
Republic of Tunisia

Ministry of Higher Education and Scientific Research

University of Sfax

National Engineering School of Sfax

New solving methods for

constrained optimization

problems

by

Amine Lamine

PhD Thesis

In Computer System Engineering

Supervised by

Prof. Dr. Habib Chabchoub

Prof. Dr. Brahim Hnich

Dr. Mahdi Khemakhem

Academic year

2016-2017

https://www.linkedin.com/in/aminelamine

Acknowledgements

First and foremost, I would like to express my best thanks to everyone who con-

tributed to my personal and professional development before and during my whole

Ph.D. studies.

I would, first of all, like to express the sincerest thanks to my supervisor Professor

Habib Chabchoub. I’m most of obliged to him for giving me an opportunity to

work within his team. It was a great experience for me. Thank you for your

encouragement, support, and guidance.

I would also like to thank my co-supervisor Doctor Mahdi Khemakhem, for always

being very helpful since my B.A.; especially for guiding my research to this topic,

providing important information from OR and CP fields, helping me write my

thesis and publish my papers and reviewing them several times. I would have

never been able to complete this thesis without his patient and guidance. I am

really grateful to him and I would like to thank him for all precious time that he has

devoted to this thesis and all supports during stressful moments of discouragement.

I also wish to express my gratitude to my external collaborator Professor Brahim

Hnich, for always being very helpful during my stay at the Izmir University of

Economics. From my point of view, he did one of the most influential works in

constraint programming. Thank you Brahim for all your helpful advice during my

research visit. Thanks for many useful discussions, explaining many matters to

me, support, significant help in the methodology of writing a paper, and last and

not least your friendship.

Eventually, I would like to thanks my whole family. I am grateful to my parents

for encouraging me in this work, helping me continue with this lengthy quest. My

sincere thanks to my brothers and my sister for all the motivation, kindness, love

and affection throughout my studies. I extend my great thanks to my wife and

i

Contents ii

my in-laws. She supports me everyday. She’s always there to help me to find a

good balance between research, work and family.

Contents

Acknowledgements i

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Knapsack Problems . 1

1.2 Constraint programming . 2

1.3 Contributions . 4

1.4 Structure of the thesis . 4

2 Preliminaries: an overview of constraint programming 7

2.1 Introduction . 7

2.2 Variables, Domains and Constraints 8

2.3 Propagation and Search . 9

2.3.1 Propagation . 9

2.3.2 Search . 10

2.4 Global Constraint . 12

2.5 Optimization . 14

3 The multiple demand multidimensional multiple choice knapsack
problem: definition and relationship problems 17

3.1 Introduction . 17

3.2 Preliminaries . 18

3.2.1 Integer linear program . 18

3.2.2 Knapsack problem constraints 19

3.2.3 Reduction, generalization and problems transformation . . . 20

3.3 The knapsack problem family involving the notion of dimensions,
demands and sets . 21

3.3.1 The knapsack problem . 21

3.3.2 The multidimensional knapsack problem 22

3.3.3 The multiple demand multidimensional knapsack problem . 24

3.3.4 The multiple choice knapsack problem 25

iii

Contents iv

3.3.5 The multidimensional multiple choice knapsack problem . . 26

3.3.6 The multidimensional knapsack problems with generalized
upper bound constraints . 28

3.3.7 The multiple demand multidimensional multiple choice knap-
sack problem . 29

3.3.8 Relation schema between problems 31

3.4 Transformations between Integer Linear Programs 32

3.4.1 Transformation of the GUBMKP into the MMKP 33

3.4.2 Transformation of the MKP into the MMKP 34

3.4.3 Transformation of the GUBMKP into the MKP 35

3.4.4 Transformation of the MMKP into the MDMKP 37

3.4.5 Transformation of the MCKP into the GUBMKP 37

3.4.6 Algorithms of MDMMKP are able to solve the other problems 39

3.5 Experimental results . 40

3.5.1 Instances details . 41

3.5.2 Evaluation of the transformation 44

3.6 Conclusion . 46

4 The multiple choice multidimensional knapsack constraint 48

4.1 Introduction . 48

4.2 Constraint programming preliminaries 49

4.2.1 Constraint programming . 50

4.2.2 sum and implies constraints 51

4.3 The multiple choice multidimensional knapsack constraint 51

4.3.1 Fundamental properties . 52

4.4 Filtering algorithm for mcmdk constraint 55

4.4.1 A worked example . 57

4.5 Experiments . 58

4.6 Conclusion . 60

5 Solving Constrained Optimization Problems By Solution-based
Decomposition Search 61

5.1 Introduction . 61

5.2 Formal background . 62

5.3 The basic Solve and Decompose algorithm 63

5.3.1 The decomposition method 64

5.3.2 Identification of promising subproblems 64

5.3.3 Strengthening the cost-based filtering 65

5.3.4 Decomposition-based search 66

5.3.5 Example . 69

5.4 Improving Solve and Decompose . 70

5.5 Computational results . 71

5.5.1 Benchmark problems . 71

5.5.1.1 MMKP . 71

5.5.1.2 SMSDP . 72

Contents v

5.5.2 Settings . 72

5.5.3 Results . 73

5.6 Related work . 76

5.7 Conclusion . 78

6 Conclusions and Future Work 89

6.1 Summary and conclusions . 89

6.2 Discussion and Future work . 90

Bibliography 92

List of Algorithms

- Function constraintSearch(D) . 11

- Procedure initialize(Q,m,n:Integer) 55

1 Filtering algorithm . 56

2 Basic S&D . 81

3 solveAndDecompose(pb,f,depth,levelID) 81

4 improvedSolveAndDecompose(pb,f,depth,levelID) 81

vi

List of Figures

2.1 An example of constraint satisfaction problem. 9

2.2 A general form of an integer linear program 16

3.1 A general form of an integer linear program 18

3.2 An integer linear program of the knapsack problem 22

3.3 An instance example of the knapsack problem. 22

3.4 An integer linear program of the multidimensional knapsack problem 23

3.5 An instance example of the multidimensional knapsack problem . . 23

3.6 An integer linear program of the multiple demand multidimensional
knapsack problem . 24

3.7 An instance example of the multiple demand multidimensional knap-
sack problem . 25

3.8 An integer linear program of the multiple choice knapsack problem 26

3.9 An instance example of the multiple choice knapsack problem . . . 27

3.10 An integer linear program of the multidimensional multiple choice
knapsack problem . 27

3.11 An instance example of the multidimensional multiple choice knap-
sack problem . 28

3.12 An integer linear program of the multidimensional knapsack prob-
lems with generalized upper bound constraints 29

3.13 An instance example of the multidimensional knapsack problems
with generalized upper bound constraints 30

3.14 An integer linear program of the multidimensional multiple demand
multiple choice knapsack problem 30

3.15 An instance example of the multidimensional multiple demand mul-
tiple choice knapsack problem . 31

3.16 Relation between knapsack problems 32

3.17 Transformation between ILPs of KPs 33

3.18 An integer linear program of GUBMKP based on the MMKP for-
mulation . 33

3.19 An instance example of the GUBMKP based on the MMKP formu-
lation . 34

3.20 An integer linear program of MKP based on the MMKP formulation 35

3.21 An instance example of the MKP based on the MMKP formulation 36

3.22 An integer linear program of MKP based on the MMKP formulation 37

3.23 An instance example of the GUBMKP based on the MKP formulation 38

vii

List of Figures viii

3.24 A second integer linear program of MMKP 39

3.25 An integer linear program of MMKP based on the MDMKP formu-
lation . 39

3.26 An instance example of the MMKP based on the MDMKP formulation 40

3.27 An integer linear program of MCKP based on the GUBMKP for-
mulation . 41

3.28 An instance example of the MCKP based on the GUBMKP formu-
lation . 42

4.1 An instance example of the multiple choice multidimensional knap-
sack constraint . 53

5.1 A Trace of the basic S&D on an example. 82

5.2 Multidimensional multiple choice knapsack problem formulation. . 82

5.3 Steel Mill Slab Design Problem formulation. 82

5.4 Time consumed by S&D in each level for MMKP instance inst17 . 83

List of Tables

3.1 Knapsack problems according to the type of constraints 20

3.2 Notation of knapsack terms . 20

3.3 Test MKP instances details . 42

3.4 Test MDMKP instances details . 43

3.5 Test MMKP instances details . 43

3.6 Test GUBMKP problem details . 44

3.7 Test MCKP instances details . 44

3.8 Performances comparison of the transformation between different
ILPs . 45

4.1 A worked example . 57

4.2 Comparison on instances with n = 15 59

4.3 Comparison on instances with m = 15 60

5.1 The runtime in second for MMKP instances using basic S&D and
improved S&D as well as using B&B. Note that ”–” means that
the time limit has been reached. 84

5.2 The runtime in second for MMKP instances using basic S&D and
improved S&D as well as using B&B. Note that ”–” means that
the time limit has been reached. 85

5.3 The runtime in second for SMSDP instances using basic S&D and
improved S&D as well as using B&B. Note that ”–” means that
the time limit has been reached. 86

5.4 The runtime of S&D in second for MMKP instances using different
depth . Note that ”–” means that the time has reached 1000s. . . . 87

5.5 The runtime of S&D in second for SMSDP instances using different
depth . Note that ”–” means that the time has reached 1000s. . . . 88

ix

Chapter 1

Introduction

The objective of this thesis is (i) to study some relationships between knapsack

problems, which are classical constrained optimization problems (COPs), (ii) pro-

vide a solution using constraint programming for a knapsack problem general-

ization and, (iii) present a new strategy for solving COPs. In this chapter, we

introduce knapsack problems and constraint programming in turn, summarize the

main contributions of the thesis and provide the outline of the document.

1.1 Knapsack Problems

Knapsack problems are among the most extensively studied NP -hard combinato-

rial optimization problems. The knapsack problems have been used to model a

wide range real-world applications ranging from cargo loading, project selection,

cutting stock, capital budgeting to resource allocation problems and more.

The classical knapsack problem considers a set of items, each having an associated

profit and a weight. The problem is to choose a subset of the given items such

that the corresponding total profit is maximized while the total weight satisfies a

specified resource capacity.

1

Introduction 2

In industry, a large number of industrial applications find the need for satisfy-

ing additional specific constraints such as resource capacity and item weight are

multidimensional besides, selecting items with different weight requirements from

different sets. These necessities lead to a set of variants and extensions of knapsack

problems. Among these extensions, we cite the multidimensional knapsack prob-

lem, the multiple demand multidimensional knapsack problem and the multiple

choice multidimensional knapsack problem. These involve the notion of sets and

dimensions.

