC+max”

As in Chapter 4, the search algorithm (Branch & Bound in this case) uses two

partial solutions sD and rD instead of one. This algorithm is similar to algorithm 13

though it backtracks only when the number of singleton domains becomes larger than

the current upper bound. In other words, the following relation is used to bound search:

|{X | (1 = |rD(X)|)}| < ub

6.3.3.1 Commented Pseudo Code

Algorithm 24 GAC+max

Data : P = (X ,D, C), sD[= D], rD[= D], ub

Result : sD, rD, the GAC+max closure of P

Q ← C ∪ {C(Y, X) | C(X, Y) ∈ C};
while Q 6= ∅ do

select and delete any C(Xi, Xj) from Q;
pruned ← propagate+max(C(Xi, Xj), sD, rD);
if sD(Xj) = ∅ then return false;
if pruned then Q ← Q ∪ {C(Xj , Xk) ∀k};

1 return (|{X | |rD(X)| = 1}| < ub);

Algorithm 25 propagate+max

Data : C(Xi, Xj), sD, rD

Result : The GAC+ closure of Xj with respect to C(Xi, Xj)

pruned ← false;
foreach w ∈ rD(Xj) do

if 6 ∃v ∈ sD(Xi) s.t. 〈v, w〉 ∈ C(Xi, Xj) then
sD(Xj) ← sD(Xj) \ {w};
rD(Xj) ← rD(Xj) \ {w};
pruned ← true;

return pruned;

Figure 6.3: An algorithm for computing the GAC+max closure of a constraint network.

The propagation algorithm, propagate+max is identical to propagate+. Both

129

procedures simply achieve GAC on two domain relations (sD and rD), and with respect

to the decisions made on the first domain relation (sD). The only difference with the

satisfaction version of this inference method (GAC+) is that a failure occurs if at least ub

repair-domains are reduced to a singleton, instead of only one for GAC+. This is checked

in Line 1 of algorithm 24.

6.3.4 Theoretical Properties

Theorem 40. GAC+max is a sound inference method and runs in O(md2) on binary

networks.

Proof. Soundness: Since the filtering is restricted to the GAC closure, all we have

to prove is that the lower bound computed at each node is valid, i.e., that at least this

number of breakages cannot be repaired in any sub-solution.

Consider a partial solution sD, and a variable X ∈ X such that there is only

one possible value v ∈ rD(X) consistent with sD. We showed in the soundness proof

for GAC+ that the breakage {X} does not admit a 0-repair. Hence the total number

of repairable breakages cannot exceed the number of variables such that their domain

under the relation rD has size 2 or more.

Complexity: As for GAC+, the complexity is dominated by the GAC closure,

hence O(md2) for a binary constraint network.

Theorem 41. A Branch & Bound algorithm using GAC+max is a sound and complete

method for solving (1, 0)-MaxRepairCSP.

Proof. Soundness: We show that the solution returned is optimal. Let ub be the

optimal value of the objective function as found by a Branch & Bound algorithm using

GAC+max as inference method. The algorithm stops when the constraint network P

augmented with {Φ(P) < ub} is exhausted and proved unsatisfiable. Therefore, P does

no admit a solution whose repairability is less than
∑

k≤a

(

n
k

)

− ub.

Completeness: This method is complete since the Branch & Bound search is

sound and complete and the procedure GAC+max is sound.

130

6.3.5 Inference Method: “super-GACmax”

The second inference method, super-GAC, introduced in Section 4.3.2, can also

be adapted for maximising the (1, 0)-repairability. However, we need to significantly

change the algorithm since assignments that are not super-GAC can still be used in an

optimal solution, since it is not necessarily a (1, 0)-super-solution. Since this inference

method is essentially an extension of the super-AC algorithm, it is restricted to binary

constraint networks. Here again, extending this algorithm to the non-binary case is not

straightforward. Global constraints can be developed using the same type of inference

as presented in this section, however we do not give example of such “soft-super-global

constraint” in this dissertation.

The basic principle of super-GAC is to partition generalised arc consistent values

into two categories:

• sD contains values that have two GAC supports, one of them being itself con-

tained in sD(X) for any neighbouring variable X.

• rD contains values that have at least one GAC support in sD(X) for any neigh-

bouring variable X.

Any value that does not fit in one of these two categories can safely be removed. Clearly

this method cannot be used in a Branch & Bound framework, since some breakages can

be left unrepaired. However, some inference can still be made. The idea is, whenever

a value v for a variable X violates the first rule, to store the variables for which the

second support does not exist. Now, if we commit to this value, then all the variables

stored in this way will cease to be repairable, since the assignment X = v is consistent

with one and only one assignment for each of them.

6.3.6 Closure Algorithm for “super-GACmax”

We adapt the algorithm super-AC, introduced in Section 4.4.3. Two extra data-

structures, unrep and PList are introduced to store respectively the variables known

to be unrepairable, and that would cease to be repairable if a certain assignment was

made. The first, unrep, is a set of variables that cannot be repaired, given the decisions

made so far. This set is initialised as the set of variables with repair-domains reduced

131

to a singleton, since, by using the same reasoning as for GAC+, these variables have no

alternative:

unrep = {X | (1 = |rD(X)|)}

The second data-structure, PList, is an array of sets, mapping the values of each

variable to a set of variables that would cease to be repairable if this value was used in

assignment. If X is the set of variables and Λ the set of values in the constraint network,

then Plist maps tuples X × Λ to a subset of X :

PList : X × Λ 7→ 2X

This data structure is initially empty. Then, when a value v ∈ sD(X) is such that only

one value support it in the repair-domain of some variable Y , the variable Y is added to

the set PList[X, v]. Indeed is the search algorithm commits to the assignment X = v,

then no alternative is possible for Y , since only one value is consistent with X = v.

When revising the domain of a variable X, with respect to an arc C(X, Y), we update

PList with the following rule:

Y ∈ PList[X, w]

⇔

|{v | v ∈ rD(Y) ∧ 〈w, v〉 ∈ C(X, Y)}| = 1

Moreover, the set unrep is updated after each domain revision. Indeed any vari-

able in the intersection of the sets Plist[X, v] for all v in sD(X) cannot be repaired

since any choice of assignment for X would render them unrepairable. Therefore we

enforce the following relation:

∀X ∈ X , (
⋂

v∈sD(X)

PList[X, v]) ⊆ unrep

6.3.6.1 Commented Pseudo Code

We describe algorithms 26 and and compare them to their satisfaction equivalent

introduced in Section 4.4.3 (Algorithm 8 and 9). In the top-level closure algorithm

(Algorithm 26) the two data-structures, unrep and Plist are initialised in lines 1 and

2 respectively. The only difference, in the top level closure algorithm is that when a

132

Algorithm 26 super-ACmax

Data : P = (X ,D, C), sD[= D], rD[= D], ub[= n]

Result : sD, rD, the super -GACmax closure of P

1 unrep ← {X | X ∈ X ∧ |rD(X)| = 1};
2 foreach X ∈ X do

foreach v ∈ sD(X) do PList[X, v] ← ∅;

Q ← C ∪ {C(Y, X) | C(X, Y) ∈ C};
while Q 6= ∅ do

select and delete any C(Xi, Xj) from Q;
size = |unrep|;
pruned ← propagate-supmax(Xi, Xj , unrep, ub, List);
if size < |unrep| then

3 Q ← C ∪ {C(Y, X) | C(X, Y) ∈ C};

else
if pruned then Q ← Q ∪ {C(Xj , Xk) ∀k};

if sD(Xj) = ∅ then return false;

return true;

Algorithm 27 propagate-supmax

Data : C(Xi, Xj), sD, rD, PList, DList, ub

Result : The super-GACmax closure of Xj with respect to C(Xi, Xj)

pruned ← false;
foreach w ∈ rD(Xj) do

sup ← ∅;
1 foreach v ∈ rD(Xi) do

if 〈v, w〉 ∈ C(Xi, Xj) then sup ← sup ∪ {v};

if sup ∩ sD(Xi) = ∅ then
2 rD(Xj) ← rD(Xj) \ {w};

pruned ← true;

else
3 if w ∈ sD(Xj) ∧ |sup| < 2 then
4 PList[Xj , w] ← PList[Xj , w] ∪ {Xi};

if |PList[Xj , w] ∪ unrep| ≥ ub then
sD(Xj) ← sD(Xj) \ {w};
pruned ← true;

sD(Xj) ← sD(Xj) ∩ rD(Xj);
unrep ← unrep ∪ (

⋂

w∈sD(Xj)
PList[Xj , w]);

return pruned;

Figure 6.4: An algorithm for computing the super-GACmax closure of a constraint
network.

133

new element is inserted into the set unrep all arcs are added to the queue (Line 3).

Indeed, when any value that was consistent in the previous state of the set unrep can

potentially be made inconsistent by this insertion.

As in the satisfaction algorithm, when revising the domain of a variable Xj against

a recently modified variable Xi, the number of supports for each value is stored in the

set sup (Line 1). When a value v ∈ rD(Xj) has no support in the super-domain

of a variable Xi, v is pruned as in the satisfaction algorithm. Indeed it means that

this value is inconsistent with all the possible sub-solutions. On the other hand, the

condition triggering the removal of a value v from sD(Xj), whilst remaining in rD(Xj)

is slightly different. The main difference here is that lacking an alternative support

for a given constraint is not a sufficient condition as a certain number of unrepairable

variables can be tolerated. However, a value can be inferred to participate only in sub-

optimal solutions. Indeed the cardinality of unrep is a lower bound on the number of

unrepairable variables. Moreover, the data-structure PList associates to a tuple 〈X, v〉

a set of variables for which no alternative would be possible if the decision X = v was

taken. Therefore, if, for a given value v ∈ sD(X), the cardinality of the set PList[X, v]

added to the value of unrep is greater than or equal to the current upper bound ub,

then v can be pruned from sD(X), however not from rD(X).

The corresponding test, in line 3 of algorithm covers this case. The first conjunct

checks if the considered value is indeed in sD(Xj), since elements of rD \ sD do not

follow the same rule. The second conjunct states that w has only one support in the

domain of Xi, hence the corresponding decision would make Xi not repairable, since this

support would not have any alternative. When this conditions hold then Xi is added

to the list of variables that would become unrepairable if the decision Xj = v is taken

(PList[Xj , v]). Clearly if the maximum number of variable tolerated to be unrepairable,

ub, is less than or equal to |unrep∪PList[Xj , v]| then v is not a valid assignment for Xj

and cannot be part of a solution with a repairability less than n − ub. Consequently v

can be removed from sD(Xj), however, it can still possibly be an alternative for another

assignment and should not be removed from rD(Xj).

Example 26. Consider the constraint network shown in Figure 6.5. We trace the

execution of the algorithm super-ACmax on this instance.

134

X3 ∈ {1, 2}
X1 ∈ {1, 2}

X2 ∈ {1, 2}

X4 ∈ {1, 2}

≤

6=

≥

Figure 6.5: A constraint network.

In the first iteration, the constraint (X4 ≤ X1) is propagated. The assignment

X4 = 2 has only one support on X1 (X1 = 2), therefore, X1 is added to PList[X4, 2].

The set unrep is left unchanged since PList[X4, 1] is empty. No constraint need be

added to the queue Q. The state of the internal data-structures is shown in Figure 6.6:

ub: 3
unrep: ∅

PList[∗, 1] PList[∗, 2] sD rD
X1 ∅ ∅ {1, 2} {1, 2}
X2 ∅ ∅ {1, 2} {1, 2}
X3 ∅ ∅ {1, 2} {1, 2}
X4 ∅ {X1} {1, 2} {1, 2}

Q: {(X1 ≤ X2)
(X1 6= X3)
(X1 ≥ X4)
(X2 ≥ X1)
(X3 6= X1)}

Figure 6.6: The data structures after iteration 1 of super-ACmax.

In the second iteration, the constraint (X3 6= X1) is propagated. The assignment

X3 = 1 has only one support on X1 (X1 = 2) and similarly, X3 = 2 has only one support

X1 = 1. Therefore, X1 is added to PList[X3, 1] and to PList[X3, 2]. Then X1 is added

to the set unrep since it belongs to both PList[X3, 1] and PList[X3, 2]. All constraints

but (X3 6= X1) are added to the queue Q. The state of the internal data-structures is

shown in Figure 6.7:

In the third iteration, the constraint (X4 ≤ X1) is propagated, however, nothing

is inferred. Then, in the fourth iteration, the constraint (X2 ≥ X1) is propagated. The

assignment X2 = 1 has only one support on X1 (X1 = 1), therefore, X1 is added

to PList[X2, 1]. The set unrep is left unchanged since PList[X2, 2] is empty. No

135

ub: 3
unrep: {X1}

PList[∗, 1] PList[∗, 2] sD rD
X1 ∅ ∅ {1, 2} {1, 2}
X2 ∅ ∅ {1, 2} {1, 2}
X3 {X1} {X1} {1, 2} {1, 2}
X4 ∅ {X1} {1, 2} {1, 2}

Q: {(X1 ≤ X2)
(X1 6= X3)
(X1 ≥ X4)
(X2 ≥ X1)
(X4 ≤ X1)}

Figure 6.7: The data structures after iteration 2 of super-ACmax.

constraint need be added to the queue Q. The state of the internal data-structures is

shown in Figure 6.8:

ub: 3
unrep: {X1}

PList[∗, 1] PList[∗, 2] sD rD
X1 ∅ ∅ {1, 2} {1, 2}
X2 {X1} ∅ {1, 2} {1, 2}
X3 {X1} {X1} {1, 2} {1, 2}
X4 ∅ {X1} {1, 2} {1, 2}

Q: {(X1 ≤ X2)
(X1 6= X3)
(X1 ≥ X4)}

Figure 6.8: The data structures after iteration 4 of super-ACmax.

In the fifth iteration, the constraint (X1 ≥ X4) is propagated. The assignment

X1 = 1 has only one support on X4 (X4 = 1), therefore, X4 is added to PList[X1, 1].

The set unrep is left unchanged since PList[X1, 2] is empty. No constraint need be

added to the queue Q. The state of the internal data-structures is shown in Figure 6.9:

ub: 3
unrep: {X1}

PList[∗, 1] PList[∗, 2] sD rD
X1 {X4} ∅ {1, 2} {1, 2}
X2 {X1} ∅ {1, 2} {1, 2}
X3 {X1} {X1} {1, 2} {1, 2}
X4 ∅ {X1} {1, 2} {1, 2}

Q: {(X1 ≤ X2)
(X1 6= X3)}

Figure 6.9: The data structures after iteration 5 of super-ACmax.

In the sixth iteration, the constraint (X1 6= X3) is propagated. The assignment

136

X1 = 1 has only one support on X3 (X3 = 2) and similarly, X1 = 2 has for only support

X3 = 1. Therefore, X3 is added to PList[X1, 1] and to PList[X1, 2]. Now the union

of unrep = {X1} and PList[X1, 1] = {X3, X4} has a cardinality of 3, i.e. equal to ub,

hence the value 1 is removed from sD(X1). Finally, X3 is added to the set unrep since

it belongs to both PList[X1, 1] and PList[X1, 2]. All constraints but (X1 6= X3) are

added to the queue. The state of the internal data-structures is shown in Figure 6.10:

ub: 3
unrep: {X1, X3}

PList[∗, 1] PList[∗, 2] sD rD
X1 {X3, X4} {X3} {2} {1, 2}
X2 {X1} ∅ {1, 2} {1, 2}
X3 {X1} {X1} {1, 2} {1, 2}
X4 ∅ {X1} {1, 2} {1, 2}

Q: {(X1 ≤ X2)}
(X1 ≥ X4)
(X2 ≥ X1)
(X3 6= X1)
(X4 ≤ X1)}

Figure 6.10: The data structures after iteration 6 of super-ACmax.

In the seventh iteration, the constraint (X4 ≤ X1) is propagated, however, no

pruning is performed. Then, in the eighth iteration, the domain of X3 is revised with

respect to the constraint (X3 6= X1). The value 2 has no support in sD(X1) and thus

is removed from both rD(X3) and sD(X3). The constraint (X1 6= X3) is added to the

queue, however no pruning is performed. The state of the internal data-structures is

shown in Figure 6.11:

ub: 3
unrep: {X1, X3}

PList[∗, 1] PList[∗, 2] sD rD
X1 {X3, X4} {X3} {2} {1, 2}
X2 {X1} ∅ {1, 2} {1, 2}
X3 {X1} {X1} {1} {1}
X4 ∅ {X1} {1, 2} {1, 2}

Q: {(X1 ≤ X2)}
(X2 ≥ X1)}

Figure 6.11: The data structures after iteration 8 of super-ACmax.

In the next (ninth) iteration, the constraint (X2 ≥ X1) is propagated. The as-

signment X2 = 1 has no support in sD(X1) and thus the value 1 is removed from

both rD(X2) and sD(X2). The constraint (X1 ≤ X2) is already in the queue and is

propagated next. The assignment X1 = 2 has only one support on X2 (X2 = 2).

137

Therefore, X2 is added to PList[X1, 2]. Since the union of unrep = {X1, X3} and

PList[X1, 2] = {X2, X3} has a cardinality of 3, i.e., greater than ub, the value 2 is

removed from sD(X1). The super-domain of X1 is thus emptied and as a consequence,

the algorithm fails. There is no solution with repairability 2 or less.

6.3.7 Theoretical Properties

Lemma 2. If Y ∈ PList[X, w], for any sub-solution f , if f(X) = w then the breakage

{Y } is not 0-repairable.

Proof. Suppose that Y ∈ PList[X, w], then X = w has only one GAC support, say v,

in Y . Now consider a solution f , derived from the current domains, and involving the

assignment X = w. The value assigned to Y must be v since it is the only support

for X = w. There is thus no alternative for Y = v, hence the breakage {Y } is not

0-repairable.

Theorem 42. super-GACmax is a sound inference method and runs in O(md(n + d)2)

on binary constraint networks.

Proof. Soundness: We prove that the pruning achieved with propagate-supmax is

sound. The algorithm performs two types of inference. First, given a variable X, a

value v with no support in the super-domain of some variable sharing a constraint with

X, is removed from both sD and rD (Line 2). This inference is sound since v is arc

inconsistent with respect to sD. Therefore, there is no solution, derived from the current

repair-domain that involves X = v, hence no (1, 0)-super-solution nor 0-repair.

The second type of inference is when a value is removed from the super-domain

but not from the repair-domain because committing to this value would lead to a sub-

optimal solution. We thus show that if such a decision was made the number of un-

repairable variables in any sub-solution would be greater than or equal to the upper

bound ub. By Lemma 2 we know that if the decision X = v is made, then the variables

in PList[X, v] would not be 0-repairable in any subsequent solution. Moreover, the vari-

ables initially in the set unrep have no alternative, and therefore cannot be repaired.

It follows from Lemma 2 that any variable Y added to unrep cannot be repaired as

well. Indeed, it means that for all values of a variable X assigning this value would

138

make Y unrepairable and since at least one value need to be assigned, Y is necessarily

unrepairable. Therefore, in all solutions involving the assignment X = v, all variables

in unrep ∪ P are unrepairable. Hence if |unrep ∪ P | is greater than ub, then all these

solutions are sub-optimal.

Complexity: We first look at the procedure propagate-supmax. This algo-

rithm performs two tasks, first it explores all tuples in the constraint to find support. As

for GAC or super-GAC processing, this is done in O(d2). However this algorithm also

updates the data-structures PList and unrep. This may result in at most d insertions

for PList, and at most d set intersections for unrep. Each of these intersections can

be computed in O(n). Moreover, the size of the set unrep ∪ Plist[Xj , w] is checked at

most d times, and each check can be done in O(n). Therefore, the total complexity for

the procedure propagate-supmax thus is O(d(n + d)).

Now we count the potential number of calls to this procedure before reaching a

fix point. The idea behind the proof of complexity for AC3 in [Mackworth 85] is to count

how many time an arc C(Xi, Xj) enters the queue, hence how many times the method

propagate is called. In [Mackworth 85] Mackworth and Freuder observe that to enter

the queue, a value in the domain of Xi need be removed in a previous call, therefore each

arc can only enter the queue d times. In the case of super-ACmax, an arc C(Xi, Xj) may

be added to the queue for three reasons. The first one is when a value is removed from

sD(Xi), and can happen d times. The second is when a value is removed from rD(Xi),

and can happen d times. Finally, the third reason is when the set unrep is modified,

and can happen n times. Since there are twice as many arcs as constraints (one for each

direction) the total number of calls to propagate-supmax is in O(m(n + d)). The worst

case time complexity of the procedure super-ACmax therefore is O(md(n + d)2).

Theorem 43. A Branch & Bound algorithm using super-GACmax is a sound and com-

plete method for solving (1, 0)-MaxRepairCSP.