1.2 Constraint programming

Constraint programming (CP) is a powerful programming paradigm for solving

large-scale combinatorial problems, wherein relations between variables are stated

by means of constraints.

The CP paradigm is by nature declarative. It declares what constraints need to be

satisfied. This phase is called ”constraint specification” and is separate from the

search phase also known as ”constraint solver”, which determine how the solutions

are built. CP has proven efficient and effective in a wide range of application areas

ranging from timetabling, scheduling, resource allocation, program verification to

vehicle routing and beyond.

The constraint specification, also called model, is typically specified in a constraint

modeling language. There are many well-known languages, for example OPL

Van Hentenryck (1999), Choco Fages et al. (2013), MiniZinc Nethercote et al.

(2007) and Essence Frisch et al. (2008), which offer powerful environments for

constraint specification.

Each modeling language contains numerous variables such as integer including

binary, set, graph and real variables. It contains a large number of predefined

constraints as well. Typical constraints include arithmetic constraints, sequence

Introduction 3

constraints, scheduling constraints, element constraints and compatibility con-

straints. Modeling languages also accept some powerful combinatorial constraints

known as specialized constraints such as allDifferent and lex constraints.

The merit of the most modern modeling languages is offering high level abstrac-

tions in order to be expressive. Moreover, they allow the user to model specific

constraints by decomposing them into other constraints.

A constraint solver will use the set of constraints to reduce the domains of the

variables and therefore reduce the size of the search space.

The key principle for reducing the search space is the constraint propagation, or

propagation in short. The propagation task is to remove subparts of the search

space that cannot belong to any feasible solution, by reasoning on the individual

constraints separately. Each constraint in the modeling language has its corre-

sponding filtering algorithm, or propagator, in the solver. The filtering algorithm

associated to a constraint asserts that the latter must be satisfied and preemp-

tively removes values that would violate it. In simpler terms, a filtering algorithm

takes domains as input and produces smaller domains as output by removing val-

ues from domains that do not belong to a solution. The principle of constraint

programming consists in fundamental separation of concerns regarding modeling

and solving. A model can be changed, without the need to change the underly-

ing solver and vice versa. Consequently, constraint programming has two main

advantages: (i) re-usability: constraints are building blocks that can be used in

various problems and applications, and (i) flexibility: we can be design very effi-

cient filtering algorithms, from operations research or graph theory, both of which

can be integrated into the constraints to solve large sub-problems efficiently.

These re-usability and flexibility make constraint programming a powerful paradigm

for modeling and solving various combinatorial problems.

Introduction 4

1.3 Contributions

The main contributions of this thesis are the following:

• Contribution 1: We present a generalization of a set of knapsack problems

involving the notion of dimensions, demands and multiple choice constraints

and we define a set of transformations between the different integer linear

programs of the studied problems. Using these transformations, we show

that any algorithm able to solve the generalized problem can definitely solve

its related problems.

• Contribution 2: We study some specific proprieties of the multiple choice

multidimensional knapsack constraint and we propose a new combined con-

straint ”Global constraint” for which we give a filtering algorithm.

• Contribution 3: We design and develop new strategy for solving constraint

optimization problems called solve and decompose. The proposed algorithm

can be viewed as a systematic iterative depth-first strategy that is based on

problem decomposition.

1.4 Structure of the thesis

This thesis consists of four chapters such that chapter 3, 4 and 5 are self-contained

(including the defined terms for that chapter). Each one has its own purpose and

it can be read by itself.

Chapter 1: Preliminaries: an overview of constraint programming 2.2

In this chapter we provide a brief overview of Constraint Programming.

Chapter 2: The multiple demand multidimensional multiple choice knap-

sack problem: definition and relationship problems 3

Introduction 5

In this chapter, we studied a set of knapsack problems involving the notion

of dimensions, demands and multiple choice constraints. Specifically, we

presented a new problem called the multiple demand multidimensional mul-

tiple choice knapsack problem and we showed it as a generalization of other

related problems. Moreover, we presented a set of transformations between

the different integer linear programs of the studied problems. Using these

transformations, we showed that any algorithm able to solve the generalized

problem can definitely solve its related problems. Then, we tested the new

integer linear programs on different sets of benchmarks using the commer-

cial software Cplex 9.0 . Computational results highlighted the ability of the

generated formulations to produce a reasonable CPU time value compared

with the original ones.

The chapter was previously published as:

A. Lamine and M. Khemakhem and H. Chabchoub Knapsack Problems

involving dimensions, demands and multiple choice constraints: generaliza-

tion and transformations between formulations International Journal of Ad-

vanced Science and Technology,2012, 46, 71-94.

A. Lamine and M. Khemakhem and H. Chabchoub The menu planning

problem: a formal study and a practical study EURO XXIV, Lisbon.

Chapter 3: The multiple choice multidimensional knapsack constraint 4

In this chapter, we introduce a new weighted constraint: the multiple choice

and the multidimensional knapsack constraints (or mcmdk constraint for

short). Given a resource with dimensions each one has a limited capacity

and items divided on disjoint sets where items have a weight in each di-

mension resource, this constraint selects exactly one item from each set so

that their overall weight does not exceed any resource capacity. We show

how the global mcmdk constraint can be modelled by some conjunctions

of elementary constraints. We propose a filtering algorithm for propagat-

ing this global constraint. Our experimental results show that propagating

Introduction 6

the mcmdk constraint via the proposed filtering algorithm is effective and

efficient.

Chapter 4: Solving Constrained Optimization Problems By Solution-based

Decomposition Search 5

In this chapter we present a new strategy for solving COPs called solve and

decompose (or S&D for short). The proposed strategy is a systematic it-

erative depth-first strategy that is based on problem decomposition. S&D

uses a solution of the COP, found by any exact method, to further decom-

pose the original problem into a bounded number of subproblems which are

considerably smaller in size. It also uses the value of the feasible solution as

a bound that we add to the created subproblems in order to strengthen the

cost-based filtering. Furthermore, the feasible solution is exploited in order

to create subproblems that have more promise in finding better solutions

which are explored in a depth-first manner. The whole process is repeated

until we reach a specified depth where we do not decompose the subprob-

lems anymore but we solve them to optimality using any exact method like

Branch and Bound. Our initial results on two benchmark problems show

that S&D may reach improvements of up to three orders of magnitude in

terms of runtime when compared to Branch and Bound.

The chapter consists of the research previously published in the following

paper:

A. Lamine and M. Khemakhem and B. Hnich and H. Chabchoub Solv-

ing Constrained Optimization Problems by Solution-based Decomposition

Search Journal of Combinatorial Optimization. 2015

Chapter 5: Conclusions and Future Work

In this concluding chapter, the thesis is summarized and opportunities for

future work are discussed.

Chapter 2

Preliminaries: an overview of

constraint programming

2.1 Introduction

Constraint programming is a powerful programming paradigm for solving combi-

natorial problems, where relations between variables can be stated in the form of

constraints. The core of constraint programming can be described by the following

equation

Constraint Programming = Model + Propagation + Search

Constraint programming is a declarative paradigm through which the user states

the problem in terms of its constraints, and the solver is responsible for finding

solutions. Stating the problem means choosing the variables, their initial set of

possible values, and the constraints that a solution should respect.

In this chapter, we introduce the main notions of the constraint programming

paradigm. Many of these notions are used in the thesis, and we believe that this

short introduction should cover the essential ones. For more details we address

the reader to the classical constraint programming books (Rossi et al., 2006a, Apt,

2003, Tsang, 1993)

7

Chapter 1. Preliminaries: an overview of constraint programming 8

2.2 Variables, Domains and Constraints

Let x be a variable. The domain of x is the set of values that can be assigned to

x and is denoted by D(x). Let X = x1, x2, . . . , xn be a sequence of variables. We

denote D(X) =
⋃

1≤i≤n D(xi). In this thesis we only consider variables with finite

domains.

A constraint C on X is defined as a subset of the cartesian product of the domains

of the variables in X, i.e. C ⊆ D(x1)×D(x2)×, . . . ,×D(xn). A tuple (d1, . . . , dn) ∈

C is called a solution to C. We also say that the tuple satisfies C. A value

d ∈ D(xi) for some i = 1, . . . , n is inconsistent with respect to C if it does not

belong to a tuple of C, otherwise it is consistent. C is inconsistent if it does not

contain a solution. Otherwise, C is called consistent. When n = 1 the constraint

C is called an unary constraint , for n = 2 C is called binary constraint. If C is

defined on more than two variables n > 2, C is called n-ary constraint or global

constraint.

A Constraint Satisfaction Problem(CSP) is defined by a triplet (X,D,C) where

X is a set of variables, D(X) is a set of domain values associated with X and C

is a set of constraints.

A solution to a CSP is an assignment of variables to values in their respective

domains so that all of the constraints are satisfied. A consistent CSP is a CSP for

which a solution exists, otherwise it is inconsistent. A failed CSP is a CSP with

an empty domain or with only singleton domains that together are not a solution

to the CSP. A solved CSP is a CSP with only singleton domains that together are

a solution to the CSP.

Example: Let x1, x2, x3 be variables with respective domains D1 = {1, 2}, D2 =

{1, 2}, D3 = {1, 2, 3, 4, 5}. On these variables we impose the following constraints:

x1 6= x2, x2 6= 2 x1 + x2 + x3 ≥ 6. We denote the resulting CSP as

A solution to this CSP is x1 = 2, x2 = 1 and x3 = 4.

Chapter 1. Preliminaries: an overview of constraint programming 9

Constraints:
x1 6= x2

x2 6= 2
x1 + x2 + x3 ≥ 6

Decision variables and domains:
x1 ∈ {1, 2}
x2 ∈ {1, 2}
x3 ∈ {1, 2, 3, 4, 5}

Figure 2.1: An example of constraint satisfaction problem.

2.3 Propagation and Search

The goal of constraint programming is to find one solution or all solutions to a

given CSP. The solution process of constraint programming interleaves constraint

propagation, or propagation in short, and search. We review each of those principles

in turn.

2.3.1 Propagation

Constraint propagation, a major instrument of the efficiency of CP solvers, is a

process that removes a subset or all the inconsistent values from the domains,

by reasoning on the individual constraints. This process may significantly reduce

large parts of the search space, and is vital to tackle combinatorially challenging

problems.

Let C be a constraint on the variables x1, . . . , xn with respective domains D1, . . . , Dn.

A propagation algorithm for C removes values from D1, . . . , Dn that do not par-

ticipate in a solution to C. A propagation algorithm does not have to remove all

such values, as this may lead to an exponential running time due to the nature of

some constraints.