Proof. Soundness: We show that the solution returned is optimal. Let ub be the

optimal value of the objective function as found by a Branch & Bound algorithm using

super-GACmax as inference method. The algorithm stops when the constraint network

P augmented with {Φ(P) < ub} is exhausted and proved unsatisfiable. Therefore, P

does not admit a solution whose repairability is less than
∑

k≤a

(

n
k

)

− ub.

139

Completeness: This method is complete since the Branch & Bound search is

sound and complete and the procedure super-GACmax is sound.

6.4 Maximising Weak Fault Tolerance

6.4.1 Objective Function

The objective function Φ that we consider here is the (a,b)-repairability (see

Definition 10, Section 3.2.3), yielding to the following formula, where f is a solution of

the constraint network P = {X ,D, C}.

Φ(f) = |{A | A ⊆ X ∧ |A| ≤ a,∃g ∈ sol(P) s.t. ∆A(g, f) = |A| ∧ ∆X\A(f, g) ≤ b}|

6.4.2 Inference Method: “b-repairablemax”

We adapt the inference method used for (a, b)-SuperCSP in much the same way

that we adapted the local consistency super-GAC to deal with (1, 0)-MaxRepairCSP.

The same difficulties arise, i.e., the pruning inferred with the repairability-Γ proce-

dure cannot be used without some modification, since there is some tolerance on the

number of unrepairable breakages. However, here the situation is made a little bit easier

by the fact that the filtering method introduced for (a, b)-SuperCSP has not a local

but a global view. Indeed the algorithm does not process arcs or constraints. Instead,

the focus is on breakages, and since each one is checked at most once, we do not need to

keep a set of contingently unrepairable breakages, we can keep a simple count on them.

6.4.3 Closure Algorithm for “b-repairablemax”

The repairability procedure is called during each propagation phase to en-

sure that all the breakages on assigned variables are repairable. In algorithm 19, the

breakages are checked in turn, and the algorithm fails as soon as one breakage is found

unrepairable. As a filtering method for (a, b)-MaxRepairCSP, we can count the num-

ber of breakages and fail only if this number matches the current upper bound. However,

we want to take advantage of the reasoning made while preprocessing the Similarity

constraint. Similarly to the reasoning made for (1, 0)-MaxRepairCSP, committing to

a value pruned because of an equality constraint inferred in this way would make the

140

breakage currently checked unrepairable. However, as opposed to algorithm 26, this

procedure goes through the breakages in turn. We do not thus need to remember which

breakage would be made unrepairable by a given assignment, as they are never visited

twice in the same pass. We therefore introduce a simple data-structure Count that

maps an integer Count[X, v] to every value v of each variable X:

Count : X × Λ 7→ N

6.4.3.1 Commented Pseudo Code

We describe algorithm 28 and compare it to its satisfaction equivalent introduced

in Section 5.6 (Algorithm 19). First, the network P is made generalised arc consistent in

Line 1 and we fail if any domain is emptied. Then, the counters Count are all initialised

to 0 in Line 2, and the total count on the number of unrepairable breakages unrep is

set to |Sunrep| in Line 3.

Then we loop over breakages that satisfy the two following constraints: Their

neighbourhood up to distance b + 1 is not included into the set of assigned variables;

They are not member of Sunrep. At each iteration, we create the sub-problem Pϕ,A and

do the following:

• The sub-problem Pϕ,A is preprocessed in Line 4 using an arc consistency method,

and using the algorithm 17 to propagate the Similarity constraint. On fail-

ure (line 5), i.e. domain wipe-out, the value of unrep is incremented and the

index of the current breakage is inserted into Sunrep, and we jump to the next

breakage.

• The equality constraint between P and Pϕ,A are inferred in Line 7, though

not directly posted. These equality constraints are computed as described in

Section 5.5.2: the set I of variables necessarily taking different values in ϕ and

in a solution of Pϕ.A is first computed in Line 6. Then using the neighbourhood

inference a set of equality constraints may be deduced.

• The sub-problem Pϕ,A is solved in Line 8. On failure (Line 9), i.e. unsatisfia-

bility, the value of unrep is incremented and the index of the current breakage

is inserted into Sunrep, and we jump to the next breakage.

141

Algorithm 28 repairabilitymax-Γ(P, ϕ,F , a, b)

Data : P = (X ,D, C), ϕ, ub

Result : ϕ

1 if ¬GAC(P ′ = (F , ϕ, C)) then return false;
2 foreach X ∈ F , v ∈ ϕ(X) do Count[X, v] ← 0;
3 unrep ← 0;
G ← {X | |ϕ(X)| = 1};
foreach A ⊆ (X \ F) such that |A| ≤ a do

if Γb+1(A) 6⊆ G then
4 if ¬preprocess(Pϕ,A) then
5 unrep ← unrep + 1;

else
6 I ← {Xi | D

ϕ,A(Xi) ∩ ϕ(Xi) = ∅};
7 Eq ← (X \ Γ|A|−|I|+b(I));

8 if ¬solve(Pϕ,A|X\F) then
9 unrep ← unrep + 1;

else
foreach X ∈ Eq do

V als ← Dϕ,A(X) \ ϕ(X);
foreach v ∈ V als do

10 Count[X, v] ← Count[X, v] + 1;
11 if unrep + Count[X, v] ≤ ub then
12 ϕ(X) ← ϕ(X) \ {v};
13 if ϕ(X) = ∅ then return false;

if unrep ≤ ub then
return false;

else
return true;

Figure 6.12: A filtering algorithm for MaxRepairCSP.

142

• If the equality constraints were to be applied, the main partial solution ϕ could

be pruned. Any value v ∈ ϕ(X) that would be removed by such equality

constraint has its counter Count[X, v] incremented in Line 10. Whenever, for a

variable X and a value v, we have T − (Count[X, v]+unrep) ≤ ub (if statement

in Line 11) then we prune X = v in Line 12, and fail if ϕ(X) is emptied (Line 13).

6.4.4 Theoretical Properties

Theorem 44. repairabilitymax-Γ is a sound inference method and runs in O(la+bda+b).

Proof. Soundness: We prove that the pruning achieved with repairabilitymax-Γ

is sound. The algorithm first achieves the GAC closure. This is sound in this context

since only the robustness condition is relaxed. We therefore only need to prove that

the pruning performed in Line 12 is sound. A value v ∈ ϕ(X) is pruned when the

condition in Line 11 is triggered. We show that if it is the case, then any sub-solution

involving the assignment X = v would be sub-optimal. Without loss of generality, let

v be a value in sD(X), and suppose that the condition in Line 11 holds. We consider

the case where ϕ(Xj) = {v} and count unrepairable breakages. All breakages in Sunrep

are not repairable since the corresponding sub-problem has been proven unsatisfiable

in an earlier inference step. Moreover, consider a breakage A for which Count[X, v]

has been incremented. Since the satisfaction version of the algorithm (Algorithm 19)

is sound, and since this algorithm would prune this value when checking A, this value

cannot participate in a solution where A is b-repairable. Since breakages in Sunrep are

not checked for repairability, any solution involving X = v will have at least |Sunrep| +

Count[X, v] unrepairable breakages.

Complexity: The time complexity is unchanged with respect to the repairability-Γ

algorithm as shown in Figure 5.13

Theorem 45. A Branch & Bound algorithm using repairabilitymax-Γ is a sound

and complete method for solving (1, 0)-MaxRepairCSP.

Proof. Soundness: We show that the solution returned is optimal. Let ub be the

optimal value of the objective function as found by a Branch & Bound algorithm using

repairabilitymax-Γ as inference method. The algorithm stops when the constraint

143

network P augmented with {Φ(P) < ub} is exhausted and proved unsatisfiable. There-

fore, P does no admit a solution whose repairability is less than
∑

k≤a

(

n
k

)

− ub.

Completeness: This method is complete since the Branch & Bound search

does not hinder completeness, and the procedure repairabilitymax-Γ is sound.

6.5 Summary and Limitations

In this chapter we addressed two “partial” problems related to super-solution. In

the first problem, MinBCSP, we relax the value of the parameter b, and search for

an (a, b)-super-solution with minimal b. In the second problem, MaxRepairCSP, we

relax the condition that all breakages need be repaired, and search for a solution with

maximal (a, b)-repairability.

In both cases, we showed that the methods introduced in previous chapters can

be extended to solve these partial problems. However, whereas the Branch & Bound

algorithms introduced to solve the latter problem (MaxRepairCSP) retain some good

properties of the satisfaction version, this is not the case for MinBCSP. Indeed, in this

case, since the value of the parameter b is not bounded, therefore the computational

complexity of the inference method (repairability-Γ) is exponential. This is not

surprising since we showed that even computing the minimum value of b for which a

given solution is an (a, b)-super-solution is NP-hard.

Our study of partial super-satisfiability is in no way exhaustive. This analysis is

focused on the above-mentioned two ways of relaxing the robustness condition. Another,

unexplored though similar, direction would be to maximise the value of a for which

there exists an (a, b)-super-solution. Alternatively, we could interleave the classical soft

constraint / partial CSP framework for robustness. For instance we could investigate

the problem of finding super-solutions such that repairs are not solutions but violate

only a few constraints, or a minimal number of constraints. Moreover, as was the

case in Chapter 4, the algorithms we introduce for finding solutions with maximal

(1, 0)-repairability are restricted to binary constraint networks. We did not extend the

reformulation methods to the partial super-satisfiability context. Notice, in particular,

that the P + P reformulation could be easily adapted, since we would simply need to

maximise the number of satisfied disequality constraints in the reformulated network.

144

A last interesting and unexplored research direction is the use of global constraints for

maximising repairability. As regular global constraints can be extended to soft global

constraints, the propagations algorithms discussed in Chapter 4 could be adapted to

this optimisation setting.

Chapter 7

Extensions to the Framework

7.1 Introduction

In this chapter, we extend the concept of super-solution. We have argued that

super-solutions require little or even no knowledge of the environment. In fact, following

the definition of (a, b)-super-solutions in Section 3.2, the only parameters that may need

to be set before solving are the values of a and b. The value of a, i.e., the cardinality

of a breakage, may be adapted according to the likeliness of multiple variables breaking

simultaneously. Similarly, the value of b may change according to what is considered an

acceptable repair in the problem we are solving. However in some cases, we may want

to take advantage of some properties of the problem, and we might want to express

some related though different notions of robustness or stability. In this chapter we

introduce the notion of robustness model. The model tackled in previous chapters,

that is, existential-(a, b)-super-solutions, is only one among many possibilities. In this

robustness model, a breakage corresponds to “loosing” the values currently assigned

to a set of variables whilst a valid repair is a set of further reassignments of bounded

cardinality. We significantly extend the range of robustness model expressible and

solvable using the algorithms introduced in Chapter 5 and 6. We also tackle, in this

chapter, the notion of symmetry and symmetry breaking while searching super-solutions.

We motivate the need for a richer modelling language and show that our algorithm

only needs a slight adaptation to be able to solve the resulting extended problems in

Section 7.2. Finally we study the concept of symmetry and symmetry breaking within

the fault tolerance framework in Section 7.3.

146

7.2 Extended Modelling

In practice, we may have restrictions on how the problem is likely to break, or

how we may repair it, and we may want to take into account some facts we know about

the environment which are not properly handled by the regular definition. We give some

examples of such restrictions, partitioned into 3 classes:

Breakage and repair set restrictions: The first class contains the restric-

tions on the breakage and repair sets. We may want to decide, for every variable whether

it is prone to change, and whether it can be reassigned when repairing.

For instance, a job shop problem may involve some resources that are reliable

and other that are not. If a variable stands for a machine, then we can limit breaks

to a subset of the variables. In the mixed constraint satisfaction and stochastic con-

straint satisfaction frameworks ([Fargier 96], [Manandhar 03]), the variables are either

controllable, if they are regular decision variables, or uncontrollable, if they correspond

to properties of the environment. In such a case, the breakages could be restricted to

uncontrollable variables and repairs to controllable variables. Similarly, whilst some

variables may be reassigned, others may have to take the value they are originally as-

signed. For instance consider the trip planning problem. We might want to limit the

size of the repairs, however we may want to make sure that a repair does not involve

changing something expensive and ordered prior to the trip, such as a plane ticket,

because of a perturbation on a train or bus transit.

Breakage restrictions: The second class restricts how the alternative values

for a variable involved in a breakage can be chosen. Breakages may need to be more

complex restrictions than a single value removal.

For example, when the values represent time, an alternative value might have to

be larger than the broken value. In that case if the value v for a variable X “breaks”,

then any value w such that w < v should not be available for reassigning X. Another

example is when several values in a domain refer to the same real object. For instance,

suppose that we have to fit k items in containers, and that each item can either be put

in width ways or length ways. We have one variable for each container, and 2k values

in each domain. Assigning the value 2v to container X means that we put item k in

width ways, whereas assigning 2v − 1 means that we put item k in length ways. If

147

an item becomes, for some reason, unfit for a given container, then the pair of values

corresponding to this single item cannot repair each other. Moreover, it often happens

that certain values are simply not brittle and so cannot break. For instance if a value

represents a resource that cannot be depleted.

Repair restrictions: The third class restricts how the variables outside a

breakage can be reassigned to repair this breakage. The notion of “acceptable repair”

may vary, and is not always as simple as a bound on the number of discrepancies with

the solution being repaired.

For instance, consider again the situation where values represent time points.

We might want to ensure that variables assigned to values less than v should not be

reassigned in order to repair a breakage involving the value v. Indeed, values less than

v represent events that already occurred at the time the breakage occurs. Furthermore,

and for the same reason, all repair values should have larger values, after the repair,

than v. Alternatively consider a situation where you want to allocate tasks to a set

of contractors, with some extra precedence and non-overlapping constraints. In such a

scenario, a valuable property to have is that a change in the schedule for one contractor

does not have any consequences on the other contractors, but the number of rescheduled

tasks for the faulty contractor may not matter. Therefore the repairs should be limited

in the number of contractors affected by the changes rather than the cardinality of the

changes. Third, in the dual viewpoint, we may have variables for time points and values

for tasks. In this case we may want to ensure that all b repair variables are later in some

ordering than the smallest of the a broken variables.

We propose a framework to deal with these classes of restrictions and show

that the algorithm decomposition-backtrack can be very easily adapted to deal with

this more expressive framework. Notice that since the algorithms for MinBCSP and

MaxRepairCSP are extensions of decomposition-backtrack, the same restrictions

are easily adaptable to these cases as well. We then briefly show in Section 7.2.4 how

the same extensions can or cannot be handled by other algorithms such that MAC+ and

super-AC. We recall the definition of a sub-problem Pϕ,A created for checking the re-

pairability of a breakage A. This definition is then extended in the subsequent sections

to model the notions of breakage and repair set restrictions, breakage restric-

148

tions and repair restrictions.

P Pϕ,A

Variables: X Xϕ,A = {Xϕ,A | X ∈ X}

Domains: D Dϕ,A(Xϕ,A) = ϕ(X) if X 6∈ Γb(A)
D(X) otherwise

Constraints: C Cϕ,A = C ∪ {∀X ∈ A (X 6= Xϕ,A)}
∪{Similarity(Γb(A), ϕ, A, b)}

Table 7.1: The sub-problem Pϕ,A (Reminder).

7.2.1 Breakage, Repair and Free Sets

In the classical definition, the breakages are simply all subsets of at most a vari-

ables. However, notice that the algorithm decomposition-backtrack can soundly han-

dle an arbitrary set of breakages. Restricting the number of variables that can be reas-

signed in a repair is also easy. Any variable which cannot be part of a repair corresponds

to an equality constraint on the occurrence of this variable in the master-problem and

its homologue in all sub-problems. This concept of equality constraint and how one can

handle it in the search process is explained in Chapter 5. Therefore, in all generality,

one can provide any list, defined either extensionally or intentionally of breakages. How-

ever, we introduce a description using three sets, one for the variables that can possibly

break, one for the variable that can possibly be used for repair, and a third set for the

variables that can be reassigned freely, i.e., without any penalty.

Breakage Set: The breakage set BS contains all variables that can be involved

in a breakage. The set of breakage to consider therefore is: {A | A ∈ BS ∧ |A| ≤ a}

Repair Set: The repair set RS contains all variables that can be used for

repair. Therefore the set of equality constraints Eq is always a superset of X \ RS.

Free Set: The free set FS contains all variables which reassignment does not

matter. Therefore the Similarity constraint never constrains any variable in FS.

The breakage set BS does not affect the construction of sub-problems, however

it dictates how many such sub-problems need be solved. We adapt the definition of a

sub-problem Pϕ,A, taking repair sets and free sets (RS and FS) into account:

The equality constraints on X \ RS are taken into account when setting the

domains of the corresponding variables. Only the domains of variable that can be

149

P Pϕ,A

Variables: X Xϕ,A = {Xϕ,A | X ∈ X}

Domains: D Dϕ,A(Xϕ,A) = ϕ(X) if X 6∈ (Γb(A) ∩RS)
D(X) otherwise

Constraints: C Cϕ,A = C ∪ ∀X ∈ A (X 6= Xϕ,A)
∪{Similarity(Γb(A) \ FS, ϕ, A, b)}

Table 7.2: The sub-problem Pϕ,A (Breakage and repair set restriction).

repaired are set to the full original domain D, otherwise they are set to the current

partial solution ϕ. Notice that the equality constraint may also be taken into account in

the opposite direction. Furthermore, the variables in the free set FS are not constrained

by the Similarity constraint.

7.2.2 Constraints on the Breakages

According to Definition 8, the alternative for a breakage is any different value.

This is enforced in a sub-problem Pϕ,A by the following set of constraints:

∀X ∈ A (X 6= Xϕ,A)

However, the algorithm decomposition-backtrack can handle other types of con-

straints to control the alternative values of a breakage. For instance consider the

situation mentioned in introduction where values represent time points. This set of

constraints can be replaced with:

∀X ∈ A (X + d ≤ Xϕ,A)

The value of d is the expected maximal length of a delay. In fact, any relation on

(subsets of) A ∪ Xϕ,A | X ∈ A can be given instead of the simple pairwise disequality

constraint. Observe that as long as this relation is more restrictive than the set of

pairwise disequalities, then all the inference rules discussed in chapter 5 and 6 can

still be used soundly. Moreover, if the new constraint is more restrictive then checking

breakages containing non assigned variables can lead to better filtering. We have seen

in Chapter 5 that only breakages on variables that are assigned in the main partial

solution are checked because no extra pruning can be obtained. However this is in fact

a property of the disequality constraints used to model a breakage. If Cbreak is stronger

150

than the set of disequalities, then it is possible to achieve extra inference by creating

sub-problems and preprocessing them on “future” breakages.

Theorem 46. If X ∈ A then sol(Pϕ,A\{X}) ⊆ sol(Pϕ,A).

Proof. Let f be a solution of Pϕ,A\{X}. We show that f satisfies all constraints in Pϕ,A.

• Constraints in P: Clearly, the constraints of the original constraint network

are satisfied.

• Equality constraints: In Pϕ,A we impose a equality constraint on X, i.e., set

Dϕ,A(X) to ϕ(X) if and only if X 6∈ Γb(A). However, the set Γb(A \ {X}) is a

supper set, hence there are at least as many equality constraints in Pϕ,A\{X}.

• Similarity constraint: The Similarity constraint in Pϕ,A\{X} constrains a

smaller set of variable (Γb(A \ {X}) instead of Γb(A)) to have a smaller discrep-

ancy with ϕ (|A| + b − 1 instead of |A| + b), therefore if f satisfies the former,

it also satisfies the latter.

• Disequality constraints: The constraint X 6= Xϕ,A is the only disequality

constraint in Pϕ,A that is not in Pϕ,A\{X}. However, since ϕ(X) is not a sin-

gleton, this disequality is GAC for any value of f(X).

Notice also that the constraints controlling the breakages can be modified for

efficiency reasons. Indeed, the original constraints within the set A can sometimes

combine with these breakage constraints into a global constraint for which a stronger

propagation is possible. For instance, if the constraint network P contain the con-

straint AllDifferent(X), then the constraint controlling a breakage A could be

AllDifferent(A ∪ Xϕ,A | X ∈ A). Therefore we shall denote the constraint con-

trolling how a breakage A can be given alternative values Cbreak(A) and change the

definition of Pϕ,A as follows:

We denote C0
break the classical constraint for controlling breakages, i.e., ∀X ∈

A (X 6= Xϕ,A). We say that a constraint C1(V) is tighter than another constraint

C2(V) if and only if C1 ⊆ C2.

151

P Pϕ,A

Variables: X Xϕ,A = {Xϕ,A | X ∈ X}

Domains: D Dϕ,A(Xϕ,A) = ϕ(X) if X 6∈ (Γb(A) ∩RS)
D(X) otherwise

Constraints: C Cϕ,A = C ∪ {Cbreak(A)}
∪{Similarity(Γb(A) \ FS, ϕ, A, b)}

Table 7.3: The sub-problem Pϕ,A (Breakage constraint).

Theorem 47. If Cbreak is tighter than C0
break then the procedure repairability using

Cbreak instead of C0
break is a sound inference method for the (a, b)-SuperCSP problem.

Proof. Let Cbreak be a constraint strictly tighter than C0
break (i.e., Cbreak ⊆ C0

break). We

show that Theorem 30 applies in this broader context. Since Cbreak is tighter than the

classical set of disequality constraints, the premise of Theorem 30 holds. Now we have

to make sure that this new solution satisfies the constraint Cbreak. In the construction

used to prove Theorem 29 the third solution h is in fact equivalent to f on A. Therefore

the existence of a solution g such that ∆A(f, g) ≤ |A| + b ensures not only that there

exists another repair h with all discrepancies within Γb(A), but also that this repair has

the same image than g on A. Since we suppose that g satisfies Cbreak, so does h, hence

the inference method repairability can be used.

7.2.3 Constraints on the Repairs

Similarly, repairs are controlled through a constraint, namely Similarity. Here

again, this constraint can be changed and the algorithm decomposition-backtrack

can still be used. We change the definition of the sub-problems accordingly:

P Pϕ,A

Variables: X Xϕ,A = {Xϕ,A | X ∈ X}

Domains: D Dϕ,A(Xϕ,A) = ϕ(X) if X 6∈ (Γb(A) ∩RS)
D(X) otherwise

Constraints: C Cϕ,A = C ∪ {Cbreak(A), Crepair(Γb(A) \ FS)}

Table 7.4: The sub-problem Pϕ,A (Repair constraint).

In the previous section, we have seen that the inference method based on equality

constraints can be used if the constraint controlling the breakages is tighter than the

152

disequality constraint. This is not the case for the constraint controlling the repairs.

Example 27. For instance consider the following constraint network:

X ≥ Y ≤ Z, D(X) = D(Y) = D(Z) = {1, 2}

And now suppose that we want the repairs to be classical 1-repairs, and we insist that

the sum of all variables should have the same parity in a repair and in the main solution:

Crepair(V) = Similarity(V, ϕ, A, 1) ∧ (
∑

X∈X Xϕ,A mod 2) = (
∑

X∈X X mod 2)

The tuple 〈1, 1, 1〉 for X, Y, Z is a solution, and 〈2, 1, 2〉 is a valid repair for a the breakage

{X} since only one variable is reassigned beside X and the sum is odd. However although

〈2, 1, 1〉 is a valid 1-repair in the classical sense, it is not here since it violates the parity

constraint. Moreover, the tuple 〈2, 2, 1〉 is not consistent. Therefore this is a counter

example of Theorem 30 in the case of a more restrictive constraint.

One may therefore consider the possibility of using the inference method intro-

duced in Chapter 5 for each “repair control” constraint case by case. We show, for

example, that the constraint we are using in the experimental section for the job-shop

scheduling problem can benefit from this reasoning. The constraint we are using is

defined as follows:

Similarity-JSP(X1, . . . Xn, ϕ, A, b) =

Similarity(X1, . . .Xn, ϕ, A, b) ∧ ∀i ∈ [1..n], (Xi = Xϕ,A
i ∨ Xϕ,A

i ≥ min(A))

Theorem 48. The procedure repairability using Similarity-JSP instead of Simi-

larity is a sound inference method for the (a, b)-SuperJSP problem.

Proof. The constraint Similarity-JSP ensures that whenever a variable is reassigned

in a repair, it is reassigned to a value greater than or equal to the value of the least broken

value. Now we show that the proof of Theorem 29 is still valid with this restriction.

Consider a solution f and a repair, g, valid for Similarity-JSP. A solution h such

that all discrepancies are restricted to Γb(A) can be constructed in the same way, and

is a valid solution by Lemma 1. Moreover, in this construction, all variables are either

assigned as in f or as in g. Therefore, h satisfies the extra constraint ∀i ∈ [1..n], (Xi =

Xϕ,A
i ∨ Xϕ,A

i ≥ min(A)).

153

7.2.4 Solving Extended Problems

We showed that the algorithm introduced in Chapter 5 can be extended to ac-

commodate more complex definitions of super-solutions. We give the pseudo-code for

an algorithm taking into account all these extensions to the framework. This algorithm

takes as input:

• A constraint network P = (X ,D, C).

• A set BS ⊆ X standing for the breakage set.

• A integer a standing for the maximum size of a breakage.

• A set RS ⊆ X standing for the repair set.

• A set FS ⊆ X standing for the free set.

• A constraint Cbreak for controlling breakages.

• A constraint Crepair for controlling repairs.

The main backtracking procedure is basically unchanged, apart from the extra pa-

rameters explained above. The filtering procedure, on the other hand, is slightly changed

to handle this more expressive framework. The construction of the sub-problems is de-

tailed in Algorithm from Line 1 to Line 2.

7.3 Symmetry

Many real world problems contain symmetry (see [Crawford 96, Emerson 93,

Flener 02, Fox 99] for examples of problems exhibiting symmetries). In a job shop

scheduling problem, for instance, some of the machines or some of the jobs may be

identical. Hence, swapping the corresponding assignments does not affect satisfiability.

When a problem involves symmetries, this fact can be exploited to dramatically re-

duce the search effort. Indeed we can avoid exploring certain branches, if symmetrically

equivalent branches have been or will subsequently be explored. This reasoning on sym-

metrically equivalent objects in the context of search algorithm has first been exploited

in [Brown 88]. Since then, several methods have been developed to effectively take ad-

vantage of symmetry in constraint programming. Symmetry Breaking During Search

154

Algorithm 29 dec-backtrack-ext

Data : P = (X ,D, C), ϕ, F [= X], BS, a, RS, FS, Cbreak, Crepair

Result : Does P admit a super-solution

if F = ∅ then return true;
choose X ∈ F ;
foreach v ∈ ϕ(X) do

ϕ(X) ← {v};
if GAC(P ′ = (F , ϕ, C)) then

if repairability-ext(P, ϕ,F \ {X},BS, a,RS,FS, Cbreak, Crepair)
then

if dec-backtrack-ext(P, ϕ,F \ {X}, a,RS,FS, Cbreak, Crepair)
then

return true;

restore ϕ;

return false;

Algorithm 30 repairability-ext

Data : P = (X ,D, C), ϕ, F [= X], a, b

Result : Check the repairability of grounded breakages

foreach A ⊆ BS such that |A| ≤ a do
1 foreach X ∈ X do

if X 6∈ (Γb(A) ∩RS) then
Dϕ,A(Xϕ,A) ← ϕ(X);

else
Dϕ,A(Xϕ,A) ← D(X);

2 Cϕ,A ← C ∪ {Cbreak(A), Crepair(Γb(A) \ FS)};
if ¬solve(Pϕ,A|X\F) then return false;

return true;

Figure 7.1: Extended backtracking Algorithm for finding (a, b)-super-solutions.

155

(SBDS) [Backofen 99, Gent 02], Symmetry Breaking by Dominance Detection (SBDD)

[Fable 01, Focacci 01], and Symmetry Breaking Constraints [Kiziltan 04, Puget 93] are

all examples of such symmetry breaking methods.

A symmetry is a property of a mathematical object to remain invariant under

some transformations. In [Cohen 05], Cohen et al. review several definitions of sym-

metry for constraint satisfaction problems. They distinguish two main categories, a

symmetry may be defined either on (partial) solutions or on constraints. In this section,

we shall define the notion of symmetry as a bijective mapping on solutions. We do

not cover alternative definitions of symmetries as it is not the primary concern of this

dissertation. Our aim is to study the concept of symmetry within the super-solution

framework. In particular we are interested in understanding when and why symmetry

breaking tools can be used when searching super-solutions. Indeed, if such methods can-

not be used, then it is very unlikely that super-solutions might ever be found for certain

large and highly symmetric problems. We first give a very general definition of sym-

metry over solutions, and show that the image of a super-solution by such a symmetry

is not always a super-solution. As a result, there exist symmetries for which we cannot

use the usual symmetry breaking methods. However, we give a sufficient condition for

guaranteeing that the symmetric image of a super-solution is itself a super-solution. The

class of symmetries satisfying this condition is in fact broad and contains most of the

symmetries that can be handled by symmetry breaking tools.

7.3.1 Symmetry and super-solutions

A constraint network P is symmetric if there exists a bijection γ, different from

the identity relation, such that the set of solutions of P remains unchanged under γ.

However, within this definition, it may happen that the symmetric image of a (a, b)-

super-solution is not itself a (a, b)-super-solution. We now formally define the concept

of symmetry of a constraint network, and then give an example of symmetry that does

not preserve repairability.

An automorphism is a bijective mapping from a set onto itself. Let P = (X ,D, C)

be a constraint network. We assume that the domains are uniform, that is, the domain

D(X) of any variable is equal to a common set Λ.

156

Definition 28. A symmetry γ of a constraint network P is an automorphism on sol(P).

Example 28. Consider a the following constraint network:

P : X + Y + Z ≤ 4, D(X) = D(Y) = D(Z) = {1, 2}

We list the set sol(P) of solutions of this constraint network, and define a bijective

mapping γ from sol(P) onto itself, i.e., a symmetry of P, in Figure 7.2:

〈1, 1, 1〉

〈2, 1, 1〉

〈1, 2, 1〉

〈1, 1, 2〉

γ : 〈1, 1, 1〉 → 〈2, 1, 1〉

γ : 〈2, 1, 1〉 → 〈1, 2, 1〉

γ : 〈1, 2, 1〉 → 〈1, 1, 2〉

γ : 〈1, 1, 2〉 → 〈1, 1, 1〉

Figure 7.2: The set of solutions sol(P) and a symmetry mapping γ on this set.

Whereas 〈1, 1, 1〉 is a (1, 0)-super-solution, its symmetric image 〈2, 1, 1〉 is not. If

we somehow break this symmetry we might loose the tuple 〈1, 1, 1〉, i.e., the only one

(1, 0)-super-solution for this constraint network.

We have seen in this example that not all symmetries preserve repairability,

that is, the symmetric image of an (a, b)-super-solution is not necessarily an (a, b)-

super-solution. However, in practice, symmetries are often also defined on partial as-

signments. Such symmetries are typically distributive, that is, given two disjoint

assignments, the image of their composition is equal to the composition of their images.

Although not all symmetries defined on partial assignments have this property, this is a

very common characteristic in practice. We define formally this notion of distributivity,

and subsequently show that this is a sufficient condition to ensure that repairability is

preserved.

We defined the union operation on assignments in Section 2.3. Since the image

of an assignment by a symmetry γ is itself an assignment, the union operation can still

be used with the same semantics.

Definition 29. A symmetry γ is distributive if and only if, for any pair of assignments

f, g, defined respectively on F ∈ X and G ∈ X , such that G ∩ F = ∅, the following

identity holds:

γ(f) ∪ γ(g) = γ((f ∪ g))

157

Notice that, as a direct consequence of this definition, a distributive symmetry

can be defined as a mapping on unary assignments. Indeed for any assignment f defined

on a set of variables A, if γ is a distributive symmetry, then:

γ(f) =
⋃

X∈A

γ(f |X)

From now on, we therefore consider a distributive symmetry as an automorphism on

X × Λ:

γ : X × Λ 7→ X × Λ

We shall use the notation γ(f |X) to denote the symmetric image by γ of the unary assign-

ment X = f(X). Moreover, for a given set of variables A, γ(f |A) denotes
⋃

X∈A γ(f |X).

Notice that it follows directly from Definition 29 that the symmetric image γ(f |A) has

the same cardinality as f |A, that is, |A|.

To help proving that distributivity is a sufficient condition for guaranteeing that

the repairability of a solution is preserved through a symmetry, we first define the

projection of a symmetry on variables with respect to a solution, and then prove an

intermediate lemma. Given a solution f , and a distributive symmetry γ, we define the

projection of γ on variables, denoted θf , as the function mapping a variable X to the

variable on which γ(f |X) is defined. In other words, if f maps X to v and γ maps f |X

to γ(f |X) : Y → w, then θf maps X to Y .

Definition 30. Given a distributive symmetry γ and a solution f of a constraint net-

work P = (X ,D, C), the projection of γ on variables with respect to f , is the function

θf : X 7→ X such that θf (X) = Y if and only if γ maps the assignment X = f(X) to

the assignment Y = v where v can be any value in D(Y).

Given a distributive symmetry γ and a set of variable A ⊆ X , θf (A) is thus the

set of variables on which γ maps the restriction of f to A.

Example 29. The N -Queens problem is to put N Queens on a chessboard so that

no two queens can attack each other. This is usually modelled with N integer variables

standing for the row occupied by each queen. A solution and its symmetric by a 90◦

rotational symmetry are shown in Figure 7.3.

We can define the 90◦ rotational symmetry as follows:

γ : 〈Xi : j〉 → 〈Xj : N − i〉

158

1

3

2

4

5

Q1 Q2 Q3 Q4 Q5

(a) A solution f

1

3

2

4

5

Q1 Q2 Q3 Q4 Q5

(b) The symmetric of f by a
rotation of 90◦

Figure 7.3: A symmetry of the 5-Queens problem.

Observe that γ is distributive. Indeed it is defined on unary assignments and the image

of larger assignments can be obtained by composition. For instance, The image of the

solution f = 〈Q1 : 2, Q2 : 4, Q3 : 1, Q4 : 5, Q5 : 3〉 by the symmetry γ is γ(f) = 〈Q1 : 3〉∪

〈Q2 : 5〉∪〈Q3 : 1〉∪〈Q4 : 4〉∪〈Q5 : 2〉, that is, γ(f) = 〈Q1 : 3, Q2 : 5, Q3 : 1, Q4 : 4, Q5 : 2〉.

Given the solution f , the projection θf of γ on variables is the function mapping a vari-

able whose image by f is v to the variable XN−v, that is:

θf : Xi → XN−f(Xi)

For instance, the value of θf ({X1, X2, X3}) is {X1, X2, X4}.

Theorem 49. Given a solution f of a constraint network P = (X ,D, C) and a distribu-

tive symmetry γ, then the projection θX of γ on X with respect to f is an automorphism

on X .

Proof. Suppose that θX is not injective. Then there exist two variables X, Y such that

θX (X) = θX (Y). Hence the image to which γ maps f |X,Y is not an assignment, which

contradicts the hypothesis.

Suppose that θX is not surjective. Then there exists a variable X with no an-

tecedent by θX , hence γ does not map f to a full solution, which contradicts the hy-

pothesis.

Lemma 3. Given a constraint network P = (X ,D, C), a distributive symmetry γ, two

solutions f, g of P and a set A ⊆ X , the Hamming distance between f and g on A is

159

equal to the Hamming distance between γ(f) and γ(g) on θf (A).

∆A(f, g) = ∆θf (A)(γ(f), γ(g))

Proof. Let f, g be two solutions of a constraint network P = (X ,D, C), γ a distributive

symmetry and A a subset of X .

Consider any variable X ∈ A, and suppose that f(X) = g(X). Then f |X = g|X ,

hence γ(f |X) = γ(g|X). By definition of θf , γ(f |X) and γ(g|X) are thus both defined on

θf (X). Therefore, for each variable X in A such that f(X) and g(X) are equal, so are

γ(f)(θf (X)) and γ(g)(θf (X)) on the variable θf (X). Since θf (X) is included in θf (A),

the following inequality holds:

∆A(f, g) ≥ ∆θf (A)(γ(f), γ(g)) (7.1)

On the other hand since γ is bijective, it is invertible. We consider the distributive

symmetry γ′ = γ−1, two solutions f ′ = γ(f), g′ = γ(g) and the set A′ = θf (A). We can

make exactly the same reasoning, hence we have the following inequality:

∆A′(f ′, g′) ≥ ∆θf ′ (A′)(γ
−1(f ′), γ−1(g′))

We go through the terms of the right hand side of the inequality:

• θf ′(A′): This is the set of variables on which is defined the image of γ(f)|θf (A)

by γ−1. The function θf ′ is the projection of γ−1 on variables with respect to

γ(f). Therefore it is in fact the inverse of θf , hence it maps θf (A) to A.

• γ−1(f ′): This is in fact γ−1(γ(f)), hence it is equal to f .

• γ−1(g′): This is in fact γ−1(γ(g)), hence it is equal to g.

Therefore, the dual inequality holds:

∆θf (A)(γ(f), γ(g)) ≥ ∆A(f, g) (7.2)

Hence the conjunction of Inequations 7.1 and 7.2 proves the lemma.

Theorem 50. Given a CSP with a distributive symmetry γ, γ(f) is an (a, b)-super-solution

if and only if f is an (a, b)-super-solution.

160

Proof. Let f be an (a, b)-super-solution of P = (X ,D, C) and γ a distributive symmetry.

We show that γ(f) is an (a, b)-super-solution. Since γ(f) is, by definition of γ, a solution,

we only need to show that every breakage of γ(f) accepts a b-repair. Consider a b-repair

g of f for a breakage A ⊆ X . By direct application of Lemma 3, γ(g) is b-repair of

f for the breakage θf (A). We show that all breakages are covered. Consider the set

Ak = {A | A ⊆ X ∧ |A| = k} and its image by θf , A′
k = {θf (A) | A ∈ Ak}. The function

θf is bijective and is therefore a permutation on X . Moreover, since γ is distributive, θf

is also a permutation on subsets of a given size. Since Ak contains all breakages of size

k, so does its its image by θf , hence we have Ak = A′
k for all 1 ≤ k ≤ a. Consequently,

all breakages are covered, and γ(f) is an (a, b)-super-solution.

Conversely, we show that if γ(f) is an (a, b)-super-solution then f is an (a, b)-

super-solution. This is in fact a direct consequence of the fact that γ is bijective.

Example 30. We give an example of (1, 2)-super-solution of a 13-Queens problem and

its symmetric image by a 90◦ rotation. In Figure 7.4 the first chessboard (Figure 7.4a) is

filled so that no queen threatens another. Moreover it is a (1, 2)-super-solution, therefore,

for any queen, if we must move this queen to another row, then only two other queens

need to move to obtain another solution. The repairs are represented as arrows of

different shapes indicating an alternative rows for sets of 3 queens. If all the moves

indicated with similar arrows are made, the resulting chessboard position satisfies the

13-Queens problem.

On the second chessboard (Figure 7.4b), we rotate the solution by 90◦, and then

rotate the chessboard itself by −90◦. In other words, the positive rotation is a symmetric

transformation, whilst the negative rotation is in fact equivalent to physically rotating

the figure itself. The resulting position is thus identical, however, the queen-variables

correspond to rows instead of columns, since only the positive rotation was applied to the

constraint model. By a direct application of Theorem 50 we know that the symmetric

solution represented in Figure 7.4b is a (1, 2)-super-solution. In other words, a conse-

quence of Theorem 50 is that a solution of the N -Queens problem is repairable along

rows if and only if it is repairable along columns.

161

3

2

4

5

1

6

7

8

9

13

12

11

10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10Q11 Q12 Q13

(a) The repairs of a (1, 2)-super-solution

Q7

Q9

Q8

Q6

Q5

Q4

Q3

Q2

Q1

Q13

Q12

Q11

Q10

71 2 3 4 5 6 8 9 10 11 12 13

(b) The repairs of the same solution after a
90◦ rotation

Figure 7.4: A (1, 2)-super-solution of the 13-Queens problem and its symmetric image
by a 90◦ rotation.

7.3.2 Symmetry Breaking and super-solutions

In the previous section, we have seen that if a symmetry is distributive, then the

symmetric image of an (a, b)-super-solution is still an (a, b)-super-solution. This result is

important since it shows that if we break a symmetry γ, i.e., if we eliminate either of f

or γ(f) for any assignment f , then we are guaranteed that one (a, b)-super-solution will

remain, provided that one exists. However, symmetry breaking tools, such as Symmetry

Breaking During Search (SBDS) [Backofen 99, Gent 02], Symmetry Breaking by Dom-

inance Detection (SBDD) [Focacci 01, Fable 01], or Symmetry Breaking Constraints

[Puget 93, Kiziltan 04] cannot be directly used in the algorithms introduced in this dis-

sertation. Indeed, most of the methods introduced in previous chapters rely on finding

solutions witnessing repairs for the (a, b)-super-solution. Whereas removing symmetric

solutions does not remove all (a, b)-super-solutions, it may remove a repair, critical for

assessing the repairability of the main solution. Although it depends to some extent

on the various methods introduced in this dissertation, there exists a simple common

answer to this problem: Symmetries can be broken on the master problem, but not on

the sub-problems. We highlight this limitation through an example, then we detail how

162

to best use symmetry breaking tools for the various SuperCSP algorithms.