Chapter 1. Preliminaries: an overview of constraint programming 10

One of the most interesting properties of a propagation algorithm is arc consis-

tency. We say that a propagation algorithm associated with a constraint estab-

lishes arc consistency if it removes all the values of the domains involved in the

constraint that are not consistent with the constraint.

We consider the CSP P = (X,D,C). P can be transformed into a smaller CSP

P ′ by repeatedly applying the propagation algorithm for all constraints in C until

there is no more domain reduction. This process is called constraint propagation.

Constraint propagation is usually applied each time a domain has been changed,

which happens very often during the solution process. Consequently, the propa-

gation algorithms applied to make a CSP locally consistent should be as efficient

as possible. The efficiency of constraint propagation is influenced by the order in

which the propagation algorithms are applied, and by the efficiency of the propa-

gation algorithms themselves.

The purpose of the constraint propagation algorithms is to achieve some form

of local consistency. In general, these algorithms are not sufficient for finding

a solution to a given CSP. Therefore, propagation is typically embedded into a

search algorithm.

2.3.2 Search

The solution process of constraint programming uses a search tree, which is a

particular rooted tree. The vertices of search trees are often referred to as nodes.

The arcs of search trees are often referred to as branches. Further, if (u, v) is an

arc of a search tree, we say that v is a direct descendant of u.

Definition : Search tree Apt (2003) Let P be a CSP with a sequence of

variables X. A search tree for P is a (finite) tree such that:

– its nodes are CSPs,

– its root is P ,

Chapter 1. Preliminaries: an overview of constraint programming 11

1 begin
2 D ← propagate(D);
3 if D is a false domain then
4 return;

5 end
6 if ∃x ∈ X : |D(x)| > 1 then
7 x← chooseVariable(X);
8 Ds ← splitDomain(D(x)));
9 constraintSearch(D ∪ {x 7→ Ds});

10 constraintSearch(D ∪ {x 7→ D(x)\Ds)};
11 else
12 Output solution;
13 end

14 end

Function constraintSearch(D)

– if P1, . . . , Pm where m > 0 are all direct descendants of P0, then the union of

the solution sets P1, . . . , Pm is equal to the solution set of P0 for every node

P0.

A node P of a search tree is at depth d if the length of the path from the root to

P is d.

The above definition of the search tree is a very general notion. In constraint

programming, a search tree is dynamically built by splitting a CSP into smaller

CSPs, until a failed or a solved CSP is reached. The root node P consists of the

initial domain D containing all the possible values of each variable. Solutions are

found in the leaves of the search tree, where every variable xi has only one value

in its domain D(x).

Many search strategies have been proposed in the literature, the most widely

used which performs CP solvers is the depth-first search, as given in Algorithm

constraintSearch Schulte and Stuckey (2008). At each node in the search tree we

apply constraint propagation to the corresponding CSP (line 2). As a result, we

may detect that the CSP is inconsistent , or we may reduce some domains of the

CSP. The search backtracks when a violation of a constraint is found (line 3).

Otherwise, in each node of the search tree the algorithm branches by splitting the

Chapter 1. Preliminaries: an overview of constraint programming 12

domain of a variable (line 8). The search is further optimized by carefully choosing

the variable that is fixed next (line 7).

In splitting the domain of a variable, we first select a variable and then decide

how to split its domain. This process is guided by variable ordering heuristics

chooseVariable (line 7) and value ordering heuristics splitDomain (line 8) . These

heuristics impose an ordering on the variables and values, respectively. The or-

dering imposed by these heuristics has a great impact on the search process Rossi

et al. (2006b).

2.4 Global Constraint

A good way to strengthen constraint propagation is to use global constraints van

Hoeve and Katriel (2006). Global constraints play an important role when finding

solutions because they provide a better view of the problem structure and make

the process more efficient.

There are several definitions of global constraint. A classical definition is a con-

straint that captures a relation between a non-fixed number of variables. In gen-

eral, a global constraint represents the conjunction of several constraints instead

of several simple (elementary) constraints. The idea of a global constraint is that,

by reasoning more globally, it is possible to design filtering algorithms that either

are able to remove more inconsistencies than elementary constraints, or it can

do it more efficiently. Still filtering algorithm for a global constraints must keep

reasonable time and space complexity.

Global constraints have three main advantagesRgin (2003):

• Expressiveness: it is more convenient to define one constraint corresponding

to a set of constraints than to define independently each constraint of this

set.

Chapter 1. Preliminaries: an overview of constraint programming 13

• Since a global constraint corresponds to a set of constraints it is possible to

deduce some information from the simultaneous presence of constraints.

• Powerful filtering algorithms can be designed because the set of constraints

can be taken into account as a whole. Specific filtering algorithms make it

possible to use operations research techniques or graph theory.

One of the best known global constraints is the alldiff constraint, especially be-

cause the filtering algorithm associated with this constraint is able to establish arc

consistency in a very efficient way.

In the literature, several other global constraints were proposed together with

filtering algorithms. Rgin (2010) identify five different categories of global con-

straints: classical constraints, weighted constraints, soft constraints, constraints

on meta-variables and open constraints. Below, we will present a constraint, ”Two

sided knapsack constraint”, belonging to the weighted constraints. This category

contains constraints which are associated with some costs, like the knapsack con-

straint Fahle and Sellmann (2002), bin-packing constraint Schaus (2009). Usually,

a summation is implied and there is a limit on it.

Two sided knapsack constraint

Trick Trick (2003a) proposed a variation of subset-sum constraint, special case

of a knapsack constraint (called Knapsack Constraint). In fact, the subset sum

problem takes as input a set X = {x1, . . . , xn} of n integers and another integer K.

The problem is to check if there exists a non-empty subset of X whose elements

sum to K. For example, given the set X = {3, 4, 7, 9, 11, 14} and K = 16, the

answer is yes because the subset 3, 4, 9 sums to 16.

Trick Trick (2003a) proposed to consider the following variations : given a set of

0-1 variables X = {x1, ..., xn} where each variable xi is associated with a coefficient

wi, a lower bound L and an upper bound U , find an assignment of variables such

that L ≤
∑n

i=1wixi ≤ U . We represent L and U by a variable z, such that

Chapter 1. Preliminaries: an overview of constraint programming 14

D(z) = [L,U]. For reasons of clarity, we will use the name two sided knapsack

constraint for the Trick knapsack constraint.

Then, the two sided knapsack constraint can be defined as:

two sided knapsack constraint(x1, . . . , xn, z, w) =

{(d1, . . . , dn, d)|∀i di ∈ D(xi), d ∈ D(z), d ≤
∑n

i=1widi}

∩

{(d1, . . . , dn, d)|∀i di ∈ D(xi), d ∈ D(z),
∑n

i=1widi ≤ d},

which corresponds to min D(z) ≤
∑n

i=1wixi ≤ max D(z).

Trick proposed an approach derived from some dynamic programming method

designed for pure KPs. The proposed algorithm is a pseudo-polynomial algorithm

establishing arc consistency whose time complexity is in O(nU2).

2.5 Optimization

Constraint programming deals with CSPs whose goal is to find a solution or all

solutions to a given CSP. Often we want to find a solution to a CSP that is optimal

with respect to certain criteria.

A constraint optimization problem (COP), also called constraint satisfaction op-

timization problems (CSOP)Tsang (1993), is a CSP P defined on the variables

x1, . . . , xn and augmented with an objective function f : D(x1)×· · ·×D(xn)→ Q

that maps the variables x1, . . . , xn to an evaluation score.

An optimal solution to a minimization (maximization) COP is a solution s to

P that minimizes (maximizes) the value of f(s). The objective function value is

often represented by a variable z, together with the constraint maximize z or mini-

mize z for a maximization or a minimization problem, respectively called objective

constraint. Note that, it is important that constraint propagation techniques be

applied to the objective constraint.

Chapter 1. Preliminaries: an overview of constraint programming 15

To solve COPs, the common approach is to find an optimal solution by solving

a sequence of CSPs. Several variations have been proposed and evaluated in the

literature. The most widely used technique for solving COP is Branch and Bound

B&B algorithm.

In CP B&B works as follows:

Initially, a backtracking search is used to find a feasible solution. A constraint

is then added to the CSP which excludes solutions that are not better than this

solution. A new solution is then found for the augmented CSP. This process is

repeated until the resulting CSP is unsatisfiable, in which case the last solution

found has been proven optimal.

The above algorithm constraintSearch can be moved to a B&B . In fact, a con-

straint is added on the evaluation score, this constraint is updated each time a

better solution than the currently best known one is found (line 12), and hence

avoids searching for solutions that are worse than that the latter.

Constraint programming is in many ways comparable with the more known field of

integer linear programming. On the one hand, both constraint programming and

integer linear programming offer a way of describing a problem. Morever, they

provide solution techniques to find a solution for this problem. The differences

between them are exactly on these two subjects: the expressiveness of the language

and the underlying solution techniques.

Integer linear programming is a general approach to formulating and solving con-

straint optimization problems with integer variables and linear constraints (in-

equalities or equalities). The aim is to optimize a linear cost function. In Integer

linear programming, a model is called a program. The general form of an integer

linear program (ILP) is (see Figure 2.2)

where c is a n-vector, A is an m×n matrix and b is an m-vector. x is the decision

variables required to be integer valued. X is bounding-box-type restrictions on

the variable. We refer to Chen et al. (2011) for more information about ILP

fundamentals.

Chapter 1. Preliminaries: an overview of constraint programming 16

Figure 2.2: A general form of an integer linear program

maximize cTx

subject to
Ax ≤ b
x ∈ X Integer

There are different approaches for solving integer programming problems, most of

them are based on the relaxation. Relaxation means replacing the solution space

of a given problem with a larger, but more easily searchable, one. Relaxations

provide information to guide (through relaxed solutions) and accelerate (through

bounds) the search phase. Linear relaxations are the key ingredient of Branch and

Bound algorithm for ILPs. The existence of a good and fast relaxation is one of

the biggest advantages of the ILP paradigm over CP.

Chapter 3

The multiple demand

multidimensional multiple choice

knapsack problem: definition and

relationship problems

3.1 Introduction

Extensions of knapsack problem (Kellerer et al., 2004, Martello and Toth, 1990)

play a significant role in the study of discrete mathematics. These extensions con-

cern many practical problems in the real life such as the service level agreement,

the model of allocation resources, computer systems design, project selection, cut-

ting stock and cargo-loading.

In the literature, large specific algorithms are developed to solve extensions of the

knapsack problem. Although there is a relation between many knapsack problems,

many existing algorithms designed to solve specific problems must be re-adapted

to solve other extensions. To be appropriate to the problem, the redevelopment

of these algorithms is very difficult in general and can lose its specifications.

17

Chapter 2. The multiple demand multidimensional multiple choice KP 18

In this context, we define a new problem called the multiple demand multidimen-

sional multiple choice knapsack problem (MDMMKP) which is considered as a

generalization of its related problems studied in this chapter. Using a set of trans-

formations, we show that any algorithm able to solve the generalized problem can

definitely solve its related problems. Therefore the redevelopment of algorithms

in this case is not considered.

The rest of this chapter is organized as follows. Section 3.2 gives the necessary

formal preliminaries. In section 3.3, definitions of knapsack problems are given.

We present in section 3.4 a set of transformations between integer linear programs

of the knapsack problems. In section 3.5, computational results are given to show

the impact of these transformations. Finally, section 3.6 concludes this chapter.

3.2 Preliminaries

3.2.1 Integer linear program

Integer linear programming refers to mathematical programming with discrete

variables and linearities in the objective function and constraints.

The general form of an integer linear program (ILP) is (see Figure 3.1)

Figure 3.1: A general form of an integer linear program

maximize cTx

subject to
Ax ≤ b
x ∈ X Integer

where c is a n-vector, A is an m×n matrix and b is an m-vector. x is the decision

variables required to be integer valued. X is bounding-box-type restrictions on

the variable. We refer to Chen et al. (2011) for more information about ILP

fundamentals.

Chapter 2. The multiple demand multidimensional multiple choice KP 19

3.2.2 Knapsack problem constraints

The knapsack problem (KP) (Kellerer et al., 2004, Martello and Toth, 1990) is

an integer linear program comprising binary variables, a single constraint with

positive coefficients and binary restrictions on the variables.

The KP has been used to model various decision making processes and finds a vari-

ety of real world applications: resource allocation problems, cutting stock, capital

budgeting, project selection and processor allocation in distributed computing

systems. Industrial applications find the need for satisfying additional constraints

such as multidimensional knapsack constraints, demand constraints and multiple

choice constraints. These constraints can be defined as follows:

• Knapsack constraint: The knapsack constraint is to choose a subset of

items set such that their overall weight does not exceed a knapsack capacity.

In case when the knapsack has a set of dimensions, the constraint is called

multidimensional knapsack constraint in which each dimension is called a

knapsack constraint.

• Demand constraint: The demand constraint is to choose a subset of items

set such that their overall weight must exceed a demand capacity. Like the

above constraint, the demand constraint can be multidimensional.

• Multiple choice constraint: When items are distributed on a set of dis-

jointed sets, the multiple choice constraint is to choose an item of each set.

These necessities (additional constraints) lead to many extensions and variants

of knapsack problems such as the multidimensional knapsack problem (MKP)

Freville (2004), the multiple demand knapsack problem (MDMKP) Cappanera and

Trubian (2005), the multiple choice knapsack problem (MCKP) Pisinger (1995),

the multidimensional multiple choice knapsack problem (MMKP) Moser et al.

(1997a), Khan (1998) and multidimensional knapsack problems with generalized

upper bound constraints (GUBMKP) Li (2005), Li and Curry (2005). In Table 3.1,

Chapter 2. The multiple demand multidimensional multiple choice KP 20

we characterize the problems mentioned above according to the type of constraints.

Table 3.1: Knapsack problems according to the type of constraints

Type of constraint
Problem knapsack multidimensional knapsack multiple demand multiple choice

KP X
MKP X
MDMKP X X
MCKP X X
MMKP X X
GUBMKP X X
MDMMKP X X X

MDMMKP is an abbreviation of the multiple demand multidimensional multiple

choice knapsack problem that will be defined in the next section and will considered

as the generalized problem.

In order to give a more detailed presentation, let us define and denote the following

terms (see Table 3.2).

Table 3.2: Notation of knapsack terms

N the number of items
pj the profit of item j
wj the weight of item j
c the capacity of a single knapsack
m the number of knapsack constraints
wk

j the weight of item j in knapsack k
ck the capacity of knapsack k
q the number of demand constraints
n the number of groups
G = {G1, ..., Gn} the set of groups
|Gi| the number of items of group Gi

pij the profit of item j of group Gi

wk
ij the weight of item j of group Gi in knapsack k

3.2.3 Reduction, generalization and problems transforma-

tion

• Reduction and generalization

Chapter 2. The multiple demand multidimensional multiple choice KP 21

Given two related problems, such as A and B, we say that the problem A is

a generalization of the problem B (denoted by B→ A) if and only if:

– every solution to problem A is also a solution to problem B; and

– there are solutions to problem B which are not solutions to problem A.

Note that the reduction is the symmetric relationship of the generalization.

So, the problem B is a reduction of the problem A.

Besides it is obvious that the generalization and the reduction are a transitive

relation. For example if B→ A and C→ B then C→ A.

• Problem transformation

We define a problem transformation as the operation that takes a problem

and generates it into another problem in accordance with a set of rules

without losing sight of specifications.

3.3 The knapsack problem family involving the

notion of dimensions, demands and sets

3.3.1 The knapsack problem

The knapsack problem (KP) can be defined by a set of N items; each item j

has a profit pj and a weight wj. The problem is to choose a subset of the given

items such that the corresponding total profit is maximized while the total weight

satisfies the knapsack capacity c. It can be formulated as the following integer

linear program (see Figure 3.2)

where Equation (1) provides the total profit of selecting items and Equation (2)

ensures that the knapsack constraint is satisfied. The binary decision variables xj

are used to indicate whether item j is included in the knapsack or not.

There follows (Figure 3.3) a small illustrative problem which will be used through-

out the chapter. For this problem the number of items N is equal to 8.

Chapter 2. The multiple demand multidimensional multiple choice KP 22

Figure 3.2: An integer linear program of the knapsack problem

maximize
∑N

j=1 pjxj (1)

subject to ∑N
j=1wjxj ≤ c (2)

xj ∈ {0, 1} (j = 1, . . . , N) (3)

Figure 3.3: An instance example of the knapsack problem.

Input:
N ← 8

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wj 5 20 25 35 40 45 55 60

→ Capacity →
c 150

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 1 0 0 0 1 1 0 1 value 200

3.3.2 The multidimensional knapsack problem

The multidimensional knapsack problem (MKP) Freville (2004) is considered as

an extension of the classical knapsack problem in which knapsack has a set of

dimensions. Each dimension is called a knapsack constraint.

The MKP can be defined by a set of N items and a knapsack with m dimensions.

The knapsack has a limited capacity in each dimension k denoted by ck. Each

item j has a profit pj and a weight in each dimension, denoted by wk
j . The goal is

to select a subset of items with maximum total profit, see Equation (4). Chosen

Chapter 2. The multiple demand multidimensional multiple choice KP 23

items must, however, not exceed knapsack constraints, see Equation (5). The 0-1

decision variables xj indicate which items are selected.

Figure 3.4: An integer linear program of the multidimensional knapsack prob-
lem

maximize
∑N

j=1 pjxj (4)

subject to ∑N
j=1w

k
j xj ≤ ck (k = 1, . . . ,m) (5)

xj ∈ {0, 1} (j = 1, . . . , N) (6)

Figure 3.5 represents an extended example of the knapsack problem to present the

multidimensional knapsack problem where the number of dimensions m is equal

to 2.

Figure 3.5: An instance example of the multidimensional knapsack problem

Input:
N ← 8 m← 2

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wk

j 5 20 25 35 40 45 55 60
90 120 70 110 90 65 80 150

→ Capacity →
ck 150 300

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
90x1 + 120x2 + 70x3 + 110x4 + 90x5 + 65x6 + 80x7 + 150x8 ≤ 300
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 0 0 1 0 0 0 1 1 value 180

Chapter 2. The multiple demand multidimensional multiple choice KP 24

3.3.3 The multiple demand multidimensional knapsack prob-

lem

The multiple demand multidimensional knapsack problem (MDMKP) Cappanera

and Trubian (2005) is considered as an extension of the multidimensional knapsack

problem in which there are greater-than-or-equal-to inequalities called demand

constraints, in addition to the standard less-than-or-equal-to inequalities. Formally

the problem can be stated as integer linear program as shown in Figure 3.6.

Figure 3.6: An integer linear program of the multiple demand multidimen-
sional knapsack problem

maximize
∑N

j=1 pjxj (7)

subject to ∑N
j=1w

k
j xj ≤ ck (k = 1, . . . ,m) (8)∑N

j=1w
k
j xj ≥ ck (k = 1 + m, . . . , (m + q)) (9)

xj ∈ {0, 1} (j = 1, . . . , N) (10)

Each of the m constraints of family Equation (8) represents a knapsack constraint,

while each of the q constraints of family Equation (9) represents a demand con-

straint.

Figure 3.7 represents an example of the MDMKP which can be considered as an

extension of the MKP example with two demand constraints (q = 2).

Chapter 2. The multiple demand multidimensional multiple choice KP 25

Figure 3.7: An instance example of the multiple demand multidimensional
knapsack problem

Input:
N ← 8 m← 2 q ← 2

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wk

j 5 20 25 35 40 45 55 60
90 120 70 110 90 65 80 150
5 20 100 35 60 45 50 60
90 60 70 110 90 45 20 10

→ Capacity →
ck 150 300 80 200

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
90x1 + 120x2 + 70x3 + 110x4 + 90x5 + 65x6 + 80x7 + 150x8 ≤ 300
5x1 + 20x2 + 100x3 + 35x4 + 60x5 + 45x6 + 50x7 + 60x8 ≥ 80
90x1 + 60x2 + 70x3 + 110x4 + 90x5 + 45x6 + 20x7 + 10x8 ≥ 200
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 0 0 0 1 1 0 1 0 value 160

3.3.4 The multiple choice knapsack problem

The multiple choice knapsack problem (MCKP) Pisinger (1995) is considered as a

an extension of the classical knapsack problem in which items are distributed on

n disjointed groups G = (G1 ∪G2 ∪ ... ∪Gn) (see Equation 11).

∀ (p, q) , p 6= q, p ≤ n , q ≤ n, Gp ∩Gq = ∅ and
⋃n

i=1 Gi = G (11)

The MCKP consists in selecting one and only one item of each group without

violating the knapsack capacity c in order to maximize the total profit of the

selected items. The MCKP can be modeled as an integer linear program as shown

in Figure 3.8.