Example 31. Consider a CSP with two variables X, Y ∈ {1, 2}, and the following

allowed tuples: {〈2, 2〉 〈1, 2〉 〈2, 1〉}. This problem has 3 solutions, but only one (1, 0)-

super-solution, 〈2, 2〉. Now observe that X and Y are symmetric. We can break this

symmetry either during search or statically. We might add an ordering constraint be-

tween X and Y , for instance X ≤ Y . By doing so, we eliminate the solution 〈2, 1〉

because it is symmetric to 〈1, 2〉. However, we also lose a 0-repair, 〈2, 1〉, which is cru-

cial for proving that 〈2, 2〉 is a (1, 0)-super-solution. Thus, by breaking the symmetry in

a SuperCSP, we may loose some super-solutions.

P +P: In this reformulation, the network is duplicated and the restriction of a

solution to the original part corresponds to the (1, 0)-super-solution whilst the restriction

of the same solution to the duplicate corresponds to the repairs. The symmetry breaking

methods need thus be restricted to the variables in X , and should not apply to the

duplicated variables, i.e., X+.

P×P: The situation is trickier here since the part corresponding to the super-solution

itself is closely entangledwith the part corresponding to repairs. We give an example of

how it can be done in the simple case of a symmetry breaking constraint.

Example 32. Recall that a tuple 〈〈v1, r1〉, 〈v2, r2〉〉 is consistent in the P×P reformula-

tion if and only if all three tuples 〈v1, v2〉, 〈v1, r2〉 and 〈r1, v2〉 are consistent. Consider

two variables X and Y with the same ternary domain ({1, 2, 3}), and the following

constraint:

X + Y 6= 4

We list the corresponding tuples in the reformulation as well as the corresponding sets

of 3 tuples in the original network.

Now suppose that these two variables are symmetric hence we decide to post an

ordering constraint X ≤ Y . If the constraint was posted on the original constraint

network, the tuples in bold font in Figure 7.5 would be forbidden. In every set of 3

tuples in the rightmost part of Figure 7.5, there is a tuple such that X > Y , therefore

the P × P reformulation would be empty.

In fact the symmetry breaking constraint should be taken into account only for

the tuples corresponding to the (1, 0)-super-solution itself, i.e., the first column of the

163

reformulated tuples original tuples

〈〈1, 2〉, 〈1, 2〉〉 ⇒ 〈1, 1〉, 〈1, 2〉, 〈2,1〉
〈〈1, 3〉, 〈2, 1〉〉 ⇒ 〈1, 2〉, 〈1, 1〉, 〈3,2〉
〈〈2, 1〉, 〈1, 3〉〉 ⇒ 〈2,1〉, 〈2, 3〉, 〈1, 1〉
〈〈2, 3〉, 〈3, 1〉〉 ⇒ 〈2, 3〉, 〈2,1〉, 〈3,1〉
〈〈3, 1〉, 〈2, 3〉〉 ⇒ 〈3,2〉, 〈3, 3〉, 〈1, 2〉
〈〈3, 2〉, 〈3, 2〉〉 ⇒ 〈3, 3〉, 〈3,2〉, 〈2, 3〉

Figure 7.5: The P × P reformulation, before symmetry breaking.

rightmost part. The reformulation with the constraint X ≤ Y used as a symmetry

breaking constraint should be as shown in Figure 7.6:

reformulated tuples original tuples

〈〈1, 2〉, 〈1, 2〉〉 ⇒ 〈1, 1〉, 〈1, 2〉, 〈2,1〉
〈〈1, 3〉, 〈2, 1〉〉 ⇒ 〈1, 2〉, 〈1, 1〉, 〈3,2〉
〈〈2, 3〉, 〈3, 1〉〉 ⇒ 〈2, 3〉, 〈2,1〉, 〈3,1〉
〈〈3, 2〉, 〈3, 2〉〉 ⇒ 〈3, 3〉, 〈3,2〉, 〈2, 3〉

Figure 7.6: The P × P reformulation, after symmetry breaking.

MAC+: This algorithm uses two sets of domains, sD and rD. Whereas the

former stands for the (1, 0)-super-solution, the latter stands for the repairs. Therefore,

symmetry breaking methods can only be used to prune or make inference on the the

super-domain sD and not on the repair-domain rD.

super-MAC: The situation is identical as for MAC+. The search for a (1, 0)-

super-solution is done on sD whilst the search for repairs witnessing repairability is

done on rD. Therefore the answer is also identical: We shall restrict symmetry break-

ing methods to sD.

decomposition-backtrack-Γ: Here again there is a clear distinction between

the search for the (a, b)-super-solution and the search for b-repairs. Therefore, symmetry

breaking methods can only be used to prune or make inference on the master problem

(P) and not on a sub-problem Pϕ,A created for a partial solution ϕ and a breakage A.

Other Algorithms All other algorithms, for MaxRepairability or Min-

BCSP are all based on the procedure decomposition-backtrack, hence the same re-

striction applies.

164

7.4 Summary and Limitations

In this chapter we extended the super-solution framework by allowing more com-

plex definitions of breakages and repairs. We showed that the algorithm decompose-backtrack,

introduced in Chapter 5, as well as the derived Branch & Bound algorithms to maximise

repairability of minimise the size of the repairs (Chapter 6), can handle these extended

definitions.

We defined the notion of robustness model, defined by three components:

• We first defined three sets, the breakage set BS, the repair set RS and the free

variables set FS, to represent respectively which variables can break, which

value can be reassigned in a restricted way in response to a breakage and which

variables can be reassigned in an unrestricted way.

• Then we defined the concept of a constraint to control the breakages, that is,

to restrict which values can or cannot break, and which alternative values are

acceptable in reassignment.

• finally, we defined the concept of a constraint to control the repairs, that is

restrict which combinations represent valid repairs in response to a breakage.

We subsequently showed that provided that the constraint controlling the break-

ages is tighter than the classical set of disequality constraint, the inference method

based on equality constraints can be used soundly. However, we do not give any simple

precondition about the constraint controlling the repairs, hence this question need to

be solved on a case per case basis.

Finally we studied the concept of symmetry and symmetry breaking within the

super-solution framework. We gave a sufficient property, namely, distributivity, to guar-

antee that super-solutions are preserved through a symmetric transformation. Then we

showed that although symmetry breaking techniques, such as posting a constraint to

exclude symmetrical assignments, cannot be used exactly as for regular CSPs, it is pos-

sible to break symmetries when searching for super-solutions. The idea is to apply the

symmetry on distributive symmetries, and only on the part of the search corresponding

to the super-solutions, as opposed to the search for repairs.

Chapter 8

Applications and Experimental Results

8.1 Introduction

Fault tolerance is a relatively recent concept. As such, the previous work, by

Roy et al. on super-models, was almost purely theoretical. To our knowledge, the

only mention of a method for finding super-models of a SAT formula is a reformulation

method for (1, 1)-super-models [Ginsberg 98] and the P + P reformulation for finding

(1, 0)-super-solutions in [Weigel 98]. The experiments on the former reformulation were

limited to the characterisation of a phase transition and no experiments were done with

the P + P reformulation. We therefore do not have a solid reference onto which a

systematic comparison could be based. In this chapter, we aim to address three general

questions related to the framework introduced earlier in this dissertation.

Phase Transition and Computational Complexity: Phase transition phe-

nomena occur in many NP-complete problems. If a combinatorial problem is loosely

constrained, many solutions are admissible. On the other hand, when a problem is

tightly constrained, it is likely to be unsatisfiable. In randomly generated problems, by

varying one of the parameters, the “constraindeness” can be controlled. It has been

observed that for numerous problems, the transition between the satisfiable and unsat-

isfiable regions is sharp. Moreover, Cheeseman et al. [Cheeseman 91] showed that a

peak in computational cost is often associated with this threshold between satisfiable

and unsatisfiable regions. Typically, in the loosely constrained region, it is relatively

easy to find a solution. Similarly, in the tightly constrained region, it is often easy

to prove that no solution exist. Problems at the phase transition, on the other hand,

166

cannot be easily proved either soluble or insoluble, hence typically have larger compu-

tational complexity. Phase transition phenomena have been characterised for several

problems, such as Boolean Satisfiability [Cheeseman 91, Kirkpatrick 94, Mitchell 92],

Graph colouring [Cheeseman 91], Constraint Satisfaction [Prosser 94, Smith 94], and

Travelling Salesman [Gent 96b]. We investigate the phase transition phenomenon for

the problem of the existence of super-solutions.

Another question related to computational complexity is whether finding super-solutions

is harder, in practice, than finding regular solutions, and if so, how much harder. A

straight comparison would be flawed since the problems solved are not equivalent. Of-

ten, the same instance of constraint satisfaction problem can be easily satisfiable when

viewed as a regular CSP and more difficult because they are closer to the phase transi-

tion when viewed as a SuperCSP. On the other hand an instance can be respectively

difficult because it is at the satisfiability phase transition whilst it cannot be easily

proved that it has no super-solutions. However, even though the problem of finding

solutions and super-solutions are different, it makes sense to compare their respective

computational costs, since they are meant to apply to essentially the same applications.

Algorithms Comparison: We introduced three methods for finding (1, 0)-

super-solutions in Chapter 4. We theoretically compared the worst case computational

complexity and the filtering power of these algorithms, along with a fourth, earlier, refor-

mulation method. In this chapter we extend this theoretical analysis with an empirical

comparison.

In Chapter 5, we introduced a basic backtracking procedure with a brute-force

filtering method. We then enhanced it using an inference method based on equality

constraints deduced from the neighbourhood relation in the constraint graph. We em-

pirically assess the effectiveness of this inference method by comparing the efficiency of

the decompose-backtrack procedure with and without this inference step.

Optimisation and Application: Since finding super-solutions comes at a

high computational cost and since a constraint network does not always admit any

super-solution, the most practical use of the framework described in this dissertation

seems to be the robustness optimisation algorithms introduced in Chapter 6. Since the

problem MinBCSP was showed to have an inherent high computational complexity,

167

we restrict our study to the problem MaxRepairCSP solved with a Branch & Bound

procedure using Algorithm 28 (repairabilitymax) as filtering method.

The main question we want to address is to evaluate the extent of the tradeoff

between computational complexity and robustness, and also between optimality and

robustness. Indeed this method allows us to control how much computational effort

and how large a decrease in optimality we are prepared to trade against robustness.

The search effort can be controlled, since the first solution can be found with the best

method available, and then our Branch & Bound algorithm progressively improves the

repairability. The deviation in solution quality due to the increased robustness can be

controlled as well. Once an optimal or near optimal solution has been found using a

standard algorithm, the optimisation problem can be turned into a satisfaction prob-

lem where the discrepancy with respect to the optimal outcome is controlled by an

extra constraint. We then look for the solution of the resulting problem with maximal

repairability.

In Section 8.2 we describe the two benchmark problems we are using through-

out this chapter. In subsequent sections, we address the questions stated above. In

Section 8.3.1 we study the phase transition of SuperCSPs. Then in Section 8.3.2 we

compare the search effort for finding (1, 0)-super-solutions and (a, b)-super-solutions with

respect to regular solutions. In Section 8.4.1, 8.4.2 and 8.5.1 we assess the significance

of the inference methods proposed for respectively solving (1, 0)-SuperCSPs, (a, b)-

SuperCSPs and MaxRepairCSPs. Finally, in Section 8.5.2, we measure the tradeoff

between optimality and robustness for the Jobshop Scheduling Problem.

All algorithms for solving (1, 0)-SuperCSPs, i.e., super-MAC, MAC+, MAC(P + P)

and MAC(P × P) were written using van Beek’s library of routines for solving binary

constraint satisfaction problems [van Beek 94]. The experiments on these algorithms

were all run on Pentium 3 processors, with 512 Mb of Ram under linux redhat 8.0.

The decompose-backtrack algorithm, and its Branch & Bound version for solv-

ing MaxRepairCSP are implemented using our constraint library [Hebrard 05]. The

experiments on these algorithms were all run on Pentium 4 processors, 1024 Mb of ram

under linux debian.

168

8.2 Benchmarks

We used two types of benchmarks to test our algorithms. For most of the experi-

ments, we used the Jobshop Scheduling Problem since it is a well known and successful

application of constraint programming, and tackling uncertainty is extremely relevant

in this application domain. However, we also used Uniform Random Binary CSPs (UR-

BCSP) for the algorithms that cannot handle non-binary constraints, or when we want

to control the complexity of the instances with precision, for instance when studying

the phase transition behaviour.

8.2.1 Jobshop Scheduling Problem (JSP)

In the Jobshop Scheduling Problem (JSP), a set J = {J1, . . . Jn} of n jobs

need to be scheduled on a set M = {r1, . . . rm} of m resources. A job Ji = {oi1, . . . oim}

is a set of m activities, along with a bijective relation Ri : Ji 7→ M. Every activity oij

is associated with a duration dij , a release date sij and a due date eij . Moreover an

activity oij must be executed on the resource Ri(oij).

The activities are to be scheduled, that is, a time point needs be allocated to

every activity oij , between its release date sij and its due date eij . A schedule therefore

associates to every activity oij an effective start time esij and an effective end time eeij

such that sij ≤ esij ≤ eij − dij and eeij = esij + dij and must satisfy the following

constraints:

• Within a job Ji, the sequence given by activity indices must be respected, i.e.

the effective end time eeij of an activity oij is lower or equal to the effective

start time esij+1 of the following activity oij+1, if any.

• Two activities sharing a resource must not overlap in time. In other words, for

any pair of activities oij and okl, if Ri(oij) = Rk(okl), then the schedule is such

that eeij ≤ eskl or eekl ≤ esij .

The objective function we consider in this chapter is to minimise the overall

makespan, i.e., the difference between the largest effective end time and the lowest

effective start time. Given a schedule f defining a mapping from activities to effective

169

start and end time, the objective function Φ can be defined as follows:

Φ(f) = max{eeij | i ∈ [1..n], j ∈ [1..m]} − min{seij | i ∈ [1..n], j ∈ [1..m]}

We generated random instances of JSP using Beck’s generator based on the work

by Watson et al. ([Watson 99]) itself a further development over Taillard’s [Taillard 93].

In all instances solved in our experiments, the minimal and maximal length of the

activities were fixed to 5 and 50 respectively. Therefore, a class of instances of JSP can

be described as a pair 〈#jobs,#machines〉. The number of activities is equal to the

product of the number of jobs by the number of machines.

8.2.1.1 Standard Model

This model involves nm variables X11, . . . Xnm, where Xij stands for the the

effective start time of the activity oij . The domain of Xij therefore is the interval

bounded by the release date and the due date minus the duration of the corresponding

activity, i.e., [sij , . . . eij − dij]. The sequence constraint for each job is modelled with a

chain of Precedence constraints:

∀Ji ∈ J , ∀j ∈ [1..m − 1], (Xij + dij ≤ Xij+1)

The Non-Overlap constraints are modelled as disjunctions of Precedence con-

straints:

∀i, k ∈ [1..n], j, l ∈ [1..m], (Ri(oij) = Rk(okl)) ⇒ (Xij + dij ≤ Xkl ∨ Xkl + dkl ≤ Xij)

Example 33. We illustrate an instance of JSP in Figure 8.1. The corresponding

constraint network is shown in Figure 8.2. The constraints 8.1, 8.2 and 8.3 are the

Precedence constraints for jobs J1, J2 and J3 respectively. The constraints 8.4 to 8.6

stand for Non-Overlap constraints for resource r1, whilst the constraints 8.7 to 8.9

and 8.10 to 8.12 correspond respectively to the resources r2 and r3.

This model allows us to solve a “deadline JSP”, i.e., the problem of the existence

of a schedule with a given makespan. To minimise the makespan, we use a binary search

as shown in Algorithm 31. First, an upper bound and a lower bound on the makespan are

computed using respectively the procedure get-upper-bound and get-lower-bound.

170

����
����
����
����

0 10 20 30 40 50 60 70 80 90 100 110 120 130

e22 = 120

J1

J2

J3

s11 = 0

s12 = 30

s13 = 55

s22 = 30

s21 = 0

s23 = 65

e21 = 75

e23 = 130

s31 = 0

s32 = 15

s33 = 35

e31 = 70

e32 = 90

e33 = 110

r1 : r2 : r3 :

e12 = 95

e11 = 85

e13 = 130

R1(o11) = r1

R1(o12) = r2

R1(o13) = r3

R2(o21) = r3

R2(o22) = r2

R2(o23) = r1

R3(o31) = r2

R3(o32) = r3

R3(o33) = r1

Figure 8.1: An example of Jobshop Scheduling Problem.

Then we start a binary search, where every step is a deadline JSP, and stop when the

bounds collapse.

Procedure get-upper-bound: This procedure computes a sound upper bound

on the minimal makespan for P (line 1 of Algorithm 31). We implemented it using a

simple greedy algorithm. The activity with earliest due date is scheduled first, to the

earliest start time that is consistent with earlier decisions. A consistent schedule is thus

produced, and its makespan is used as upper bound.

Procedure get-lower-bound: This procedure (line 2 of Algorithm 31), com-

putes the largest schedule for a single machine without slack. A schedule for a single

machine rk without slack is simply the sum of the durations of activities that must be

executed on rk. To this sum, we can add the durations of activities that must execute

before the first or after the last activity because of the Precedence constraints on

jobs.

8.2.1.2 Model Refinement

We refine our model with a number of techniques introduced for tackling regular

scheduling problems. There are two reasons for doing so. First, larger instances can

thus be solved, hence it makes the experimental results more significant. Moreover,

it demonstrates that the procedure decompose-backtrack can accommodate complex

171

X11 + 30 ≤ X12, X12 + 25 ≤ X13 (8.1)

X21 + 25 ≤ X22, X12 + 35 ≤ X23 (8.2)

X31 + 15 ≤ X32, X13 + 20 ≤ X33 (8.3)

X11 + 30 ≤ X23 ∨ X23 + 15 ≤ X11 (8.4)

X11 + 30 ≤ X33 ∨ X33 + 20 ≤ X11 (8.5)

X23 + 15 ≤ X33 ∨ X33 + 20 ≤ X23 (8.6)

X12 + 25 ≤ X22 ∨ X22 + 35 ≤ X12 (8.7)

X12 + 25 ≤ X31 ∨ X31 + 15 ≤ X12 (8.8)

X22 + 35 ≤ X31 ∨ X31 + 15 ≤ X22 (8.9)

X13 + 35 ≤ X21 ∨ X21 + 25 ≤ X13 (8.10)

X13 + 35 ≤ X32 ∨ X32 + 20 ≤ X13 (8.11)

X21 + 25 ≤ X32 ∨ X32 + 20 ≤ X21 (8.12)

Figure 8.2: The constraint network modelling the JSP shown in Figure 8.1.

Algorithm 31 minimise-makespan

Data : A JSP P
Result : The minimum makespan for P

1 ub ← get-upper-bound(P);
2 lb ← get-lower-bound(P);

while ub > lb do
3 if solve(P, ⌊ub+lb

2 ⌋) then

ub ← ⌊ub+lb
2 ⌋;

else
lb ← ⌊ub+lb

2 ⌋ + 1;

return ub;

Figure 8.3: An algorithm for computing the minimum makespan of a Jobshop Scheduling
Problem.

propagation methods and variable ordering heuristics and take advantage of them. We

briefly describe the three main improvements upon the simple model introduced in

Section 8.2.1.1. Then we discuss about a fourth improvement that we eventually did

not retain because it introduces new variables and therefore affects the super-solutions.

Edge Finder The set of Non-Overlap constraints can be modelled as a single

global constraint (UnaryResource). A propagation algorithm for this constraint,

Edge-Finder, has been introduced in [Carlier 94], [Nuijten 94b] and [Nuijten 94a] and

172

further developed in [Vilim 04]. This algorithm has been very successfully applied to a

range of scheduling problems. We do not describe this method as it is beyond the scope

of this dissertation.

Shaving: We also used a consistency techniques known as shaving [Martin 96]

in the scheduling community, and closely related to Singleton Arc Consistency

[Debruyne 97] [Prosser 00], in the constraint programming community. In fact, shaving

usually applies only on the domain bounds and requires ordered domains, whilst Single-

ton Arc Consistency (SAC) is defined on discrete domains. However both methods can

be described as checking unary assignments by temporarily committing to them, and

then applying a consistency technique to the whole network. Shaving uses bounds con-

sistency whilst singleton arc consistency uses arc consistency. This procedure is repeated

until a fixed point is reached, that is, all unary assignments are singleton consistent.

Operation Resource Reliance: Finally, we used the variable ordering heuris-

tic described in [Sadeh 96]. This heuristic (Operation Resource Reliance, ORR)

uses probabilistic reasoning to compute the criticality of resources and activities. Each

possible start time for each activity is given equal probability, that is, 1/|D(Xij)| for

all values, or possible start times, of an activity oij . Then for each resource rk, we can

compute the reliance on rk for each time point as the sum of the probabilities that an

activity will be in execution at this time. The variable whose corresponding activity

participate to the largest, hence most critical, peak in reliance to a resource is chosen

first.