Chapter 2. The multiple demand multidimensional multiple choice KP 26

Figure 3.8: An integer linear program of the multiple choice knapsack problem

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (12)

subject to ∑n
i=1

∑|Gi|
j=1wijxij ≤ c (13)∑|Gi|

j=1 xij = 1 (i = 1, . . . , n) (14)

xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (15)

The variable xij is equal to 1 when the item j of the group Gi is selected, 0

otherwise. The objective function Equation (12) represents the total profit to be

maximized. The knapsack constraint is presented in Equation (13) and the n

multiple choice constraints are presented in Equation (14). To avoid unsolvable

situations, we assume that the sum of the minimum weight of items in each group

is smaller than the knapsack capacity c.

Figure 3.9 represents an example of MCKP where items are subdivided into n = 3

groups, the cardinality of G1 = 3, G2 = 2 and G3 = 3.

3.3.5 The multidimensional multiple choice knapsack prob-

lem

The multidimensional multiple choice knapsack problem (MMKP) Moser et al.

(1997a), Khan (1998) is a particular variant of the knapsack problem. It can be

viewed as a combination of aspects between the multidimensional knapsack prob-

lem (MKP) and the multiple choice knapsack problem (MCKP). The MMKP is a

an extension of the MCKP in which one item is selected from each group. How-

ever, in the MMKP, the knapsack is multidimensional, i.e., the knapsack consists

of multiple resource constraints simultaneously satisfied. The MMKP problem can

be stated as an integer linear program as shown in Figure 3.10

Equation (16) provides the profit of selecting items, a value to be maximized.

Equation (17) ensures the resource capacity of knapsack k is not exceeded while

Chapter 2. The multiple demand multidimensional multiple choice KP 27

Figure 3.9: An instance example of the multiple choice knapsack problem

Input:
N ← 8 n← 3

→ Profits→
pij 10 20 30︸ ︷︷ ︸

G1

40 50︸ ︷︷ ︸
G2

60 70 80︸ ︷︷ ︸
G3

→Weights→
wij 5 20 25︸ ︷︷ ︸

G1

35 40︸ ︷︷ ︸
G2

45 55 60︸ ︷︷ ︸
G3

→ Capacities→
c 130

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
x11 + x12 + x13 = 1
x21 + x22 = 1
x31 + x32 + x33 = 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 1 0︸ ︷︷ ︸

G1

0 1︸︷︷︸
G2

0 0 1︸ ︷︷ ︸
G3

value 150

Figure 3.10: An integer linear program of the multidimensional multiple
choice knapsack problem

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (16)

subject to ∑n
i=1

∑|Gi|
j=1w

k
ijxij ≤ ck (k = 1, . . . ,m) (17)∑|Gi|

j=1 xij = 1 (i = 1, . . . , n) (18)

xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (19)

Equation (18) ensures selecting a single item from each of the Gi groups. Equation

(19) is the binary selection requirement on decision variable xij such that xij is

equal to 1 if the item j of the group Gi is selected, 0 otherwise.

Chapter 2. The multiple demand multidimensional multiple choice KP 28

Figure 3.11 represents an extended example of the multiple choice knapsack prob-

lem to present the multidimensional multiple choice knapsack problem where the

number of dimensions m is equal to 2.

Figure 3.11: An instance example of the multidimensional multiple choice
knapsack problem

Input:
N ← 8 n← 3 m← 2

→ Profits→
pij 10 20 30︸ ︷︷ ︸

G1

40 50︸ ︷︷ ︸
G2

60 70 80︸ ︷︷ ︸
G3

→Weights→
wij 5 20 25 35 40 45 55 60

90 120 70︸ ︷︷ ︸
G1

110 90︸ ︷︷ ︸
G2

65 80 150︸ ︷︷ ︸
G3

→ Capacities→
ck 130 230

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
90x11 + 120x12 + 70x13 + 110x21 + 90x22 + 65x31 + 80x32 + 150x33 ≤ 230
x11 + x12 + x13 = 1
x21 + x22 = 1
x31 + x32 + x33 = 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 0 1︸ ︷︷ ︸

G1

0 1︸︷︷︸
G2

1 0 0︸ ︷︷ ︸
G3

value 140

3.3.6 The multidimensional knapsack problems with gen-

eralized upper bound constraints

The multidimensional knapsack problem with generalized upper bound constraints

(GUBMKP) Li (2005), Li and Curry (2005) is defined as a multidimensional knap-

sack problem (MKP) with mutually exclusive generalized upper-bound(GUB) con-

straints where all GUBs are fixed at 1. It can be viewed as a reduction of the

Chapter 2. The multiple demand multidimensional multiple choice KP 29

MMKP, in which it is required that at most one item per group can be chosen.

The GUBMKP problem is formulated as an integer linear program as shown in

Figure 3.12.

Figure 3.12: An integer linear program of the multidimensional knapsack
problems with generalized upper bound constraints

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (20)

subject to ∑n
i=1

∑|Gi|
j=1w

k
ijxij ≤ ck (k = 1, . . . ,m) (21)∑|Gi|

j=1 xij ≤ 1 (i = 1, . . . , n) (22)

xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (23)

Equation (20) represents the total profit to be maximized. Equation (21) ensures

the knapsack capacities are not exceeded while Equation (22) ensures selecting at

most one item from each of the n disjoint groups. Equation (23) is the binary

selection requirement on decision variable xij such that xij is equal to 1 when the

item j of the group Gi is selected, 0 otherwise.

Since the structure and the specification of the GUBMKP is similar to the MMKP,

we use the same input of the latter to present an example of the GUBMKP (see

Figure 3.13)

3.3.7 The multiple demand multidimensional multiple choice

knapsack problem

We define the multiple demand multidimensional multiple choice knapsack prob-

lem (MDMMKP) as a combination of aspects of the multidimensional knapsack

constraint, multiple demand constraint and multiple choice constraint. It is con-

sidered as an extension of the multidimensional multiple choice knapsack problem

(MMKP) in which there are greater-than-or-equal-to inequalities, in addition to

the standard less-than-or-equal-to inequalities. The integer linear program of the

MDMMKP can be stated in Figure 3.14.

Chapter 2. The multiple demand multidimensional multiple choice KP 30

Figure 3.13: An instance example of the multidimensional knapsack problems
with generalized upper bound constraints

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
90x11 + 120x12 + 70x13 + 110x21 + 90x22 + 65x31 + 80x32 + 150x33 ≤ 230
x11 + x12 + x13 ≤ 1
x21 + x22 ≤ 1
x31 + x32 + x33 ≤ 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 0 1︸ ︷︷ ︸

G1

0 1︸︷︷︸
G2

1 0 0︸ ︷︷ ︸
G3

value 140

Figure 3.14: An integer linear program of the multidimensional multiple de-
mand multiple choice knapsack problem

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (24)

subject to ∑n
i=1

∑|Gi|
j=1w

k
ijxij ≤ ck (k = 1, . . . ,m) (25)∑n

i=1

∑|Gi|
j=1w

k
ijxj ≥ ck (k = 1 + m, . . . , (m + q)) (26)∑|Gi|

j=1 xij = 1 (i = 1, . . . , n) (27)

xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (28)

The variable xij is equal to 1 when the item j of the group Gi is selected, 0

otherwise. The objective function equation (24) represents the total profit to be

maximized. The knapsack constraints are presented in equation (25) and the

demand constraints are presented in equation (26). Equation (27) represents the

n multiple choice constraints.

There follows an illustrative example that represents an extension of the MMKP

example with q = 2 demand constraints.

Chapter 2. The multiple demand multidimensional multiple choice KP 31

Figure 3.15: An instance example of the multidimensional multiple demand
multiple choice knapsack problem

Input:
N ← 8 n← 3 m← 2

→ Profits→
pij 10 20 30︸ ︷︷ ︸

G1

40 50︸ ︷︷ ︸
G2

60 70 80︸ ︷︷ ︸
G3

→Weights→
wij 5 20 25 35 40 45 55 60

90 120 70 110 90 65 80 150
5 20 100 35 60 45 50 60

90 60 70︸ ︷︷ ︸
G1

110 90︸ ︷︷ ︸
G2

45 20 10︸ ︷︷ ︸
G3

→ Capacities→
ck 130 230 80 200

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
90x11 + 120x12 + 70x13 + 110x21 + 90x22 + 65x31 + 80x32 + 150x33 ≤ 230
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≥ 80
90x11 + 60x12 + 70x13 + 110x21 + 90x22 + 45x31 + 20x32 + 10x33 ≥ 200
x11 + x12 + x13 = 1
x21 + x22 = 1
x31 + x32 + x33 = 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 0 1︸ ︷︷ ︸

G1

0 1︸︷︷︸
G2

1 0 0︸ ︷︷ ︸
G3

value 140

3.3.8 Relation schema between problems

Figure 3.16 shows a set of possible generalizations between the problems mentioned

above where each arrow represents a generalization between a target problem and

a destination problem. In fact:

• The problems in which knapsack constraint is multidimensional are a gener-

alization of problems with one dimension. Among these problems the MKP

Chapter 2. The multiple demand multidimensional multiple choice KP 32

and the MMKP that are considered as a generalization of KP and MCKP

respectively.

• The problems with demand constraints are a generalization of the prob-

lems without demand constraints. It is apparent that the MDMKP and

the MDMMKP are considered as a generalization of the MKP and MMKP

respectively.

• The problems that have a notion of groups such as MCKP, MMKP and

MDMMKP are a generalization of problems without groups such as KP,

MKP and MDMKP respectively.

• The GUBMKP is a generalization of MKP and a reduction of MMKP.

Figure 3.16: Relation between knapsack problems

KP MKP MDKP

MCKP MMKP MDMMKP

GUBMKP

According to the transitivity characteristics of the generalization between problems

we consider the MDMMKP as the most generalized problem.

3.4 Transformations between Integer Linear Pro-

grams

In this section, we present a set of transformations between the different integer

linear programs of the knapsack problems mentioned above. These transforma-

tions are summarized in Figure 3.17. Each arrow indicates that the transformation

Chapter 2. The multiple demand multidimensional multiple choice KP 33

Figure 3.17: Transformation between ILPs of KPs

KP MKP MDKP

MCKP MMKP MDMMKP

GUBMKP

between the linked problems is proved.

3.4.1 Transformation of the GUBMKP into the MMKP

The GUBMKP can be easily transformed into the MMKP. The formulation of the

MMKP can be built by substituting the inequality (≤) by the strict equality (=)

for equation (22) in the GUBMKP formulation. Variables in each of the multi-

ple choice constraints sum to 1 exactly. This modification is obtained by adding

a dummy item into each group (GUB constraint) in which its consumption and

its profit are zero. Indeed, selecting any item in the original GUBMKP formula-

tion is similar to selecting the dummy item in the generated MMKP formulation.

Therefore, the GUBMKP formulation mentioned above can be transformed into

the MMKP formulation as shown in Figure 3.18.

Figure 3.18: An integer linear program of GUBMKP based on the MMKP
formulation

maximize
∑n

i=1

∑|Gi|+1
j=1 pijxij (29)

subject to ∑n
i=1

∑|Gi|+1
j=1 wk

ijxij ≤ ck (k = 1, . . . ,m) (30)∑|Gi|+1
j=1 xij = 1 (i = 1, . . . , n) (31)

xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|+ 1) (32)

Chapter 2. The multiple demand multidimensional multiple choice KP 34

where pi(|Gi|+1) = 0 and wi(|Gi|+1) = 0 (i = 1, . . . , n).

The instance example of the GUBMKP (Figure 3.13) is moved to an MMKP

instance (see Figure 3.19)

Figure 3.19: An instance example of the GUBMKP based on the MMKP
formulation

Input:
N ← 11 n← 3 m← 2

→ Profits→
pij 10 20 30 0︸ ︷︷ ︸

G1

40 50 0︸ ︷︷ ︸
G2

60 70 80 0︸ ︷︷ ︸
G3

→Weights→
wij 5 20 25 0 35 40 0 45 55 60 0

90 120 70 0︸ ︷︷ ︸
G1

110 90 0︸ ︷︷ ︸
G2

65 80 150 0︸ ︷︷ ︸
G3

→ Capacities→
ck 130 230

Constraints:
5x11 + 20x12 + 25x13 + 35x21 + 40x22 + 45x31 + 55x32 + 60x33 ≤ 130
90x11 + 120x12 + 70x13 + 110x21 + 90x22 + 65x31 + 80x32 + 150x33 ≤ 230
x11 + x12 + x13 + x14 = 1
x21 + x22 + x23 = 1
x31 + x32 + x33 + x34 = 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 10x11 + 20x12 + 30x13 + 40x21 + 50x22 + 60x31 + 70x32 + 80x33

Optimal solution:
0 0 1 0︸ ︷︷ ︸

G1

0 1 0︸ ︷︷ ︸
G2

1 0 0 0︸ ︷︷ ︸
G3

value 140

3.4.2 Transformation of the MKP into the MMKP

To explain this part, let us take the ILP of the MKP mentioned above. We can

transform a MKP instance into a MMKP instance by creating a set of n groups,

each one contains two items. The first item is an item of the MKP and the second

item presents a dummy item whose weight and profit are zero. Consequently, each

Chapter 2. The multiple demand multidimensional multiple choice KP 35

group Gj (j = 1, . . . , n) contains two items where:

pj1 = pj, pj2 = 0, wk
j1 = wk

j , wk
j2 = 0 (j = 1, . . . , n) (k = 1, . . . ,m)

For example, in case when the item is not selected in the original formulation of

MKP, it is similar to select the dummy item belonging to the same set in the

MMKP formulation.

The integer linear program of the MKP can be transformed into an integer linear

program of the MMKP as shown in Figure 3.20.

Figure 3.20: An integer linear program of MKP based on the MMKP formu-
lation

maximize
∑N

i=1

∑2
j=1 pijxij (33)

subject to ∑N
i=1

∑2
j=1w

k
ijxij ≤ ck ((k = 1, . . . ,m) (34)∑2

j=1 xij = 1 (i = 1, . . . , N) (35)

xij ∈ {0, 1} (i = 1, . . . , N), (j = 1, 2) (36)

The instance example of the MKP (Figure 3.5) is moved to an MMKP instance

(see Figure 3.21)

Note that we will use the same principle to move the MDMKP into the MDMMKP

and the KP into the MCKP.

3.4.3 Transformation of the GUBMKP into the MKP

In this part, we are going to transform the GUBMKP into the MKP. Let us define

the following terms N =
∑n

i=1 |Gi|, Nh =
∑h

i=1 |Gi|, ∀h ∈ (1, . . . , n) and N0 = 0,

and rename the following terms xij = yl and wk
ij = wk

l where l = Ni−1 + j.

The idea in this part is to view each GUB constraint as a knapsack constraint. So

we add to the classical m knapsack constraints a new n constraints by substituting

Chapter 2. The multiple demand multidimensional multiple choice KP 36

Figure 3.21: An instance example of the MKP based on the MMKP formu-
lation

Input:
N ← 16 m← 2

→ Profits→
pj 10 0︸︷︷︸

G1

20 0︸︷︷︸
G2

30 0︸︷︷︸
G3

40 0︸︷︷︸
G4

50 0︸︷︷︸
G5

60 0︸︷︷︸
G6

70 0︸︷︷︸
G7

80 0︸︷︷︸
G8

→Weights→
wk

j 5 0 20 0 25 0 35 0 40 0 45 0 55 0 60 0
90 0︸︷︷︸
G1

120 0︸ ︷︷ ︸
G2

70 0︸︷︷︸
G3

110 0︸ ︷︷ ︸
G4

90 0︸︷︷︸
G5

65 0︸︷︷︸
G6

80 0︸︷︷︸
G7

150 0︸ ︷︷ ︸
G8

→ Capacity →
ck 150 300

Constraints:
5x11 + 20x21 + 25x31 + 35x41 + 40x51 + 45x61 + 55x71 + 60x81 ≤ 150
90x11 + 120x21 + 70x31 + 110x41 + 90x51 + 65x61 + 80x71 + 150x81 ≤ 300
x11 + x12 = 1
x21 + x22 = 1
x31 + x32 = 1
x41 + x42 = 1
x51 + x52 = 1
x61 + x62 = 1
x71 + x72 = 1
x81 + x82 = 1
xij ∈ {0, 1} (i = 1, . . . , 8) (j = {1, 2})

Objective:
maximize 10x11 + 20x21 + 30x31 + 40x41 + 50x51 + 60x61 + 70x71 + 80x81

Optimal solution:
0 1︸︷︷︸
G1

0 1︸︷︷︸
G2

1 0︸︷︷︸
G3

0 1︸︷︷︸
G4

0 1︸︷︷︸
G5

0 1︸︷︷︸
G6

1 0︸︷︷︸
G7

1 0︸︷︷︸
G8

value 180

the n GUB constraints to n equivalent knapsack constraints. In fact the ILP of

the GUBMKP can be reformulated to an ILP of the MKP in this manner:

The n GUBMKP constraints
∑|Gi|

j=1 xij ≤ 1, ∀i ∈ (1, . . . , n) are transformed into∑N
l=1 w

k
l yl ≤ ck,∀k ∈ (m + 1, . . . ,m + n) where ck = 1 ∀k ∈ (m + 1, . . . ,m + n)

and for each k + m knapsack constraint ∀k ∈ (1, . . . , n)

Chapter 2. The multiple demand multidimensional multiple choice KP 37

Figure 3.22: An integer linear program of MKP based on the MMKP formu-
lation

maximize
∑N

l=1 plyl (37)

subject to ∑N
l=1w

k
l yl ≤ ck (k = 1, . . . ,m + n) (38)

yl ∈ {0, 1} ((l = 1, . . . , N) (39)

wk+m
l =

 1 ,∀l ∈ (1 + Nk−1, . . . , Nk)

0, otherwise.


The instance example of the GUBMKP (Figure 3.13) is moved to an MKP instance

(see Figure 3.23)

3.4.4 Transformation of the MMKP into the MDMKP

The n multiple choice constraints of the MMKP can be subdivided into two kinds

of constraints n less-than-or-equal-to and n greater-than-or-equal-to inequalities.

Indeed, the MMKP is modeled as shown in Figure 3.24.

And using the same principle to transform the GUBMKP into the MKP mentioned

above, we can view the MMKP program as an MDMKP program as shown in

Figure 3.25.

where ck = 1∀k ∈ (m + 1, . . . ,m + n,m + n + 1, . . . ,m + 2n).

The instance example of the MMKP (Figure 3.11) is moved to an MDMKP in-

stance (see Figure 3.26)

3.4.5 Transformation of the MCKP into the GUBMKP

The MCKP can be transformed into an equivalent GUBMKP. The transformation

is done by removing one of the items from each group. We denote this item j∗

Chapter 2. The multiple demand multidimensional multiple choice KP 38

Figure 3.23: An instance example of the GUBMKP based on the MKP for-
mulation

Input:
N ← 8 m← 5

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wk

j 5 20 25 35 40 45 55 60
90 120 70 110 90 65 80 150
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

→ Capacity →
ck 150 300 1 1 1

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
90x1 + 120x2 + 70x3 + 110x4 + 90x5 + 65x6 + 80x7 + 150x8 ≤ 300
x1 + x2 + x3 ≤ 1
x4 + x5 ≤ 1
x6 + x7 + x8 ≤ 1
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 0 0 1 0 1 1 0 0 value 140

where xij∗ is the variable with wij∗ = min{w1
ij ∀j ∈ (1, . . . , |Gi|)}, ∀i ∈ (1, . . . , n).

For purposes of explanation, we modify the index of items in order that the index

j∗ of each group Gi is equal to = |Gi| ∀i ∈ (1, . . . , n). Then the MCKP can be

modeled as shown in Figure 3.27.

where v̄ =
∑n

i=1 pij∗ . This value presents a lower bound of the MCKP, c′ =

c−
∑n

i=1 w
1
ij∗ , p

′
ij = pij − pij∗ and w′ij = w1

ij − w1
ij∗ .

With this kind of modeling, we are sure that at most one item is selected in each

group. This item represents the item which has the smallest weight for each group

denoted by j∗. So if any item of group Gi is selected on the GUBMKP formulation,

we are sure that the item j∗ is selected.

Chapter 2. The multiple demand multidimensional multiple choice KP 39

Figure 3.24: A second integer linear program of MMKP

maximize
∑n

i=1

∑|Gi|
j=1 pijxij (40)

subject to ∑n
i=1

∑|Gi|
j=1w

k
ijxij ≤ ck ((k = 1, . . . ,m) (41)∑|Gi|

j=1 xij ≤ 1 (i = 1, . . . , n) (42)∑|Gi|
j=1 xij ≥ 1 (i = 1, . . . , n) (43)

xij ∈ {0, 1} (i = 1, . . . , n), (j = 1, . . . , |Gi|) (44)

Figure 3.25: An integer linear program of MMKP based on the MDMKP
formulation

maximize
∑N

l=1 plyl (45)

subject to ∑N
l=1w

k
l yl ≤ ck (k = 1, . . . ,m + n) (46)∑N

l=1w
k
l yl ≥ ck, (k = m + n + 1, . . . ,m + 2n) (47)

yl ∈ {0, 1} (l = 1, . . . , N) (48)

The instance example of the MCKP (Figure 3.9) is moved to a GUBMKP instance

(see Figure 3.28)

3.4.6 Algorithms of MDMMKP are able to solve the other

problems

Given that any algorithm can solve the MDMMKP, based on the transitivity

characteristics of the generalization and the set of transformations, this algorithm

is able to solve all the other problems. In fact, we can easily transform their

instances into the MDMMKP ones which can be solved directly by the mentioned

algorithm.