Precedence Constraint Posting: The Precedence Constraint Posting model

(PCP), has been first introduced by Smith and Cheng as a heuristic in [Smith 93] and

[Cheng 94] and subsequently as a complete method in [Cheng 95]. In this alternative

model, the decision variables represent precedence relations between activities sharing a

resource. For every pair of activities oij , okl if Ri(oij) = Rk(okl) then a Boolean variable

Yijkl is introduced. This variable indicates which of the precedence relation oij ≺ okl or

okl ≺ oij is satisfied. For each variable Yijkl a conditional Precedence constraint is

posted:

Yijkl ⇒ oij ≺ okl ∧ ¬Yijkl ⇒ okl ≺ oij

173

The variables standing for start times can be used to post conditional or unconditional

Precedence constraints. We found that this model was the most efficient, particularly

in conjunction with shaving and the Edge-Finder algorithm. However, this model

complicates the search for super-solutions. Indeed, we need to decide if the new variables

can or cannot break or be used as repairs. Using the notations introduced in Chapter 7,

we can restrict the breakage and repair sets (BS and RS) to the original variables Xij ,

whilst the new variables Yijkl are put into the free set (FS). Although, this modelling of

breakages leads to a model equivalent to the classical definition on the simple model, it

considerably reduces the performance of our algorithm. In fact, in the PCP model, only

the new variables (Yijkl) are searched, since once these variable are instantiated, the

resulting sub-problem is a simple temporal constraint network, and thus is satisfiable

if and only if it is GAC. However, the breakages and repairs, in the model defined

above, are defined only on the original variables. We believe that assigning last the

variables that really matter for breakages and repairs is the reason for the inefficiency

of this method. We therefore did not use this model. Observe, on the other hand, that

breakages on the new variables Yijkl might in fact be interesting in some applications.

For instance if we want to minimise the changes on the sequence of activity for each

resource in the event of a breakage. In such cases, the PCP model would certainly be

the best choice. This emphasises the fact that super-solutions are dependent on the

modelling choices.

8.2.1.3 Uncertainty

The Jobshop Scheduling Problem is an example of an application where applying

the strict definition of breakages and repairs is not sufficient to capture certain aspects

of uncertainty that one may want to model. Indeed, since variables stand for activities

and values for time points, if we assume that breakages are discovered while executing

a schedule, certain repairs involving choices in the past are not possible. This situation

was used as example in Chapter 7. We thus define a breakage constraint and a repair

constraint specific to the Jobshop Scheduling Problem. A breakage is in fact a delay of

duration d for the effective start time of an activity. If the time point t is not available,

then neither is t− 1 or earlier time points. Moreover, any value lower than t + d is also

174

unavailable.

Cbreak(A) = ∀X ∈ A (X + d ≤ Xϕ,A)

For all instances in our experiments, the delay d is set to 2, meaning 2 units of time.

For reference, the duration of an activity is at least 5 and at most 50 units of time.

When repairing, the fact that values represent time points also has consequences. We

assume that the delay is caused by a faulty machine or a temporary unavailability of a

resource, and cannot be discovered before the expected start time of the delayed activity.

Moreover, an activity cannot be assigned to a start time t in response to a delay of an

activity initially scheduled to start at a start time t′ > t. The constraint Crepair is based

on the Similarity, however, when a variable is reassigned it must be reassigned to a

later start time than that of the earliest delayed activity. Moreover, the scope of this

constraint is limited to activities whose start times are later that of the earliest delayed

activity. We use the Similarity-JSP defined in Section 7.2.3:

Crepair(V, ϕ, A, b)
⇔

Similarity(V, ϕ, A, b) ∧ ∀X ∈ V, (X = Xϕ,A ∨ Xϕ,A ≥ min(A))

Notice that there are several other refinements that could be added to the mod-

elling of breakages and repairs. We chose this robustness model as it is close to the

original definition and at the same time captures some “realistic” properties of a stable

solution. By Theorem 47 and Theorem 48, we know that the inference methods based on

neighbourhood and preprocessing can be used when using this model for the breakages

and repairs. Moreover since the constraint controlling the breakages is strictly tighter

than the classical disequality constraint, we can check breakages on variables that are

not yet assigned.

We use in our experiments five algorithms for finding regular solutions or (a, b)-

super-solutions of Jobshop Scheduling Problem:

• JSPsolve: We denote JSPsolve the algorithm for solving regular JSP and using

Edge-Finder, shaving, and the ORR variable ordering heuristic.

• super-JSPsolve: The algorithm, using the same components as JSPsolve, how-

ever replacing the classical backtrack search with the decompose-backtrack

175

procedure and not using the neighbourhood-based inference is referred to as

super-JSPsolve.

• super-JSPsolve-Γ: The same procedure, augmented with the neighbourhood-

based inference is denoted super-JSPsolve-Γ.

• super-JSPsolvemax: The Branch & Bound procedure for maximising the re-

pairability of a schedule and using repairabilitymax as filtering method whilst

not using neighbourhood-based inference is referred to as super-JSPsolvemax.

• super-JSPsolvemax-Γ: Finally, the Branch & Bound procedure for maximising

the repairability of a schedule and using repairabilitymax as filtering method

with neighbourhood-based inference is referred to as super-JSPsolvemax-Γ.

8.2.2 Uniform Random Binary Constraint Satisfaction Problem

We also use randomly generated problems (URBCSP) because the search effort

necessary to solve an instance can be controlled with a good precision, by setting the

parameters of the class of instances. Moreover, some of the algorithms we introduced,

such as super-AC and MAC(P×P) only apply to binary constraint networks and moreover,

as implemented, some other algorithms, such as MAC+ and MAC(P + P) cannot handle

non-binary and global constraints. The algorithms for (a, b)-SuperCSP and (a, b)-

MaxRepairCSP, on the other hand are integrated into constraint toolkits able to

deal with complex constraints and propagation algorithms. However, even in that case,

binary constraint networks were useful to answer some of the questions we want to

address. The classical domain/degree [Bessiere 96] dynamic variable ordering was used

in all experiments involving URBCSPs.

8.2.2.1 Model

The problem instances are generated according to model B in [Prosser 96], and

an instance, that is, a constraint network P = (X ,D, C) can be described with the

following parameters:

• The number of variables n = |X |.

• The uniform domain size d = |D(X)| ∀X ∈ X .

176

• The number of constraints m = |C|.

• The uniform constraint tightness t = 1 − |C(X,Y)|
d2 .

We generated URBCSP instances using Frost and Bessiere’s generator [Frost 96].

8.2.2.2 Uncertainty

Since these problems do not correspond to real world entities we used the standard

definition of breakage and repair. We use three additional parameters to describe the

type of super-solutions that are considered:

• The breakage size a.

• The maximum repair size b.

• The breakage set cardinality k = |BS|

The repair and free set are always set equal to X and ∅ respectively. We can

therefore define a class of instances as a tuple 〈n, d, m, t, a, b, k〉.

We use in our experiments four algorithms for finding (1, 0)-super-solutions on

URBCSPs and two algorithms for finding (a, b)-super-solutions as well as MAC for finding

regular solutions. The list of algorithms used in these experiments is as follows:

• MAC: The classical backtracking algorithm for solving CSPs, as described in

Algorithm 1.

• MAC(P + P): The MAC algorithm applied to the (P +P) reformulation (def. 13)

of a constraint network P and where a solution found can be interpreted as a

(1, 0)-super-solution of P.

• MAC(P × P): The MAC algorithm applied to the (P ×P) reformulation (def. 14)

of a constraint network P and where a solution found can be interpreted as a

(1, 0)-super-solution of P.

• MAC+: The backtracking algorithm using GAC+ as filtering method, as described

in Algorithm 13.

• super-MAC: The backtracking algorithm using super-GAC as filtering method,

as described in Algorithm 14.

177

• decompose-backtrack: The backtracking algorithm (Algorithm 15) using the

brute-force version of the procedure repairability (Algorithm 16).

• decompose-backtrack-Γ: The backtracking algorithm (Algorithm 20), using

the procedure repairability-Γ taking advantage of equality constraints and

neighbourhood-based inference (Algorithm 19).

8.3 Phase Transition and Computational Complexity:

8.3.1 Phase Transition

Following previous work by Smith et al. and Williams et al. [Smith 96, Williams 94]

on predicting the phase transition for constraint satisfaction, we locate the phase tran-

sition of finding super-solutions both experimentally and by an approximation based on

Markov’s inequality:

Pr(|sol(P)| 6= 0) < |sol(P)|

Where Pr(|sol(P)| 6= 0) is the probability that the set sol(P) has a non-null cardinality.

So when |sol(P)| < 1, the probability that P is satisfiable is lower than 1. Hence, in

[Smith 96, Williams 94] the phase transition is predicted around |sol(P)| = 1. We base

our approach on the κappa framework [Gent 96a].

For a constraint network P = (X ,D, C), the expected number of solutions is:

|sol(P)| = (
∏

X∈X

|D(X)|) × (
∏

C(V)∈C

(1 − tC(V))) (8.13)

Where, given a constraint C(V), the term 1 − tC(V) is the complement to 1 of the

tightness of C(V), that is the ratio of allowed tuples in C(V):

tC(V) = 1 −
|C(V)|

∏

Y ∈V |D(Y)|

In our case, domain sizes and constraint tightness are uniform and all constraints are

binary. Therefore, if d stand for the domain size and t for the constraint tightness,

whilst n and m are respectively the number of variables and constraints, the formula

can be simplified as follows:

1 = dn(1 − t)m

178

We use the P × P reformulation to extend the formula to (1, 0)-super-solutions. The

P × P reformulation has one solution if and only if P has a single super-solution.

Therefore, we use the same formula, where n′, m′, d′ and t′ are the new values for

respectively n, m, d and t. To approximate the value of this formula,we derive the values

of the primed parameters (on P × P) from the values of the corresponding parameters

in the original constraint network (P). The number of variables and constraints are not

changed, hence n′ = n and m′ = m. The domain size is known exactly:

d′ =def (d2 − d)

Moreover, we can see (1 − t′) as the probability that a tuple of values on a pair of

constrained variables satisfies the constraint. Let C(X, Y) ∈ C be a constraint of P.

The constraint C×(X, Y) is the reformulated constraint corresponding to C(X, Y) in

P ×P. The tuple 〈〈v1, v2〉, 〈w1, w2〉〉, satisfies C×(X, Y) if and only if 〈v1, w1〉, 〈v1, w2〉

and 〈v2, w1〉 all satisfy C(X, Y) ∈ C. Hence we can approximate the probability that

an arbitrary tuple satisfies the reformulated constraint as the probability that 3 given

tuples all satisfy the original constraint. Hence we approximate (1 − t′) as follows:

(1 − t′) = (1 − t)3

The formula thus becomes:

1 = (d2 − d)n(1 − t)3m (8.14)

8.3.1.1 Experimental Setting

The formula 8.13 ties the parameters of a CSP instance together so that when all

but one of the arguments are fixed, the last takes the value corresponding to the phase

transition. In this experiment we compare the observed and predicted values of the

constraint tightness t at the phase transition, for a range of constraint density 2m
n(n−1)

and fixed number of variables and domain size. We generate and solve a number of

samples of 100 instances of URBCSP. In each sample, we fix the number of variables

n to 40 and the uniform domain size d to 10. Moreover, the constraint tightness take

a value between 0.1 and 0.9 and the constraint density between 0.1 and 0.32, i.e.,

between 75 and 255 constraints. The gap between each value of tightness is 0.02 whilst

179

the density gap is 0.012, i.e., 10 constraints. This constitutes 760 samples (19 values

of density and 40 values of tightness) denoted, as a whole, sample 8.15. We solve

〈n = 40, d = 10, m = [75..255], t = [0.1..0.9]〉 (8.15)

these samples of 100 instances of URBCSP using MAC and super-MAC. Each value of

m ∈ {75, 85, 95, . . . 255} defines a sequence of 40 samples with increasing constraint

tightness. For every sequence, we report the minimum value of constraint tightness for

which more than half of the instance are unsatisfiable. Indeed, this point is usually

accepted as the peak of difficulty at the phase transition. The same process was done

once for the problem of finding regular solutions (CSP) and once for the problem of

finding (1, 0)-super-solutions ((1, 0)-SuperCSP). We compare these data points to the

expected values computed using formula 8.13 and our modified version (formula 8.14)

in Figure 8.4.

8.3.1.2 Experimental Results

In figure 8.4, we plot, across the different values of density for which samples were

generated and solved, the following values:

• CSP threshold (prediction): The value of tightness for which we expect to

encounter the threshold satisfiable/unsatisfiable according to κ.

• CSP threshold (experimentally): The value of tightness for which the un-

satisfiable instances outnumber the satisfiable instances within a sample.

• super CSP threshold (prediction): The value of tightness for which we ex-

pect to encounter the threshold satisfiable/unsatisfiable according to our mod-

ified version of κ.

• super CSP threshold (experimentally): The value of tightness for which

the unsatisfiable instances, that is, such that no (1, 0)-super-solutions exist,

outnumber the satisfiable instances within a sample.

We observe that our modified version of κ approximates closely the empirical

findings. Notice that the value of constraint tightness is slightly overestimated by κ

180

both for CSPs and SuperCSPs. This is in fact not surprising since the value predicted

by the formula is the value of constraint tightness for which the probability of having

exactly one solution is maximal whereas the observed data points correspond to the

values where the number of unsatisfiable instances exceeds the number of satisfiable

ones.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1 0.15 0.2 0.25 0.3

tig
ht

ne
ss

density

CSP threshold (prediction)
CSP threshold (experimentally)

super CSP threshold (prediction)
super CSP threshold (experimentally)

Figure 8.4: Phase transition expectation.

8.3.2 Comparison between CSP and SuperCSP

In this section we want to empirically quantify the increase in complexity when

finding super-solutions rather than regular solution. In Chapter 3, we have seen that

the problem of the existence of super-solutions is NP-complete, hence not harder than

a regular CSP. However, in practice, finding super-solutions appears to be dramati-

cally more difficult. Some theoretical results have suggested it might be harder. For

instance, a number of tractable classes of CSP are not tractable anymore when search-

ing super-solutions. Moreover, the complexity of the inference method used within the

decompose-backtrack-Γ algorithm is much larger than that of MAC. In fact we shall see

that even finding (1, 0)-super-solutions is orders of magnitude more difficult than finding

regular solutions. This result is more surprising as the complexity of super-AC is not

larger than that of GAC and most of the tractability results lift to (1, 0)-SuperCSP.

181

8.3.2.1 Experimental Setting

The difficulty we face here is that we aim at comparing two algorithms, MAC and

super-MAC that are not solving the same problem. We solve a number of URBCSP

instances with domain size and number of variables fixed whilst constraint tightness

and density are distributed on a wide range of values. We record how hard, on average,

are the instances in each sample with the same set of parameters, hence we can see the

behaviour of both algorithms on a wide landscape of instances.

Full Fault tolerance (URBCSP): We first compare super-MAC to MAC, i.e.,

finding (1, 0)-super-solutions rather than solutions. We use the samples 8.15, as defined

in Section 8.3.1.1.

Weak Fault tolerance (URBCSP): We then compare decompose-backtrack-

Γ (for finding (1, 1)-super-solutions) to MAC. We use slightly smaller instances. The num-

ber of variables and domain size are fixed to respectively 30 and 8. Then, for a range

of constraint tightness (0.1 to 0.9 with increment of 0.03) and density 0.11 to 0.3 with

increment of 0.005 (that is, 50 to 130 constraints with increment of alternatively 2 and

3), we generate a sample of 100 instances for each combination:

〈n = 30, d = 8, m = [50..130], t = [0.1..0.9]〉 (8.16)

Weak Fault tolerance (JSP): Last, we compare the difficulty of solving regu-

lar Jobshop Scheduling Problems (JSP) as opposed to finding optimal (1, 1)-super-solutions

for that same problem. We randomly generate a sample of 100 JSPs for problem sizes

ranging from 4 jobs and 3 machines, i.e., 12 activities, to 8 jobs and 8 machines, i.e., 64

activities.

〈X jobs, X machines〉, X ∈ {4, 5, . . . 8} (8.17)

〈Y jobs, Y − 1 machines〉, Y ∈ {4, 5, . . . 8} (8.18)

Then we solve these instances using either JSPsolve to find regular schedules, or

super-JSPsolve-Γ to find (1, 1)-super-schedules satisfying the breakage and repair con-

straints described in Section 8.2.1.3. In order to solve an instance we used Algorithm 31,

182

minimise-makespan in both cases. We put a time cutoff of 30 seconds on each “dead-

line” JSP. When an instance of deadline JSP is not solved within the time cutoff, it

is considered as unsatisfiable for the algorithm minimise-makespan. Therefore, the

makespan eventually found is not necessarily optimal.

8.3.2.2 Experimental Results

Full Fault tolerance (URBCSP): In Figure 8.5, the number of backtracks

needed for MAC (fig. 8.5a) and super-MAC (fig. 8.5b) are plotted against the constraint

tightness and density. We can observe the typical phase transition behaviour easy/hard/easy.

Moreover, we observe that the threshold around which this transition occurs is shifted to

lower values of tightness for super-MAC. This was expected since a constraint network ac-

cepts strictly less (1, 0)-super-solutions than regular solutions. We can also observe that

the hardest instances for super-MAC require several orders of magnitude more backtracks

than the hardest CSP instances within this range of constraint networks.

MAC (backtracks)

0.2
0.3

0.4
0.5

0.6
0.7

0.8
tightness 0.15

0.2
0.25

0.3

density

 10

 100

 1000

 10000

(a) Number of backtracks for MAC

super-MAC (backtracks)

0.2
0.3

0.4
0.5

0.6
0.7

0.8
tightness 0.15

0.2
0.25

0.3

density

 10
 100

 1000
 10000

 100000
 1e+06

(b) Number of backtracks for super-MAC

Figure 8.5: Comparison between MAC and super-MAC on a range of URBCSP instances.

Weak Fault tolerance (URBCSP): Similarly, in Figure 8.6, the number of

backtracks needed for MAC (fig. 8.6a) and decompose-backtrack-Γ (fig. 8.6b) are plot-

ted against the constraint tightness and density. However, if decompose-backtrack-Γ

indeed has a phase transition phenomenon, this is not exactly the easy/hard/easy land-

scape we expected. In fact in the underconstrained region (low tightness and density),

183

some instance are exceptionally hard as observed for satisfiability problems in [Gent 94].

These instances are very loose, yet a wrong decision early in the search leads to an un-

satisfiable branch that needs to be refuted. It seems that this situation can happen

frequently on (a, b)-SuperCSPs, indeed, a wrong decision early in the search may pre-

vent an otherwise loose problem to not be (a, b)-repairable. However, it is interesting

to observe that the number of breakages checked by decompose-backtrack-Γ during

search, shown in Figure 8.7, is at its peak at the tightness threshold where the number

of unsatisfiable instances becomes larger than the number of satisfiable instances. Here

again, we observe that the hardest instances for decompose-backtrack-Γ require sev-

eral orders of magnitude more backtracks than the hardest CSP instances within this

range of constraint networks.

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

tightness

0.25

0.2

0.15
density

 1

 10

 100

backtracks

(a) MAC: number of backtracks

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

tightness

0.25

0.2

0.15
density

 1
 10

 100
 1000

 10000
 100000

backtracks

(b) decompose-backtrack-Γ: number of back-
tracks

Figure 8.6: Comparison between MAC and decompose-backtrack-Γ on a range of UR-

BCSP instances.

Weak Fault tolerance (JSP): We report the cpu-time in Figure 8.8, number

of backtracks in Figure 8.9 and minimum makespan in Figure 8.22. Whereas JSPsolve

is able to solve all instances to optimality, super-JSPsolve-Γ scales badly. On the

largest instances (8 jobs, 8 machines), super-JSPsolve-Γ takes about 11 times more

time to find an optimal (1, 1)-super-solution than JSPsolve for finding a solution. On

instances with more jobs than machines, the difference is even greater, up to a factor

37. However, the discrepancy is not as marked as in random binary problems. In fact,

184

0.8
0.7

0.6
0.5

0.4
0.3

0.2
0.1

tightness

0.25

0.2

0.15
density

 1
 10

 100
 1000

 10000
 100000

breakages checked

Figure 8.7: decompose-backtrack-Γ: number of breakages checked.

approximately half of the instances with 8 jobs and 8 machines were solved to optimality

by super-JSPsolve-Γ within the 30 seconds cutoff, i.e., the solutions returned were

the (1, 1)-super-solutions with the shortest possible makespan. We believe that this

relatively good result, compared to the random binary case, is due to the fact that

breakages on variables that are not already assigned can be checked for repairability.

This extra pruning, added to the fact that singleton consistency and the Edge Finder

procedure is applied also when preprocessing a sub-problem, greatly reduces the search

effort.