Chapter 2. The multiple demand multidimensional multiple choice KP 40

Figure 3.26: An instance example of the MMKP based on the MDMKP
formulation

Input:
N ← 8 m← 5 q ← 3

→ Profits→
pj 10 20 30 40 50 60 70 80

→Weights→
wk

j 5 20 25 35 40 45 55 60
90 120 70 110 90 65 80 150
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 1

→ Capacity →
ck 150 300 1 1 1 1 1 1

Constraints:
5x1 + 20x2 + 25x3 + 35x4 + 40x5 + 45x6 + 55x7 + 60x8 ≤ 150
90x1 + 120x2 + 70x3 + 110x4 + 90x5 + 65x6 + 80x7 + 150x8 ≤ 300
x1 + x2 + x3 ≤ 1
x4 + x5 ≤ 1
x6 + x7 + x8 ≤ 1
x1 + x2 + x3 ≥ 1
x4 + x5 ≥ 1
x6 + x7 + x8 ≥ 1
xj ∈ {0, 1} (j = 1, . . . , 8)

Objective:
maximize 10x1 + 20x2 + 30x3 + 40x4 + 50x5 + 60x6 + 70x7 + 80x8

Optimal solution:
xj 0 0 1 0 1 1 0 0 value 140

3.5 Experimental results

This section is aimed at:

• validating experimentally the transformations between problems.

Chapter 2. The multiple demand multidimensional multiple choice KP 41

Figure 3.27: An integer linear program of MCKP based on the GUBMKP
formulation

maximize v̄ +
∑n

i=1

∑|Gi|−1
j=1 p′ijxij (49)

subject to ∑n
i=1

∑|Gi|−1
j=1 w′ijxij ≤ c′ (50)∑|Gi|−1

j=1 xij ≤ 1 (i = 1, . . . , n) (51)

xij ∈ {0, 1} (i = 1, . . . , n) (j = 1, . . . , |Gi| − 1) (52)

• answering the following questions: Are the generated problems using the

transformations able to produce a reasonable CPU time value compared

with the original formulations?

Note that the computational platform used to solve the test problems is consisted

as the CPLEX Solver version 9.0 on a Windows XP with 2.50 GHz and 2 GB

of shared memory. We modeled the MKP, MDKP, MMKP, GUBMKP and MD-

MMKP into CPLEX.

3.5.1 Instances details

To test the set of transformations mentioned in the last section, we use a set

of benchmarks available in OR-LIBRARY Beasley (1990) maintained by Beasley.

The proposed transformation of the MKP into the MMKP is tested on sets of

MKP instances. Indeed, these instances are available at OR-LIBRARY and results

have been published by Chu and Beasley (1998). The problem instances that we

considered are summarized in Table 3.3, where each instance set mknapcb for

i = (1, . . . , 6) contains 30 instances. The headers Set, N and m1 indicate the

name of the set, the number of items in each instance and the number of knapsack

constraints respectively.

For the MDMKP, we use the benchmarks proposed by Cappanera and Trubian

(2005). These instances are generated by properly modifying the MKP instances

Chapter 2. The multiple demand multidimensional multiple choice KP 42

Figure 3.28: An instance example of the MCKP based on the GUBMKP
formulation

Input:
N ← 8 n← 3

→ Profits→
pij 10 20︸ ︷︷ ︸

G1

10︸︷︷︸
G2

10 20︸ ︷︷ ︸
G3

→Weights→
wij 15 20︸ ︷︷ ︸

G1

5︸︷︷︸
G2

10 15︸ ︷︷ ︸
G3

→ Capacities→
c 45 = 130− (5 + 35 + 45)

Constraints:
15x11 + 20x12 + 5x21 + 10x31 + 15x32 ≤ 45
x11 + x12 ≤ 1
x21 ≤ 1
x31 + x32 ≤ 1
xij ∈ {0, 1} (i = 1, 2, 3) (j = 1, . . . , |Gi|)

Objective:
maximize 110 = (10 + 40 + 60) + 10x11 + 20x12 + 10x21 + 10x31 + 20x32

Optimal solution:
1 0︸︷︷︸
G1

1︸︷︷︸
G2

0 1︸︷︷︸
G3

value 150

Table 3.3: Test MKP instances details

Set N m1

mknapcb1 100 5
mknapcb2 250 5
mknapcb3 500 5
mknapcb4 100 10
mknapcb5 250 10
mknapcb6 500 10

solved in Chu and Beasley (1998). Given an MKP instance with m1 knapsack

constraints, 6 MDMKP instances are generated, one for each combination of profits

type (either positive or mixed) and number of constraints (m2 = 1, m2 = m1/2

and m2 = m respectively).

We test the first six instances sets where each set mdmkp ct for i = (1, . . . , 6)

Chapter 2. The multiple demand multidimensional multiple choice KP 43

contains 90 instances. The MDKP instances are reported in Table 3.4 where

the headers Set, N , m1 and m2 indicates the name of the set, the number of

items in each set, the number of knapsack constraints, and the number of demand

constraints respectively.

Table 3.4: Test MDMKP instances details

Set N m1 m2

mdmkp ct1 100 5 1 2 5
mdmkp ct2 250 5 1 2 5
mdmkp ct3 500 5 1 2 10
mdmkp ct4 100 10 1 5 10
mdmkp ct5 250 10 1 5 10
mdmkp ct6 500 10 1 5 10

For the MMKP, the instances set is summarized in Table 3.5. The header Instance,

n, ni

∑
ni and m1 indicates respectively the name of the instance, the number of

the groups, the number of the items of each group, the number of the total items,

and the number of knapsack constraints. This instances set contains 13 instances

(denoted I01, . . . , I13) varying from small to large-scale size ones. These instances

are given by Khan et al. (2002).

Table 3.5: Test MMKP instances details

Instance n ni

∑
ni m1

I01 5 5 25 5
I02 10 5 50 5
I03 15 10 150 10
I04 20 10 200 10
I05 25 10 250 10
I06 30 10 300 10
I07 100 10 1000 10
I08 150 10 1500 10
I09 200 10 2000 10
I10 250 10 2500 10
I11 300 10 3000 10
I12 350 10 3500 10
I13 400 10 4000 10

Because of the unavailability of the instances of MCKP and GUBMKP, we used the

weakly correlated procedure proposed by Han et al. (2010a) to generate instances.

Chapter 2. The multiple demand multidimensional multiple choice KP 44

For the GUBMKP, we range the instances into four sets and we vary the number

of items between 2500 and 15000. For each set, we generate 30 instances. In total

we generate 120 instances. The instances sets are reported in Table 3.6 in which

the headers Set, n, ni, m1 and
∑

ni indicate the name of the sets, the number of

the groups, the number of the items of each group, the number of the total items,

and the number of knapsack constraints respectively.

Table 3.6: Test GUBMKP problem details

Set n ni

∑
ni m1

gubmkp1 10 250 2500 5
gubmkp2 10 500 5000 5
gubmkp3 10 1000 10000 5
gubmkp4 10 1500 15000 5

Table 3.7 shows the MCKP instances in which the headers Set, n, ni and
∑

ni

respectively indicates the name of the set, the number of the groups, the number

of the items of each group, and the number of the total items. Note that each set

mckp for i = (1, . . . , 3) contains 30 instances.

Table 3.7: Test MCKP instances details

Set n ni

∑
ni

mckp1 1000 1000 1000000
mckp2 1500 1000 1500000
mckp3 2000 1000 2000000

3.5.2 Evaluation of the transformation

In this section, we give the results obtained by applying the different transforma-

tions between problems mentioned above. To compare the generated problems

with the original ones, we use the percentage of deviation denoted Dev which is

calculated in the following way Dev = T2
T1
×100. T1 and T2 represent respectively

the CPU time value of the solution of the classical formulation denoted model1

and the CPU time value of the solution of the generated problem based on the

Chapter 2. The multiple demand multidimensional multiple choice KP 45

transformation denoted model2. First of all, all the results obtained validate the

transformation between problems and reach the same values of optimality. Also

the generated problems are able to give a reasonable computing time. We report,

in Table 3.8, the overall results obtained by both formulations for all problems.

The columns denoted mT1 and mT2 represent the average of computation time of

model1 and model2 respectively, and Dev represents the percentage of deviation.

Table 3.8: Performances comparison of the transformation between different
ILPs

Set mT1 mT2 Dev
GUBMKP→ MMKP

gubmkp1 1,8 1,3 71,2%
gubmkp2 2,8 2,3 82,6%
gubmkp3 5,0 4,3 84,7%
gubmkp4 8,4 8,2 98,0%

MKP→ MMKP
mknapcb1 3,0 2,9 98,7%
mknapcb2 129,0 126,1 97,7%
mknapcb3 1743,8 1753,2 100,5%
mknapcb4 23,9 24,0 100,1%
mknapcb5 3088,2 3078,6 99,7%
mknapcb6 1952,1 1958,8 100,3%

MDMKP→ MDMMKP
mdmkp ct1 48,3 48,2 99,9%
mdmkp ct2 2437,4 2431,9 99,8%
mdmkp ct3 2394,0 1939,1 81,0%
mdmkp ct4 1414,5 1408,3 99,6%
mdmkp ct5 2509,8 2501,5 99,7%
mdmkp ct6 3282,7 3238,4 98,6%

MMKP→ MDMKP
I1 0 0 –
I2 0 0 –
I3 2 2 100,0%
I4 54 26 48,1%
I5 0 0 –
I6 0 0 –
I7 4771 4739 99,3%
I8 6052 4933 81,5%
I9 4735 4287 90,5%
I10 5411 4736 87,5%
I11 4517 4544 100,6%
I12 5494 4904 89,3%
I13 6700 5096 76,1%

MCKP→ GUBMKP
mckp1 21,8 21,0 96,0%
mckp2 43,5 32,2 73,9%
mckp3 44,8 43,5 97,1%

Chapter 2. The multiple demand multidimensional multiple choice KP 46

For the transformation of the GUBMKP into the MMKP, we notice that the

generated formulations (model2) use less time than the original ones (model1) for

all sets and the average of the Dev is equal to 84, 1%.

Also, we notice the same for the transformation of the MDKP into the MDMMKP

and the transformation of the MCKP into the GUBMKP who values of the average

of the Dev are equal to 96, 4% and 89% respectively.