 0

 5

 10

 15

 20

 25

 30

8x87x76x65x54x4

cp
u

tim
e

(s
ec

on
ds

)

problem size

super-JSPSolve-Γ
JSPsolve

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

8x77x66x55x44x3

problem size

super-JSPSolve-Γ
JSPsolve

Figure 8.8: Comparison between JSP and (1, 1)-SuperJSP (cpu-time).

185

 0

 100

 200

 300

 400

 500

 600

8x87x76x65x54x4

ba
ck

tr
ac

ks

problem size

super-JSPSolve-Γ
JSPsolve

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

8x77x66x55x44x3

problem size

super-JSPSolve-Γ
JSPsolve

Figure 8.9: Comparison between JSP and (1, 1)-SuperJSP (backtracks).

8.4 Algorithms Comparison:

8.4.1 Algorithms for (1, 0)-SuperCSP

We compare the four methods described in Chapter 4 on random binary CSPs.

8.4.1.1 Experimental Setting

We compare MAC(P × P), super-MAC MAC(P + P) and MAC+ on problem instances

at the phase transition. The phase transition was located by iteratively solving samples

with increasing constraint tightness and all other parameters fixed. When less than half

of the instances within a sample admit a (1, 0)-super-solution, we fix the tightness to

the current value. We used the following two classes of URBCSP:

〈n = 50, d = 15, m = 100, t = 0.506, a = 1, b = 0, k = 50〉 (8.19)

〈n = 100, d = 6, m = 250, t = 0.277, a = 1, b = 0, k = 100〉 (8.20)

Then. for each class, a sample of 100 instances is generated and solved with every

algorithm. We use a time cutoff of 3000 seconds for solving a single instance.

8.4.1.2 Experimental Results

We report the average cpu-time and number of backtracks for solving the instances

in samples 8.19 and 8.20 for every algorithm in table 8.1. Since for MAC+ and MAC(P +

186

P) not all instances could be solved within the time cutoff, we report the number of

instances that could not be solved. The best results are in bold font.

MAC+ MAC(P + P) MAC(P × P) super-MAC

〈n = 50, d = 15, m = 100, t = 0.5, a = 1, b = 0, k = 50〉

cpu-time (s) 788 43 53 1.8
backtracks 152601000 111836 192 2047

time out (3000 s) 12 0 0 0

〈n = 100, d = 6, m = 250, t = 0.27, a = 1, b = 0, k = 100〉

cpu-time (s) 2257 430 3.5 1.2
backtracks 173134000 3786860 619 6487

time out (3000 s) 66 7 0 0

Table 8.1: Comparison of full fault tolerance algorithms.

We observe that the empirical results agree with the theoretical comparison on

the filtering power of these four algorithms. The strongest algorithm, i.e., the algorithm

requiring the smallest search tree, is MAC(P×P) followed by super-MAC, MAC(P +P) and

MAC+ in this order. The results on cpu-time also are in line with the theoretical analysis,

since MAC(P × P) has a higher worst case time complexity than all other methods. In

fact the most surprising result is how much MAC(P + P) outperforms MAC+ in terms

of backtracks, hence in cpu-time on relatively big instances. In conclusion, super-MAC

outperforms all other algorithms as soon as the size of the problem increases.

8.4.2 Algorithms for (a, b)-SuperCSP

In this section we compare the naive version of decompose-backtrack to the

version using the inference method based on neighbourhood described in Chapter 5

(decompose-backtrack-Γ).

8.4.2.1 Experimental Setting

We use both URBCSP and JSP instances to assess the improvement gained

by using the inference method based on equality constraints and the neighbourhood

relation in the constraint graph.

187

Uniform Random CSPs We compare the algorithms decompose-backtrack

and decompose-backtrack-Γ for finding (1, 1)-super-solutions on URBCSP instances.

Since the peak of difficulty is less clearly centred on the satisfiable/unsatisfiable thresh-

old for these algorithms, we solve instances on a range of constraint tightness values

instead of only one class of instances at the phase transition. We used the following two

classes of URBCSP:

〈n = 50, d = 10, m = 75, t = [0.2..0.9], a = 1, b = 1, k = 20〉 (8.21)

〈n = 50, d = 10, m = 125, t = [0.2..0.9], a = 1, b = 1, k = 20〉 (8.22)

Then. for each class, and for each value of tightness between 0.2 and 0.9 with

an increment of 0.02, a sample of 100 instances is generated and solved with both

algorithms. We use a time cutoff of 600 seconds.

JSP We use the same JSP the samples 8.17 and 8.18 used in Section 8.3.2.1.

However we solve these instances using super-JSPsolve, i.e., without the inference

method.

We also compare super-JSPsolve with super-JSPsolve-Γ for finding (1, 3)-super-solutions,

in order to evaluate the impact of the size of repairs on the performance of the algo-

rithms. The instances generated for this case are slightly smaller. We do not show the

results for the 8 × 7 and 8 × 8 instances since both methods almost always timed out

within the 30 seconds cutoff.

8.4.2.2 Experimental Results

Uniform Random CSPs In figure 8.10 and 8.11 we plot, across the different

values of constraint tightness for which samples were generated and solved, the following

values:

• decompose-backtrack: The number of backtracks or the cpu-time needed to

find a super-solution of the given class of constraint network without using the

neighbourhood-based inference.

• decompose-backtrack-Γ: The number of backtracks or the cpu-time needed to

find a super-solution of the given class of constraint network when using the

188

neighbourhood-based inference.

 0

 50

 100

 150

 200

 250

0.90.80.70.60.50.40.30.2

cp
u

tim
e

(s
)

constraint tightness

decompose-backtrack
decompose-backtrack-Γ

(a) cpu-time (seconds)

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

0.90.80.70.60.50.40.30.2

ba
ck

tr
ac

ks

constraint tightness

decompose-backtrack
decompose-backtrack-Γ

(b) backtracks

Figure 8.10: Neighbourhood-based inference: 75 constraints.

 0

 50

 100

 150

 200

 250

 300

0.90.80.70.60.50.40.30.2

cp
u

tim
e

(s
)

constraint tightness

decompose-backtrack
decompose-backtrack-Γ

(a) cpu-time (seconds)

 0

 20000

 40000

 60000

 80000

 100000

 120000

0.90.80.70.60.50.40.30.2

ba
ck

tr
ac

ks

constraint tightness

decompose-backtrack
decompose-backtrack-Γ

(b) backtracks

Figure 8.11: Neighbourhood-based inference: 125 constraints.

Clearly, decompose-backtrack-Γ dominates decompose-backtrack both in the

size of the search tree and in cpu-time. We observe that the highest peak of compu-

tational complexity is not where the phase transition phenomenon usually takes place.

The threshold between mostly unsatisfiable and mostly satisfiable instances is at re-

spectively 0.62 and 0.48 of constraint tightness for the sample of 75 constraints and 125

instances. On the curve standing for the decompose-backtrack-Γ we can see that this

189

 0

 10

 20

 30

 40

 50

 60

 70

8x87x76x65x54x4

cp
u

tim
e

(s
ec

on
ds

)

problem size

super-JSPSolve
super-JSPSolve-Γ

JSPsolve

 0

 20

 40

 60

 80

 100

 120

 140

8x77x66x55x44x3

problem size

super-JSPSolve
super-JSPSolve-Γ

JSPsolve

Figure 8.12: (1, 1)-SuperJSP: CPU Time (seconds)

correspond to a second peak in computational complexity, slightly lower than the first

peak, due to the “exceptionally hard instances” phenomenon. The first peak for the

brute-force algorithm is comparatively not as important, however, this is due to the time

cutoff that we imposed. Since the first peak is due to a few instances with very large

search tree among numerous very easy instances, this phenomenon is not as visible as it

should be because of the time cutoff. At the phase transition, however, the difficulty is

more homogeneous, and even if the time cutoff also favours the brute-force method in

these results, the curve is more indicative of the real gain in using the inference based

on equality constraints and neighbourhood.

JSP In figure 8.12, 8.13 and 8.14 we respectively report the cpu-time, num-

ber of backtracks and minimum makespan found, across the different problem sizes

for which samples were generated and solved for JSPsolve, super-JSPsolve-Γ and

super-JSPsolve.

We observe that here again, the inference based on neighbourhood and equality

constraints represents a significant improvement over the brute-force method. The time

cutoff that we put on the resolution of each deadline problem is quite low. Indeed,

many deadline problems may need to be solved in order to optimise the makespan.

Therefore the gain of the inference method is best seen in the makespan graph (Fig-

ure 8.14). With both super-JSPsolve and super-JSPsolve-Γ algorithms we search for

(1, 1)-super-schedules with minimal makespan. The length of the minimal makespan is

thus the same in both cases, however, since super-JSPsolve is often not able to solve a

given deadline problem within the 30 seconds limit, super-JSPsolve-Γ produces better

190

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

8x87x76x65x54x4

ba
ck

tr
ac

ks

problem size

super-JSPSolve
super-JSPSolve-Γ

JSPsolve

 0

 2000

 4000

 6000

 8000

 10000

 12000

8x77x66x55x44x3

problem size

super-JSPSolve
super-JSPSolve-Γ

JSPsolve

Figure 8.13: (1, 1)-SuperJSP: Backtracks

 150

 200

 250

 300

 350

 400

 450

8x87x76x65x54x4

m
ak

es
pa

n

problem size

super-JSPSolve
super-JSPSolve-Γ

JSPsolve

 150

 200

 250

 300

 350

 400

8x77x66x55x44x3

problem size

super-JSPSolve
super-JSPSolve-Γ

JSPsolve

Figure 8.14: (1, 1)-SuperJSP: Makespan Length

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

7x76x65x54x4

cp
u

tim
e

(s
ec

on
ds

)

problem size

super-JSPSolve
super-JSPSolve-Γ

regular JSP

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

7x66x55x44x3

problem size

super-JSPSolve
super-JSPSolve-Γ

regular JSP

Figure 8.15: (1, 3)-SuperJSP: Cpu-time (seconds)

191

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

7x76x65x54x4

ba
ck

tr
ac

ks

problem size

super-JSPSolve
super-JSPSolve-Γ

regular JSP

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

7x66x55x44x3

problem size

super-JSPSolve
super-JSPSolve-Γ

regular JSP

Figure 8.16: (1, 3)-SuperJSP: Backtracks

 150

 200

 250

 300

 350

 400

7x76x65x54x4

m
ak

es
pa

n

problem size

super-JSPSolve
super-JSPSolve-Γ

regular JSP

 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340
 360

7x66x55x44x3

problem size

super-JSPSolve
super-JSPSolve-Γ

regular JSP

Figure 8.17: (1, 3)-SuperJSP: Makespan Length

192

schedules. The decrease in the number of backtracks (fig. 8.13) after a given size, is

due to the time cutoff. The computational complexity of an inference step increases

with the problem size, since the time cutoff is constant, the number of inference steps

that can be done while solving a single problem decreases. Hence, as more and more

resolutions go past the time cutoff, the average size of the search tree, hence the number

of backtracks decreases.

The behaviour of super-JSPsolve and super-JSPsolve-Γ for finding (1, 3)-super-schedules

with minimal makespan is similar, i.e., super-JSPsolve-Γ performs better. However, we

observe that the difference is less marked. In fact since we look at a neighbourhood of

size 3 instead of 1 it is not surprising that the inference is weaker.

8.5 Optimisation and Application:

Our purpose is twofold. First, we want to assess the gain from the inference

method extended to the optimisation setting, i.e., that super-JSPsolvemax-Γ performs

better than super-JSPsolvemax. Second, we want to quantify the tradeoff between time

and robustness, that is, how fast can we improve the repairability of a solution. In the

same line, we also want to evaluate the tradeoff between optimality and robustness, that

is, how much decreasing the quality of a solution helps increasing its robustness.

8.5.1 Algorithms for (a, b)-MaxRepairCSP

We compare super-JSPsolvemax-Γ and super-JSPsolvemax on a range of jobshop

scheduling problems.

8.5.1.1 Experimental Setting

We generated 4 samples of 250 instances of jobshob scheduling problems:

〈8 jobs, 5 machines (40 activities)〉 (8.23)

〈8 jobs, 8 machines (64 activities)〉 (8.24)

〈10 jobs, 5 machines (50 activities)〉 (8.25)

〈10 jobs, 10 machines (100 activities)〉 (8.26)

193

Every instance is first solved to optimality using JSPsolve. Then we create the

deadline JSP by fixing the maximum makespan to 1.02 times the optimal makespan

found by JSPsolve, i.e., the “tolerated” makespan is 2% longer than the minimum

makespan. This deadline problem is passed to the procedures super-JSPsolvemax and

super-JSPsolvemax-Γ for finding solutions with increasing (1, 1)-repairability. The time

cutoff is set so that in most cases no improvement occurs after this limit. The sample 8.23

was solved with a cutoff of 30 seconds, samples 8.24 and 8.25 with a 60 seconds cutoff

and finally sample 8.26 with a 120 seconds cutoff. The same instance is passed again

as argument of super-JSPsolvemax and super-JSPsolvemax-Γ, however, to maximise

(1, 2)-repairability. In this case the cutoff was set to 60 seconds for samples 8.23 and

8.24 and 120 seconds for samples 8.25 and 8.26.

8.5.1.2 Experimental Results

In figure 8.18 to 8.21, we plot the average number of repairable variables over the

instances of one class across cpu-time. More formally, for one or the other algorithm, let

St be the set of solutions found at time t. This is by definition a sequence of solutions

with increasing (1, 1)-repairability or (1, 2)-repairability. We define the monotonically

increasing function rep(t) that associates to every time point t, the (a, b)-repairability of

the best (or last) solution found so far on a given instance, where a = 1 and b ∈ {1, 2}.

rep(t) =







0 if St = ∅

max{(a, b)−repairability(f) | f ∈ St} otherwise
(8.27)

The curves plotted in Figure 8.18 stand for the average value of rep(t) over all in-

stances in sample 8.23. The left hand side graph is for (1, 1)-repairability whilst the

right hand side is for (1, 2)-repairability. One curve is plotted for each algorithm, i.e.,

super-JSPsolvemax and super-JSPsolvemax-Γ. Similarly, Figure 8.19 shows the aver-

age of rep(t) over sample 8.24, Figure 8.20 stands for sample 8.24 and Figure 8.21 for

sample 8.26.

We observe that the algorithm using the neighbourhood-based inference, that is,

super-JSPsolvemax-Γ, performs better than the brute-force algorithm super-JSPsolvemax.

The procedure super-JSPsolvemax is clearly sub-optimal, that is, solutions with better

repairability exist and super-JSPsolvemax does not converge quickly to these solutions

194

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu-time (s)

super-JSPsolve
super-JSPsolve-Γ

(a) 8 Jobs, 5 Machines, b = 1

 0

 5

 10

 15

 20

 25

 30

 0.01 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu-time (s)

super-JSPsolve
super-JSPsolve-Γ

(b) 8 Jobs, 5 Machines, b = 2

Figure 8.18: The average repairability over time (8 jobs, 5 machines, 40 activities).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.01 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu-time (s)

super-JSPsolve
super-JSPsolve-Γ

(a) 8 Jobs, 8 Machines, b = 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.01 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu-time (s)

super-JSPsolve
super-JSPsolve-Γ

(b) 8 Jobs, 8 Machines, b = 2

Figure 8.19: The average repairability over time (8 jobs, 8 machines, 64 activities).

195

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu-time (s)

super-JSPsolve
super-JSPsolve-Γ

(a) 10 Jobs, 5 Machines, b = 1

 0

 5

 10

 15

 20

 25

 30

 35

 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu-time (s)

super-JSPsolve
super-JSPsolve-Γ

(b) 10 Jobs, 5 Machines, b = 2

Figure 8.20: The average repairability over time (10 jobs, 5 machines, 50 activities).

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu-time (s)

super-JSPsolve
super-JSPsolve-Γ

(a) 10 Jobs, 10 Machines, b = 1

 0

 10

 20

 30

 40

 50

 60

 70

 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu-time (s)

super-JSPsolve
super-JSPsolve-Γ

(b) 10 Jobs, 10 Machines, b = 2

Figure 8.21: The average repairability over time (10 jobs, 10 machines, 100 activities).

196

with higher repairability. The same could be true for super-JSPsolvemax-Γ, however

it is very difficult to assess as no other algorithm can be used for comparison. Never-

theless, these experiments show that the repairability of a solution can be increased by

a significant amount over a reasonable period of time. This is a good result since this

procedure does not affect the method used to produce the first solution, hence the com-

putational effort until the first solution is found. Then we can run super-JSPsolvemax-Γ

for as long as one is prepared to wait in order to increase repairability.

8.5.2 Tradeoff between Robustness and Optimality

We aim at quantifying the tradeoff between optimality and robustness. In or-

der to do so, we first compare the makespan of optimal schedules and optimal (1, 1)-

super-schedules. Then we compare the evolution of repairability over time when using

super-JSPsolvemax-Γ with different values of tolerated makespan increase, from no in-

crease at all to a 10% increase.

8.5.2.1 Experimental Setting

Trading Optimality for Repairability

We use the samples 8.17, defined in Section 8.3.2.1 for comparing JSPsolve to

super-JSPsolve-Γ on JSP instances, with the same cutoff (30 seconds). The average

makespan of schedules and (1, 1)-super-schedules are reported, and we look at the evo-

lution of the discrepancy over increasing problem sizes.

Trading Optimality for Partial Repairability

We use a similar setting as in Section 8.5.1.1. We use only one set of 250 instances

(sample 8.24 as defined in Section 8.5.1.1) and proceed in the same way. However, we

use only the algorithm super-JSPsolvemax-Γ, and repeat the process for different values

of makespan increase. Let mk be the optimal makespan, for a regular schedule, found

with the algorithm JSPsolve. We search for the solution with maximal repairability

of the instances in sample 8.24 with super-JSPsolvemax-Γ, where the the makespan is

restricted to mk + ∆(mk). We use the following values for ∆(mk): 0%, 2%, 6% and

10%.

197

problem JSPsolve super-JSPsolve
size average makespan average makespan ∆ makespan

4 × 4 176.848 182.566 0.032
5 × 5 225.561 232.898 0.032
6 × 6 268.7 277.99 0.034
7 × 7 316.23 330.18 0.044
8 × 8 354.45 377.61 0.065

Table 8.2: The makespan penalty for (1, 1)-super-schedules.

8.5.2.2 Experimental Results

Trading Optimality for Repairability

We give in table 8.2 and Figure 8.22 the average makespan found respectively by

JSPsolve and super-JSPsolve-Γ of the instances in samples 8.17.

 150

 200

 250

 300

 350

 400

8x87x76x65x54x4

m
ak

es
pa

n

problem size

super-JSPSolve-Γ
JSPsolve

 140
 160
 180
 200
 220
 240
 260
 280
 300
 320
 340
 360

8x77x66x55x44x3

problem size

super-JSPSolve-Γ
JSPsolve

Figure 8.22: The makespan penalty for (1, 1)-super-schedules.

We observe that the makespan discrepancy between solutions and (1, 1)-super-solutions

is constant (≃ 0.033) across small problems and then increases for larger instances. This

is in fact due to super-JSPsolve-Γ not being able to find the optimal (1, 1)-super-solution

within the time cutoff.

Trading Optimality for Partial Repairability In figure 8.23, we plot the

average number of repairable variables over the instances in sample 8.24 across cpu-time.

Each curve stands for one value of tolerated makespan increase in {0%, 2%, 6%, 10%}.

As expected, the maximum repairability increases along with the tolerated makespan.

However in some cases, better values of repairability are found faster for tighter makespan.

In fact this is explained by the fact that when we increase the tolerance on the makespan,

198

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 0.01 0.1 1 10 100

re
pa

ira
bi

lit
y

cpu time (s)

makespan +0%
makespan +2%
makespan +6%
makespan +10%

Figure 8.23: The tradeoff between (1, 1)-repairability and optimality.

199

the size of the search space increases dramatically. It is not rare, for 0 tolerance, i.e.,

when only solutions with optimal makespan are allowed, that super-JSPsolvemax-Γ was

able to find the optimal and prove optimality within the time limit. This is never the

case for large values of tolerance, since, intuitively, the problem is much more difficult.

If we focus on the curve corresponding to a tolerance of 10%, we observe a “stair” shape.

The first high gradient is due to the fact that the first solution and the surrounding first

few improving solutions are found very quickly since the problem is loosely constrained.

Then the next improvements of repairability are much harder to find as a large search

space needs to be explored.

8.6 Summary and Limitations

In this section we addressed three issues:

Phase Transition and Computational Complexity: We were interested

in empirically quantifying the computational complexity of finding super-solutions. We

showed that, with current algorithms, finding super-solutions, for any size of breakage

and repair, is considerably more difficult than finding regular solutions. This is true for

random binary problems as well as for the jobshop scheduling problem, even though the

difference is less significant for the latter.

We demonstrated that the problem of the existence of super-solutions has a phase

transition phenomenon. Moreover, we can extend the κ formula to locate it on random

binary CSPs. However, due to the relative inefficiency of the algorithms available to

us, some exceptionally hard instances, in the loosely constrained instances dominate

the computational complexity of this problem. The hardest instances, when b is strictly

positive, are not at the cross-over point between underconstrained and overconstrained

instances, but rather within the underconstrained region.

Algorithms Comparison: We were interested in evaluating the significance

of the various inference methods introduced in this dissertation. The best algorithm for

finding (1, 0)-super-solutions is super-MAC, as the theoretical comparison was suggesting.

The inference method for the algorithm decompose-backtrack-Γ consisting in identi-

fying equality constraints by using the neighbourhood relation and the preprocessing

of the constraint controlling the repairs bring a significant gain in efficiency. This gain

200

was clearly demonstrated for both random binary problems and the jobshop scheduling

problem. However, this methods becomes less and less significant when the value of b

increases.

Optimisation and Application: We demonstrated that super-JSPsolvemax-

Γ is an effective method to increase the robustness of a solution. We showed that the

repairability could be increased, for some jobshop scheduling instances, in a reason-

able amount of time, and without sacrificing too much schedule quality, i.e., without

significantly increasing its duration.

An empirical evaluation is by essence limited to the chosen testbenches, to the

chosen experimental designs and to the implementation among other things. Moreover

this set of experiments was limited by the fact that the framework is relatively new,

and that almost no references exist for comparison. This set of experiments could

be improved and extended in several dimensions. A richer variety of problems could

be explored and we could have had a closer look at some aspects of the algorithms.

However, there is one experimental question that we chose not to cover mainly because

we believe we need a real world application for doing so. The question is the extent of

the on-line benefit, with respect to the investment off-line when breakages occur while

executing. The “benefit” can be either in computational cost to compute an alternative

solution, or loss in optimality or in the amount of perturbation from the basic schedule

and the alternative.

Chapter 9

Conclusion and Future Work

In this dissertation, we generalised to constraint satisfaction and optimisation the

concept of fault tolerant solution, introduced by Roy et al. [Ginsberg 98, Roy 98] for

Boolean satisfiability. The motivation behind this framework is that stability, that is,

the property of having a close alternative in the case of a change, is a valuable property

in a number of applications. Fault tolerant solutions are stable, hence robust, since they

guarantee small repairs in response to small changes.

We analysed the computational complexity and proposed a number of algorithms

for finding fault tolerant solutions. We extended the framework and made it more

useful. Finally, we experimentally assessed the introduced algorithms. We showed that

we can effectively and efficiently use these algorithms to increase solution robustness

at the expense of a chosen increase in computational time and little, if any, decrease

in solution quality. We recall the evidences supporting our thesis and summarise the

contributions made in this dissertation in Section 9.1, then we discuss the limitations

of our work in Section 9.2 before outlining some possible directions for future work in

Section 9.3 and concluding in Section 9.4.

9.1 Contributions

The thesis defended in this dissertation includes three main points. We first

claimed that the concept of fault tolerance could be extended in a number of directions

in order to provide robust solutions to constraint satisfaction and optimisation problems.

We then claimed that finding fault tolerant solutions was significantly more difficult than

202

finding regular solutions. And finally, we claimed that efficient and effective algorithms

could be designed for that purpose. We go through these claims and measure the

progress made toward assessing them in this dissertation.

9.1.1 Extending the Framework

We extended the fault tolerance framework in a number of directions. First,

we generalised the definition of fault tolerant solutions to constraint satisfaction and

optimisation. Although both NP-complete, the constraint satisfaction problem is sig-

nificantly richer than the Boolean satisfiability problem, since more complex relations

and construct such as sets, multisets, or even functions and graphs can be expressed.

We defined the notion of existential and universal super-solution. Whereas the former

guarantees that any breakage of a given size accepts a repair, the latter ensures that all

the alternative assignments, here again for breakages of given size, are valid.

We defined the notion of fault tolerant solution within optimisation problems.

We extended the theoretical framework in this direction by studying the complexity

of several problems related to finding fault tolerant solutions while optimising their

objective value.

We extended the framework toward being more practically useful by introduc-

ing the concept of partial fault tolerance. In constraint satisfaction problems, when no

solution can be found, the constraints are often relaxed, and the solution with least

relaxation is searched. The same reasoning can be extended to maximising the robust-

ness of a solution. Being able to relax the robustness condition is valuable since fault

tolerant solutions do not always exist, and moreover, achieving robustness is often not

the primary goal. The notion of repairability, that is, the number of breakages admit-

ting a repair, seemed empirically particularly promising. We studied a Branch & Bound

procedure for improving the repairability of a solution, which is arguably the most prac-

tical aspect of this framework. We used the Jobshop Scheduling Problem to assess the

tradeoff between computational effort and robustness as well as solution quality against

robustness.

Last, we extended the framework by allowing more complex definition of breakages

and repairs. Often, on structured problems, a breakage can be more complex than the

203

simple loss of the current value for a variable. Similarly, the notion of allowed repair

may be more subtle than a simple count of discrepancies. We show that the general

algorithm, and its extension to repairability maximisation, can handle far more complex

models of robustness. In fact, any definition of breakage and repair that corresponds

to a constraint can be dealt with. We therefore introduced the concept of a constraint

for controlling the breakages, and a constraint for controlling the repairs. We showed

that if the constraint controlling the breakages is stronger than the set of disequalities

corresponding to the classical definition, and if the definition of a repair is unchanged,

then the inference methods introduced in this dissertation to deal with the regular

definition of super-solutions can be used soundly.

9.1.2 Computational Cost

Several pieces of evidence were put forward to show that the problem of finding

fault tolerant solutions is significantly more difficult than finding regular solutions.

First, we analysed the computational complexity of several problems related

to super-solutions. Besides the problem of the existence of existential or universal

super-solutions, we also covered the case of optimising the objective value of a super-solution

and optimising the repairability of a solution. When the parameter a is fixed, these prob-

lems are in the class NP (or NP optimisation) and therefore not harder, in the worst

case, than regular CSPs. However, we proved that for several well known tractable

classes of CSPs, finding fault tolerant solutions is NP-hard. We showed that the con-

verse may be true, that is, finding fault tolerant solutions may be easier than finding

regular solutions. However, no significant classes of constraint network have been shown

to have this property.

We then empirically investigated the increase in computational cost of finding

fault tolerant solutions over regular solutions on two classes of constraint problems.

Although these experiments actually compare the behaviour of algorithms and not di-

rectly intrinsic properties of the problems themselves, we believe that the large gap in

computational cost is a reflection of the difference in hardness to solve these problems

in practice.

204

9.1.3 Designing Algorithms

We introduced three solution methods for finding full fault tolerant solutions, that

is, solutions where no repair at all is allowed in response to a breakage. We showed that

full fault tolerant solutions can be characterised through a local consistency property, in

the same way that regular solutions can be defined as full assignments locally satisfying

every constraint. We defined two such local consistencies, and developed algorithms

upon them. We theoretically compared these algorithms with two reformulation meth-

ods, one of which was introduced in 98 by Weigel and Bliek [Weigel 98]. The strongest

consistency method is to apply arc consistency on a novel reformulation. However, it

comes at a higher worst case computational complexity. On the other hand, we intro-

duced an optimal closure algorithm with the same complexity as arc consistency, whilst

being stronger than all other methods. This theoretical analysis was then completed

and confirmed by an experimental comparison.

In the general case where the allowed repair size is strictly positive, it is no

longer easy to check the repairability of a solution locally. We introduced an algorithm

for the general case, where the size of the breakages and repairs are not fixed. This

algorithm backtracks in a classical search tree and the partial solution constructed in

this “master problem” represents the super-solution. At each node in the search tree,

and for each breakage, a “sub-problem” is created. This problem is such that a partial

solution of same size is in fact a repair. The main idea for pruning the search tree

is to identify variables that must be assigned equally in the master problem and in a

given sub-problem. Since at most a + b variables can differs in a repair, then at least

n− (a + b) must agree. Moreover, we consider the constraint graph, where nodes stand

for variables and edges for constraints. We show that in the solutions with minimal

change, the variables that are reassigned must form a connected sub-graph adjacent to

the breakage. Therefore, any variable, such that the minimal path linking this variable

to the breakage is longer than b, must be assigned equally. Then, we show that this

reasoning can be refined while preprocessing the constraint controlling the discrepancy

with the main solution. When, for a variable involved in an equality constraint, some

pruning occurs in the sub-problem while preprocessing, the same pruning can be done

in the master problem. This, in consequence, reduces the search space of the master

205

problem, hence the number of sub-problems that need be solved. The same reasoning,

based on equality constrains and the neighbourhood relation in the constraint graph,

can be used, with a slight adaptation, when solving partial fault tolerance problems.

This inference method was then empirically assessed.

Finally we showed that symmetry breaking can be used to help finding fault toler-

ant solutions. Symmetry is a concept both theoretically and practically very important.

It is particularly significant for a number of real-world applications, since symmetries

are common in these problems, and taking advantage of the symmetries of a problem

may dramatically reduce the computational cost. However, not all symmetries preserve

super-solutions. We showed that distributivity, that is, the fact that the conjunction of

two symmetric parts is equal to the symmetric image of the conjunction, is a sufficient

condition for preserving super-solutions.

9.2 Limitations

We discuss the limitations of our approach to uncertainty. A first significant

limitation is in the fact that we chose to tackle this problem from the perspective of

backtracking algorithms only. It may possibly be the case that local search algorithms or

algebraic approaches such as bucket elimination are better suited for tackling this prob-

lem. The best approach is likely to depend on the application domain. We summarise

the issues left open in this dissertation.

Complexity: Several questions remain open. For instance, the complexity

of finding (a, b)-super-solutions when a is not fixed, the complexity of finding (1, 1)-

super-solutions of constraint network with fixed treewidth, or the complexity of finding

(1, 0)-super-solutions and (1, 1)-super-solutions on constraint languages closed under a

majority operation are all open. Moreover, we proved NP-completeness for numerous

problems when the parameter a is equal to 1. However the complexity of the same

problems for higher values of a is not known.

Algorithms We restricted most of our analysis to algorithms for finding (1, 0)-

super-solutions or partial (1, 0)-super-solutions of binary constraint networks. Some

algorithms may be easily extended to non-binary constraints. However this is not

straightforward in particular for the notion of super-GAC and the P × P reformula-

206

tion. The main limitation of the general algorithm may be the fact that a large part of

the inference method checks earlier decisions. We have seen that when tightening the

definition of a breakage it is possible to check “future” breakages. Moreover, we have

seen empirically, that in our model for finding super-solutions for the jobshop scheduling

problem, where breakages were delays, that the ability to check future breakages seemed

indeed to reduce the computational cost for finding super-solutions.

Experiments In our experiments we tackled three issues. However, this left

many other legitimate questions unanswered. Arguably the most important ques-

tion that we did not address is whether spending more time off-line to compute a

super-solution really pays off when deploying it. This is in fact a very difficult question

to answer since many assumption need to be made. For instance, what is a typical

breakage for the chosen problem, and how frequently do they happen? How should the

various parameters (a, b, BS, RS, FS, Cbreak, Crepair, etc.) be set? How do we measure

the benefit when deploying the solution?

9.3 Future Work

We identify two general directions of research that we did not follow in this

dissertation and that could be addressed in future work.

Super Consistency for Large Arity Constraints: In Chapter 4, we briefly

investigated propagation algorithms for super-GAC on global constraints. However,

there are clearly many global constraints for which it would be interesting to come up

with an algorithm or an NP-completeness proof in this context. Moreover, for a, b ≥ 1,

the inference based on equality constraints and neighbourhood relation can be seen

as a general reasoning framework that could be applied to propagation algorithm for

global constraints for this problem. There are in fact similarities with extending global

constraints to soft global constraints.

Another direction of research is to extend super-consistencies (i.e., GAC+, super-GAC

and multiconsistency) to constraints of larger arity. Alternatively, these consistencies

could be extended in the same way (i, j)-consistency [Freuder 85] or relational consis-

tencies [Dechter 96] extend arc consistency.

Variables and Values Ordering: We did not addressed the problem of search

207

heuristics. In the experimental result chapter, we used respectively domain/degree and

Operation Resource Reliance as dynamic variable ordering for random binary and

jobshop scheduling instances. We used in both cases a lexicographic value ordering. In

fact, it is likely that the algorithm we introduced, although closely related to the MAC

algorithm, differs significantly enough so that a good heuristic for MAC is not necessarily

good for decompose-backtrack-Γ. We observed, when using the PCP model for the

jobshop scheduling problem, that decompose-backtrack-Γ was not responding well,

and we conjectured that it may be because the variables that can break and repair are

searched last. Branching on the most brittle variable first, or at least weighting the

heuristics so that brittleness is taken into account may be a first step toward a variable

ordering heuristic adapted to finding super-solutions.

9.4 Conclusion

The thesis defended in this dissertation is that:

The concept of fault tolerance can be extended in a number of directions
to provide robust solutions to constraint satisfaction and optimisation
problems. Finding fault tolerant solutions is significantly more difficult
than finding regular solutions. However, efficient and effective algo-
rithms can be designed for that purpose.

We extended the fault tolerance framework to constraint satisfaction and optimisation.

We also extended it by allowing richer definitions of breakages and repairs. Although the

worst case time complexity is not in general higher than that of the regular constraint

satisfaction problem our complexity analysis suggests that finding super-solutions is

significantly more difficult. Indeed, we proved, for several classes of constraint networks,

that deciding if a solution exists is tractable whilst deciding if a super-solution exists

is NP-complete. However, we developed a number of inference methods for finding

both full and weak fault tolerant solutions. Moreover, we extended these inference

methods to an effective and efficient Branch & Bound procedure to improve the stability,

or repairability, of a solution. This method empirically showed considerable promise.

Since the search takes as starting point any ordinary solution, it can be added without

overhead, and if we are prepared to wait longer, we can have a more robust solution.

Bibliography

[Backofen 99] R. Backofen & S. Will. Excluding Symmetries in Constraint-Based
Search. In Joxan Jaffar, editor, Proceedings of the 5th International
Conference on Principles and Practice of Constraint Programming
(CP-99), volume 1713 of Lecture Notes in Computer Science, pages
73–87, Alexandria, VA, USA, 1999. Springer-Verlag.

[Barták 03] R. Barták, T. Müller & H. Rudová. Minimal Perturbation Problem
- A Formal View. In Proceedings of the Joint Workshop of the
ERCIM Working Group on Constraints and of the CologNet area
on Constraint and Logic Programming, Budapest, Hungary, 2003.

[Bessiere 91] C. Bessiere. Arc-Consistency in Dynamic Constraint Satisfaction
Problems. In Thomas L. Dean & Kathleen McKrown, editors, Pro-
ceedings of the 9th National Conference on Artificial Intelligence
(AAAI-91), pages 221–226, Anaheim, CA, USA, 1991. AAAI Press
/ The MIT Press.

[Bessiere 96] C. Bessiere & J.C. Régin. MAC and Combined Heuristics: two
reasons to forsake FC (and CBJ?) on hard problems. In Eugene C.
Freuder, editor, Proceedings of the 2nd International Conference
on Principles and Practice of Constraint Programming (CP-96),
Lecture Notes in Computer Science, pages 61–75, Cambridge, MA,
USA, 1996. Springer-Verlag.

[Bessiere 97] C. Bessiere & J.C. Régin. Arc Consistency for General Constraint
Networks: preliminary results. In Martha E. Pollack, editor,
Proceedings of the 15th International Joint Conference on Artifi-
cial Intelligence (IJCAI-97), pages 398–404, Nagoya, Japan, 1997.
Morgan Kaufmann.

[Bessiere 03] C. Bessiere & P. van Hentenryck. To be or not to be...a global
constraint. In Francesca Rossi, editor, Proceedings of the 9th In-
ternational Conference on Principles and Practice of Constraint
Programming (CP-03), volume 2833 of Lecture Notes in Computer
Science, pages 789–794, Kinsale, Ireland, 2003. Springer-Verlag.

[Bessiere 05] C. Bessiere, J.C. Régin, R.H.C. Yap & Y. Zhang. An Optimal
Coarse-grained Arc Consistency Algorithm. Artificial Intelligence,
vol. 1656, no. 2, pages 165–185, 2005.

209

[Bistarelli 95] S. Bistarelli, U. Montanari & F. Rossi. Constraint Solving over
Semirings. In Chris S. Mellish, editor, Proceedings of the 14th
International Joint Conference on Artificial Intelligence (IJCAI-
95), pages 624–630, Montral, Canada, 1995. Morgan Kaufmann.

[Bistarelli 99] S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie &
H. Fargier. Semiring-Based CSPs and Valued CSPs: Framework,
Properties, and Comparison. Constraints, vol. 4, no. 3, pages 199–
240, 1999.

[Brown 88] C.A. Brown, L. Finkelstein & P.W. Purdom Jr. Backtrack
Searching in the Presence of Symmetry. In Proceedings of the
6th International Conference on Applied Algebra, Algebraic Algo-
rithms and Error-Correcting Codes (AAECC-88), pages 99–110,
Rome, Italy, 1988.

[Bulatov 02] A.A. Bulatov. A Dichotomy Theorem for Constraints on a
Three-element Set. In Proceedings of 43rd IEEE Symposium
on Foundations of Computer Science (FOCS-02), pages 649–658,
Vancouver, Canada, 2002.

[Carlier 94] J. Carlier & E. Pinson. Adjustment of Heads and Tails for the
Job-Shop Problem. European J ournal of Operational Research,
vol. 78, pages 146–161, 1994.

[Cheeseman 91] P. Cheeseman, B. Kanefsky & B.M. Taylor. Where the Really Hard
Problems Are. In John Mylopoulos & Raymond Reiter, editors,
Proceedings of the 12th International Joint Conference on Arti-
ficial Intelligence (IJCAI-91), pages 163–169, Sydney, Australia,
1991. Morgan Kaufmann.

[Cheng 94] C. Cheng & S.F. Smith. Generating Feasible Schedule under
Complex Metric Constraints. In Barbara Hayes-Roth & Richard E.
Korf, editors, Proceedings of the 12th National Conference on Arti-
ficial Intelligence (AAAI-94), volume 2, pages 1086–1091, Seattle,
WA, USA, 1994. AAAI Press.

[Cheng 95] C. Cheng & S.F. Smith. A Constraint-Posting Framework for
Scheduling Under Complex Constraints. In Proceedings of the
Joint IEEE/INRIA Conference on Emerging Technologies for Fac-
tory Automation, pages 269–280, Paris, France, 1995.

[Cohen 05] D. Cohen, P. Jeavons, C. Jefferson, K.E. Petrie & B.M. Smith.
Symmetry Definitions for Constraint Satisfaction Problems. Con-
straints, vol. 11, no. 2–3, pages 17–31, 2005.

[Cooper 94] M.C. Cooper, D.A. Cohen & P.G. Jeavons. Characterizing
Tractable Constraints. Artificial Intelligence, vol. 65, pages 347–
361, 1994.

[Crawford 96] J. Crawford, M. Ginsberg, E. Luks & A. Roy. Symmetry Breaking
Predicates for Search Problems. In Proceedings of the 5th Interna-
tional Conference on the Principles of Knowledge Representation

210

and Reasoning (KR-96), pages 148–159, Cambridge, MA, USA,
1996.

[Davenport 00] A.J. Davenport & C.J. Beck. A Survey of Techniques for
Scheduling with Uncertainty. (unpublished manuscript, available at
http://tidel.mie.utoronto.ca/publications.php), 2000.

[Debruyne 97] R. Debruyne & C. Bessiere. Some Practicable Filtering Techniques
for the Constraint Satisfaction Problem. In Martha E. Pollack,
editor, Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI-97), pages 412–417, Nagoya, Japan,
1997. Morgan Kaufmann.

[Dechter 88] A. Dechter & R. Dechter. Belief Maintenance in Dynamic
Constraint Networks. In Tom Mitchell & Reid Smith, editors, Pro-
ceedings of the 7th National Conference on Artificial Intelligence
(AAAI-88), pages 37–42, St Paul, MN, USA, 1988. AAAI Press /
The MIT Press.

[Dechter 96] R. Dechter & P. van Beek. Local and Global Relational
Consistency. Journal of Theoretical Computer Science, vol. 173,
no. 1, pages 283–308, 1996.

[Dubois 93] D. Dubois, H. Fargier & H. Prade. The Calculus of Fuzzy
Restrictions as a Basis for Flexible Constraint Satisfaction. In
Proceedings of the 2nd IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE-93), pages 1131–1136, San Francisco, CA,
USA, 1993. IEEE.

[Elbassioni 05] K. Elbassioni & I. Katriel. Multiconsistency and Robustness with
Global Constraints. In Roman Barták & Michela Milano, editors,
Proceedings of the 7th International Conference on Integration of
AI and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CPAIOR-05), volume 3524 of Lecture
Notes in Computer Science, pages 168–182, Prague, Czech Repub-
lic, 2005. Springer-Verlag.

[Emerson 93] E.A. Emerson & A.A. Sistla. Symmetry and Model Checking.
In Proceedings of the 5th International Conference on Computer
Aided Verification (CAV-93), pages 463–478, Berlin, Heidelberg,
1993.

[Fable 01] T. Fable, S. Schamberger & M. Sellmann. Symmetry Breaking. In
Toby Walsh, editor, Proceedings of the 7th International Confer-
ence on Principles and Practice of Constraint Programming (CP-
01), volume 2239 of Lecture Notes in Computer Science, pages
93–107, Paphos, Cyprus, 2001. Springer-Verlag.

[Faltings 02] B. Faltings & S. Macho-Gonzalez. Open Constraint Satisfaction.
In Toby Walsh, editor, Proceedings of the 8th International Confer-
ence on Principles and Practice of Constraint Programming (CP-
02), volume 2470 of Lecture Notes in Computer Science, pages
356–370, Ithaca, NY, USA, 2002. Springer-Verlag.

211

[Fargier 93] H. Fargier & J. Lang. Uncertainty in Constraint Satisfaction
Problems: a Probabilistic Approach. In Proceedings of the 2nd
European Conference on Symbolic and Quantitative Approaches to
Reasoning and Uncertainty, pages 97–104, Granada, Spain, 1993.

[Fargier 96] H. Fargier, J. Lang & T. Schiex. Mixed Constraint Satisfaction:
a Framework for Decision Problems under Incomplete Knowledge.
In William J. Clancey & Dan Weld, editors, Proceedings of the
13th National Conference on Artificial Intelligence and the Eighth
Conference on Innovative Applications of Artificial Intelligence
(AAAI-96 / IAAI-96), pages 175–180, Portland, OR, USA, 1996.
AAAI Press / The MIT Press.

[Flener 02] P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson
& T. Walsh. Breaking Row and Column Symmetries in Matrix
Models. In Pascal van Hentenryck, editor, Proceedings of the 8th
International Conference on Principles and Practice of Constraint
Programming (CP-02), volume 2470 of Lecture Notes in Computer
Science, pages 462–476, Ithaca, NY, USA, 2002. Springer-Verlag.

[Focacci 01] F. Focacci & M. Milano. Global Cut Framework for Removing
Symmetries. In Toby Walsh, editor, Proceedings of the 7th In-
ternational Conference on Principles and Practice of Constraint
Programming (CP-01), volume 2239 of Lecture Notes in Computer
Science, pages 77–92, Paphos, Cyprus, 2001. Springer-Verlag.

[Fowler 00] D.W. Fowler & K.N. Brown. Branching Constraint Satisfaction
Problems for Solutions Robust under Likely Changes. In Rina
Dechter, editor, Proceedings of the 6th International Conference
on Principles and Practice of Constraint Programming (CP-00),
volume 1894 of Lecture Notes in Computer Science, pages 500–
504, Singapore, 2000. Springer-Verlag.

[Fowler 03] D. Fowler & K. Brown. Branching Constraint Satisfaction
Problems and Markov Decision Problems Compared. Annals of
Operations Research, vol. 118, no. 1–4, pages 85–100, 2003.

[Fox 99] M. Fox & D. Long. The Detection and Exploitation of Symmetry
in Planning Problems. In Thomas Dean, editor, Proceedings of
the 16th International Joint Conference on Artificial Intelligence
(IJCAI-99), pages 956–961, Stockholm, Sweden, 1999. Morgan
Kaufmann.

[Freuder 82] E.C. Freuder. A Sufficient Condition for Backtrack-free Search.
Journal of the ACM, vol. 29, pages 24–32, 1982.

[Freuder 85] E.C. Freuder. A Sufficient Condition for Backtrack-bounded
Search. Journal of the ACM, vol. 32, pages 755–761, 1985.

[Freuder 89] E.C. Freuder. Partial Constraint Satisfaction. In N. S. Sridha-
ran, editor, Proceedings of the 11th International Joint Conference

212

on Artificial Intelligence (IJCAI-89), pages 278–283, Detroit, MI,
USA, 1989. Morgan Kaufmann.

[Freuder 91] E.C. Freuder. Eliminating Interchangeable Values in Constraint
Satisfaction Problems. In Thomas L. Dean & Kathleen McKrown,
editors, Proceedings of the 9th National Conference on Artificial
Intelligence (AAAI-91), pages 227–233, Anaheim, CA, USA, 1991.
AAAI Press / The MIT Press.

[Freuder 92] E.C. Freuder & R.J. Wallace. Partial Constraint Satisfaction. Ar-
tificial Intelligence, vol. 58, no. 1–3, pages 21–70, 1992.

[Frost 96] D. Frost, C. Bessiere, R. Dechter & J.C.
Régin. Random Uniform CSP Generator. URL:
http://www.lirmm.fr/-bessiere/generator.html, 1996.

[Gaschnig 74] J. Gaschnig. A Constraint Satisfaction Method for Inference
Making. In Proceedings of the 12th Annual Allerton Conference
on Circuit and System Theory, University of Illinois, Urbana-
Champaign, USA, 1974.

[Gaschnig 79] J. Gaschnig. Performance Measurement and Analysis of certain
Search Algorithms. PhD thesis, Carnegie-Mellon University, 1979.

[Gent 94] I.P. Gent & T. Walsh. Easy Problems are Sometimes Hard. Arti-
ficial Intelligence, vol. 70, pages 335–345, 1994.

[Gent 96a] I.P. Gent, E. MacIntyre, P. Prosser & T. Walsh. The
Constrainedness of Search. In William J. Clancey & Dan Weld, ed-
itors, Proceedings of the 13th National Conference on Artificial In-
telligence and the Eighth Conference on Innovative Applications of
Artificial Intelligence (AAAI-96 / IAAI-96), pages 246–252, Port-
land, OR, USA, 1996. AAAI Press / The MIT Press.

[Gent 96b] I.P. Gent & T. Walsh. The TSP Phase Transition. Artificial
Intelligence, vol. 88, no. 1–2, pages 349–358, 1996.

[Gent 02] I.P. Gent & B.M. Smith. Symmetry Breaking in Constraint
Programming. In Frank van Harmelen, editor, Proceedings of the
15th European Conference on Artificial Intelligence (ECAI-02),
pages 599–603, Lyons, France, 2002. IOS Press.

[Ginsberg 98] M. Ginsberg, A. Parkes & A. Roy. Supermodels and Robustness. In
Jack Mostow & Charles Rich, editors, Proceedings of the 15th Na-
tional Conference on Artificial Intelligence and the Tenth Confer-
ence on Innovative Applications of Artificial Intelligence (AAAI-
98 / IAAI-98), pages 334–339, Madison, WI, USA, 1998. AAAI
Press / The MIT Press.

[Gyssens 94] M. Gyssens, P.G. Jeavons & D.A. Cohen. Decomposing Constraint
Satisfaction Problems Using Database Techniques. Artificial In-
telligence, vol. 66, no. 1, pages 57–89, 1994.

213

[Hebrard 04] E. Hebrard, B. Hnich & T. Walsh. Robust Solutions for Constraint
Satisfaction and Optimization. In Ramon López de Mntaras &
Lorenza Saitta, editors, Proceedings of the 16th European Confer-
ence on Artificial Intelligence (ECAI-04), pages 186–190, Valencia,
Spain, 2004. IOS Press.

[Hebrard 05] E. Hebrard. halcsp, a simple and fast constraint solver. URL:
http://www.cse.unsw.edu.au/-ehebrard/codef.htm, 2005.

[Jeavons 97] P. Jeavons, D. Cohen & M. Gyssens. Closure Properties of
Constraints. Journal of the ACM, vol. 44, no. 4, pages 527–548,
1997.

[Karousis 93] L. Karousis. Fast Parallel Constraint Satisfaction. Artificial Intel-
ligence, vol. 64, pages 147–160, 1993.

[Kirkpatrick 94] S. Kirkpatrick & B. Selman. Critical Behavior in the Satisfiability
of Random Boolean Expressions. Science, vol. 264, pages 1297–
1301, 1994.

[Kiziltan 04] Z. Kiziltan. Symmetry Breaking Ordering Constraints. PhD thesis,
Uppsala University, 2004.

[Knuth 04] D. Knuth. The Art of Computer Programming:
Pre-Fascicle 3a: Generating all Combinations.
http://www-cs-faculty.stanford.edu/-knuth/fasc3a.ps.gz, 2004.

[Lamma 99] E. Lamma, P. Mello, M. Milano, R. Cucchiara, M. Gavanelli &
M. Piccardi. Constraint Propagation and Value Acquisition: Why
we should do it Interactively. In Thomas Dean, editor, Proceed-
ings of the 16th International Joint Conference on Artificial In-
telligence (IJCAI-99), pages 468–477, Stockholm, Sweden, 1999.
Morgan Kaufmann.

[Littman 01] M. Littman, S. Majercik & T. Pitassi. Stochastic Boolean
Satisfiability. Journal of Automated Reasoning, vol. 27, no. 3,
pages 251–296, 2001.

[Mackworth 77] A.K. Mackworth. Consistency in Networks of Relations. Artificial
Intelligence, vol. 8, no. 1, pages 99–118, 1977.

[Mackworth 85] A.K. Mackworth & E.C. Freuder. The Complexity of Some
Polynomial Network Consistency Algorithms for Constraint
Satisfaction Problems. Artificial Intelligence, vol. 25, no. 1, pages
65–74, 1985.

[Manandhar 03] S. Manandhar, A. Tarim & T. Walsh. Scenario-based Stochastic
Constraint Programming. In Georg Gottlob & Toby Walsh, ed-
itors, Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI-03), pages 257–262. Morgan Kauf-
mann, 2003.

214

[Martin 96] D. Martin & P. Shmoys. A Time-based Approach to the Job-Shop
Problem. In Proceedings of the 5th International Conference on
Integer Programming and Combinatorial Optimization (IPCO-96),
Vancouver, Canada, 1996. Springer-Verlag.

[Miguel 01] I. Miguel. Dynamic Flexible Constraint Satisfaction and Its
Application to AI Planning. PhD thesis, University of Edinburgh,
2001.

[Miguel 03] I. Miguel & Q. Shen. Fuzzy rrDFCSP and Planning. Artificial
Intelligence, vol. 148, no. 1–2, pages 11–52, 2003.

[Mitchell 92] D. Mitchell, B. Selman & H. Lavesque. Hard and Easy Distribution
of SAT Problems. In Paul Rosenbloom & Peter Szolovits, editors,
Proceedings of the 10th National Conference on Artificial Intelli-
gence (AAAI-92), pages 459–465, Menlo Park, CA, USA, 1992.
AAAI Press / The MIT Press.

[Mohr 86] R. Mohr & T.C. Henderson. Arc and Path Consistency Revisited.
Artificial Intelligence, vol. 28, pages 225–233, 1986.

[Montanari 91] U. Montanari & F. Rossi. Constraint Relaxation may be Perfect.
Artificial Intelligence, vol. 48, no. 2, pages 143–170, 1991.

[Nuijten 94a] W. Nuijten. Time and Resource Constraint Scheduling: A
Constraint Satisfaction Approach. PhD thesis, Eindhoven Uni-
versity of Technology, 1994.

[Nuijten 94b] W.P.M. Nuijten & E.H.L. Aarts. Constraint Satisfaction for
Multiple Capacitated Job Shop Scheduling. In Anthony G. Cohn,
editor, Proceedings of the 11th European Conference on Artificial
Intelligence (ECAI-94), pages 635–639, Amsterdam, The Nether-
lands, 1994. John Wiley and Sons, Chichester.

[Papadimitriou 94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[Prosser 94] P. Prosser. Binary Constraint Satisfaction Problems: some are
harder than others. In Anthony G. Cohn, editor, Proceedings of
the 11th European Conference on Artificial Intelligence (ECAI-94),
pages 95–99, Amsterdam, The Netherlands, 1994. John Wiley and
Sons, Chichester.

[Prosser 96] P. Prosser. An Empirical Study of the Phase Transition in Binary
Constraint Satisfaction Problems. Artificial Intelligence, vol. 81,
pages 81–109, 1996.

[Prosser 00] P. Prosser, K. Stergiou & T. Walsh. Singleton Consistencies. In
Rina Dechter, editor, Proceedings of the 6th International Confer-
ence on Principles and Practice of Constraint Programming (CP-
00), volume 1894 of Lecture Notes in Computer Science, pages
353–368, Singapore, 2000. Springer-Verlag.

215

[Puget 93] J.F. Puget. On the Satisfiability of Symmetrical Constrained
Satisfaction Problems. In Proceedings of the 7th International
Symposium on Methodologies for Intelligent Systems (ISMIS-93),
pages 350–361, Trondheim, Norway, 1993.

[Ran 02] Y. Ran, N. Roos & J. van den Herik. Approaches to Find a
Near-minimal Change Solution for Dynamic CSPs. In Narendra
Jussien & François Laburthe, editors, Proceedings of the 4th In-
ternational Conference on Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Prob-
lems (CPAIOR-02), Le Croisic, France, 2002.

[Régin 94] J.C. Régin. A Filtering Algorithm for Constraints of Difference in
CSPs. In Barbara Hayes-Roth & Richard E. Korf, editors, Pro-
ceedings of the 12th National Conference on Artificial Intelligence
(AAAI-94), pages 362–367, Seattle, WA, USA, 1994. AAAI Press.

[Régin 96] J.C. Régin. Generalized Arc Consistency for Global Cardinality
Constraint. In William J. Clancey & Dan Weld, editors, Proceed-
ings of the 13th National Conference on Artificial Intelligence and
the Eighth Conference on Innovative Applications of Artificial In-
telligence (AAAI-96 / IAAI-96), pages 209–215(2), Proceedings
of the 13th National Conference on Artificial Intelligence and the
Eighth Conference on Innovative Applications of Artificial Intelli-
gence (AAAI-96 / IAAI-96), 1996. AAAI Press / The MIT Press.

[Roy 98] A. Roy. Symmetry Breaking and Fault Tolerance in Boolean
Satisfiability. PhD thesis, University of Oregon, 1998.

[Roy 06] A. Roy. Fault Tolerant Boolean Satisfiability. to appear in the
Journal of Artificial Intelligence Research, 2006.

[Sadeh 96] N. Sadeh & M.S. Fox. Variable and Value Ordering Heuristics for
the Job-Shop Scheduling Constraint Satisfaction Problem. Artifi-
cial Intelligence, vol. 86, no. 1, pages 1–41, September 1996.

[Sakkout 98] H. El Sakkout, T. Richards & M. Wallace. Minimal Perturbance
in Dynamic Scheduling. In Henri Prade, editor, Proceedings of
the 13th European Conference on Artificial Intelligence (ECAI-
98), pages 504–508, Brighton, UK, 1998. John Wiley and Sons,
Chichester.

[Sakkout 00] H. El Sakkout & M. Wallace. Probe Backtrack Search for Minimal
Perturbation in Dynamic Scheduling. Constraints, vol. 5, no. 4,
2000.

[Schaefer 78] T.J. Schaefer. The Complexity of Satisfiability Problems. In Con-
ference Record of the 10th Annual ACM Symposium on Theory of
Computing, pages 213–226, San Diego, CA, 1978. ACM Press.

[Schiex 92] T. Schiex. Possibilistic Constraint Satisfaction Problems or ”How
to Handle Soft Constraints?”. In Proceedings of the Eighth Annual

216

Conference on Uncertainty in Artificial Intelligence, pages 268–
275, Stanford, CA, 1992.

[Schiex 94] T. Schiex & G. Verfaillie. Nogood Recording for Static and
Dynamic Constraint Satisfaction Problems. IJAIT, vol. 3, no. 2,
pages 187–207, 1994.

[Schiex 95] T. Schiex, H. Fargier & G. Verfaillie. Valued Constraint
Satisfaction Problems : Hard and Easy Problems. In Chris S.
Mellish, editor, Proceedings of the 14th International Joint Con-
ference on Artificial Intelligence (IJCAI-95), pages 631–637, Mon-
tral, Canada, 1995. Morgan Kaufmann.

[Schneider 96] L. Schneider, J. Froschhammer, C. Morgenstern, T. Huslain &
J.M. Singer. Searching for Backbones - an efficient parallel
algorithm for the travelling salesman problem. Computer Physics
Communications, vol. 96, pages 173–188, 1996.

[Smith 93] S.F. Smith & C. Cheng. Slack-Based Heuristics for Constraint
Satisfaction Scheduling. In Richard Fikes & Wendy Lehnert, edi-
tors, Proceedings of the 11th National Conference on Artificial In-
telligence (AAAI-93), volume 2, pages 139–144, Washington D.C.,
USA, 1993. AAAI Press / The MIT Press.

[Smith 94] B. Smith. Phase Transition and the Mushy Region in Constraint
Satisfaction Problems. In Anthony G. Cohn, editor, Proceedings of
the 11th European Conference on Artificial Intelligence (ECAI-94),
pages 100–104, Amsterdam, The Netherlands, 1994. John Wiley
and Sons, Chichester.

[Smith 96] B. Smith & S. Dyer. Locating the Phase Transition in Binary
Constraint Satisfaction Problems. Artificial Intelligence, vol. 81,
pages 155–181, 1996.

[Taillard 93] E. D. Taillard. Benchmarks for Basic Scheduling Problems. Eu-
ropean Journal of Operational Research, vol. 64, pages 278–285,
1993.

[van Beek 92] P. van Beek. On the Minimality and Decomposability of
Row-Convex Constraint Networks. In Paul Rosenbloom & Pe-
ter Szolovits, editors, Proceedings of the 10th National Conference
on Artificial Intelligence (AAAI-92), pages 447–452, Menlo Park,
CA, USA, 1992. AAAI Press / The MIT Press.

[van Beek 94] P. van Beek. csplib, library of routines for
solving binary constraint satisfaction problems. URL:
http://ai.uwaterloo.ca/-vanbeek/software/software.html, 1994.

[van Hentenryck 92] P. van Hentenryck, P. Deville & Y. Teng. A Generic
Arc-Consistency Algorithm and its Specializations. Artificial In-
telligence, vol. 57, pages 291–321, 1992.

217

[Verfaillie 94] G. Verfaillie & T. Schiex. Solution Reuse in Dynamic Constraint
Satisfaction Problems. In Barbara Hayes-Roth & Richard E. Korf,
editors, Proceedings of the 12th National Conference on Artificial
Intelligence (AAAI-94), pages 307–312, Seattle, WA, USA, 1994.
AAAI Press.

[Verfaillie 05] G. Verfaillie & N. Jussien. Constraint Solving in Uncertain and
Dynamic Environments – a survey. Constraints, vol. 10, no. 3,
pages 253–281, 2005.

[Vilim 04] P. Vilim. O(n log n) Filtering Algorithms for Unary Resource
Constraint. In Jean-Charles Régin & Michel Rueher, editors, Pro-
ceedings of the 6th International Conference on Integration of AI
and OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems (CPAIOR-04), volume 3011 of Lecture
Notes in Computer Science, pages 319–334, Nice, France, 2004.
Springer-Verlag.

[Walsh 02] T. Walsh. Stochastic Constraint Programming. In Frank van
Harmelen, editor, Proceedings of the 15th European Conference on
Artificial Intelligence (ECAI-02), pages 111–115. IOS Press, 2002.

[Waltz 75] D.L. Waltz. Understanding line drawing of scenes with shadows. In
The Psychology of Computer Vision, ed P. Winston, pages 19–91,
1975.

[Watson 99] J.P. Watson, L. Barbulescu, A.E. Howe & L.D. Whitley.
Algorithms Performance and Problem Structure for Flow-Shop
Scheduling. In Jim Hendler & Devika Subramanian, editors, Pro-
ceedings of the 16th National Conference on Artificial Intelligence
and the Eleventh Conference on Innovative Applications of Arti-
ficial Intelligence (AAAI-99 / IAAI-99), pages 688–695, Orlando,
FL, USA, 1999. AAAI Press / The MIT Press.

[Weigel 98] R. Weigel & C. Bliek. On Reformulation of Constraint Satisfaction
Problems. In Henri Prade, editor, Proceedings of the 13th European
Conference on Artificial Intelligence (ECAI-98), pages 254–258,
Brighton, UK, 1998. John Wiley and Sons, Chichester.

[Williams 94] C. Williams & T. Hogg. Exploiting the Deep Structure of
Constraint Problems. Artificial Intelligence, vol. 70, pages 73–117,
1994.