For the transformation of the MKP into the MMKP, we notice that all the values

reached by the two formulations are very close and the average of the deviation of

CPU time value Dev is equal to 99, 5%.

For the transformation of the MMKP into the MDMKP, we remark that the gen-

erated formulations (model2) use less time than the original ones model1 except

the instance I11. We note that the average of the Dev for the whole instances is

equal to 85, 9%.

We do not test the transformation of the GUBMKP into the MKP because the

similarity of the lp file of CPLEX for both formulations as CPLEX does not show

the zero multipliers in the lp file.

3.6 Conclusion

This chapter presented a set of knapsack problems involving dimensions, demands

and multiple choice constraints among which are the MKP, the MDMKP, the

MCKP, the MMKP and the GUBMKP. Specifically, we defined the multiple de-

mand multidimensional multiple choice knapsack problem (MDMMKP) as a gener-

alization of these problems. Moreover, we applied a set of transformations between

the different integer linear programs of knapsack extensions.

Chapter 2. The multiple demand multidimensional multiple choice KP 47

Using these transformations, we showed that any algorithm able to solve the gen-

eralized problem can definitely solve its related problems mentioned above. Com-

putational results indicate that solving the new formulations using the transfor-

mations is able to generate reasonable computing time compared with the original

ones.

Chapter 4

The multiple choice

multidimensional knapsack

constraint

4.1 Introduction

Global constraints are one of the distinguishing features of constraint program-

ming. See, for example, Bessière et al. (2006), Régin (1999, 1994), Pesant (2004).

They specify patterns that occur in many problems, and exploit efficient and effec-

tive propagation algorithms to prune search space. Different categories of global

constraints are identified Rgin (2003). In this chapter, we will consider a con-

straint belonging to the weighted constraints. This category contains constraints

which are associated with some costs, usually a summation is implied and there

is a limit on it. Among these constraints is: the knapsack constraint.

In the literature, knapsack constraint refers to two problems. The two sided knap-

sack constraint proposed by Trick Trick (2003b), under the name ”knapsack con-

straint”, which is considered as subset-sum constraint. Trick proposed a pseudo

polynomial filtering algorithm based on dynamic programming approach to solve

it. On the other hand, Meinolf Sellmann (2003) introduced a knapsack constraint

48

Chapter 3. The multiple choice multidimensional knapsack constraint 49

involving an objective to maximize. This constraint is closer to the classical knap-

sack problem kpKellerer et al. (2004). Meinolf Sellmann (2003) introduced the

theoretical concept of approximated consistency. The main idea of the algorithm

consists in using bounds of guaranteed accuracy for cost-based filtering of op-

timization constraints. It was shown theoretically that the proposed algorithm

achieves approximated consistency in amortized linear time for bounds with arbi-

trary but constant accuracy. Also, Meinolf Sellmann (2004) provided an empirical

evaluation of approximated consistency for knapsack constraints by applying it

on the market split problem and the automatic recording problem. Experiments

results showed that approximated consistency for knapsack constraints can lead

to massive improvements for critically constrained problems.

In this chapter, we aim to introduce a new weighted constraint: the multiple choice

multidimensional knapsack constraint mcmdk. This constraint can be viewed as a

special case of the classical knapsack problem where resource is multidimensional

and items are divided on sets. Note that no optimization criteria is taken into

account. mcmdk constraints are common to almost real-life applications. For

instance, they are present in the resource allocation, the management of resources

in multimedia systems and in telecommunication networks.

The rest of the chapter is organized as follows. Section 2 gives the necessary

preliminaries of constraint programming. Section 3 discusses and formulates the

mcmdk constraint by conjunctions of sum and implies constraints. In section

4, we propose a filtering algorithm for propagating this global constraint while

section 5 evaluates the algorithm experimentally. Finally, Section 6 summarizes

the contributions of this work.

4.2 Constraint programming preliminaries

This section provides basic constraint programming concepts and present two con-

straints of interest: sum and implies. For further information on constraint pro-

gramming we refer the reader to Rossi et al. (2006a).

Chapter 3. The multiple choice multidimensional knapsack constraint 50

4.2.1 Constraint programming

The domain of a variable x, denoted by D(x), is a set of ordered values that can

be assigned to x. Let X = x1, x2, . . . , xn be a sequence of variables. The minimum

(resp. maximum) value of the domain is denoted by min(D(x)) (resp. max(D(x)).

A constraint C on X is defined as a subset of the Cartesian product of the domains

of the variables in X: C ⊆ D(x1)×D(x2)×, . . . ,×D(xn). A tuple (d1, . . . , dn) ∈ C

is called a solution to C. We also say that the tuple satisfies C. A value d ∈ D(xi)

for some i = 1, . . . , n is inconsistent with respect to C if it does not belong to a

tuple of C, otherwise it is consistent. C is inconsistent if it does not contain a

solution. Otherwise, C is called consistent.

A Constraint Satisfaction Problem (CSP) is defined by a finite sequence of vari-

ables X = x1, . . . , xn, together with a finite set of constraint C, each on a subset of

X. A solution to a CSP is an assignment of variables to values in their respective

domains such that all of the constraints are satisfied.

Constraint Programming proposes to solve CSPs by associating with each con-

straint a filtering algorithm that removes some domain values which cannot belong

to any solution of the CSP. These filtering algorithms are repeatedly called until

no more domain value can be removed. Then, CP uses a search procedure where

filtering algorithms are systematically applied when the variable domain is mod-

ified. Therefore, with respect to the current domains of the variables and thanks

to filtering algorithms, CP removes, once and for all, certain inconsistencies that

would have been discovered several times otherwise.

In order to be effective, filtering algorithms should be efficient, because they are

applied many times during the solution process. Further, they should remove as

many inconsistent values as possible. If a filtering algorithm for a constraint C

removes all inconsistent values from the domains with respect to C, we say that

it establishes the arc consistency of C. Arc consistency is also referred as domain

consistency or to generalized-arc consistency (GAC).

Chapter 3. The multiple choice multidimensional knapsack constraint 51

4.2.2 sum and implies constraints

sum constraint: The sum constraint is one of the most frequently occurring

constraints in applications. Let x1, . . . , xn and y be variables. The sum constraint

is defined as follows: y =
∑n

i=1 xi

implies constraint: Let c1 and c2 be constraints. The implies constraint implies(c1, c2)

states that if c1 holds then c2 holds where c1 represents the condition constraint

and c2 the conclusion constraint. We also write c1 ⇒ c2.

4.3 The multiple choice multidimensional knap-

sack constraint

The multiple choice multidimensional knapsack constraint is defined by a set of

items divided on n disjointed sets S = (S1 ∪ S2 ∪ · · · ∪ Sn) and a resource with

m dimensions. The resource has a limited capacity in each dimension k denoted

by ck. Each item j belonging to a set Si has a weight in each dimension, denoted

by wk,i,j. The objective is to select exactly one item from each set so that their

overall weight does not exceed any resource capacity.

Such multiple choice multidimensional knapsack constraint mcmdk can be achieved

in the following way:

We introduce for each set Si these variables (i) xi whose value corresponds to the

index of the selected item of this set and (ii) yk,i whose value corresponds to the

weight of the selected item for the dimension k. Using these variables combined

with implies and sum constraints, the mcmdk constraint can be formulated as

follows:

mcmdk



∑n
i=1 yk,i ≤ ck ∀k ∈ 1, . . . ,m (1)

(xi = j)⇒ (yk,i = wk,i,j∀k ∈ 1, . . . ,m) ∀i ∈ 1, . . . , n, ∀j ∈ 1, . . . , |Si| (2)

xi ∈ {1, . . . , |Si|} ∀i ∈ 1, . . . , n (3)

yk,i = {wk,i,j |∀j ∈ 1, . . . , |Si|} ∀i ∈ 1, . . . , n, ∀k ∈ 1, . . . ,m (4)

Chapter 3. The multiple choice multidimensional knapsack constraint 52

The first set of constraints (equation (1)) calculates the weight of the selected item

in each dimension and checks that the capacity in each dimension is not exceeded.

The second set of constraints (equation (2)) linked variables y with variables x

using the implies constraint.

Definition 1: More formally, the mcmdk constraint can be defined as follows:

Let x1, . . . , xn, y1,1, . . . , ym,1, y1,2, . . . , ym,2, . . . , y1,n, . . . , ym,n be variables with re-

spective finite domains

D(x1), . . . , D(xn), D(y1,1), . . . , D(ym,1), D(y1,2), . . . , D(ym,2), . . . , D(y1,n), . . . , D(ym,n),

let wk,i,j ∈ Q for k = 1, . . . ,m, i = 1, . . . , n and all j ∈ ∪i=1,...,nD(xi) be integers

and let c be an array of integers, i.e. c = [c1, c2, . . . , cm]. Then, the mcmdk

constraint is defined as:

mcmdk([x1, . . . , xn] , [y1,1, . . . , ym,1, y1,2, . . . , ym,2, . . . , y1,n, . . . , ym,n] , w, c) iff

∀k ∈ 1, . . . ,m
∑n

i=1 yk,i ≤ ck ∧

∀i ∈ 1, . . . , n, ∀j ∈ D(xi), (xi = j)⇒ (yk,i = wk,i,j ∀k ∈ 1, . . . ,m)

Example 1: There follows (Fig 1) a small illustrative example which will be used

throughout the chapter. We consider 3 sets each which is composed by 4 items and

a resource with 2 dimensions. Dimensions capacities are c = [14, 14] and weights

of items are the following:

w = [[[4, 2, 9, 11], [3, 11, 0, 5], [7, 1, 6, 10]],

[[2, 4, 3, 7], [1, 0, 9, 6], [8, 13, 10, 5]]]

4.3.1 Fundamental properties

Some classical properties can be applied in the pre-processing phase of the filtering

algorithm of mcmdk constraint:

1. If there exists k ∈ 1, . . . ,m such that
∑n

i=1min(D(yk,i)) > ck then mcmdk

is inconsistent.

Chapter 3. The multiple choice multidimensional knapsack constraint 53

Input:
n← 3 m← 2

→Weights→
w1,i,j 4 2 9 11 3 11 0 5 7 1 6 10
w2,i,j 2 4 3 7︸ ︷︷ ︸

S1

1 0 9 6︸ ︷︷ ︸
S2

8 13 10 5︸ ︷︷ ︸
S3

→ Capacities→
c1 ← 14 c2 ← 14
Constraints:

y1,1 + y1,2 + y1,3 ≤ 14
y2,1 + y2,2 + y2,3 ≤ 14
x1 = j (j = 1, . . . , 4)⇒ y1,1 = w1,1,j , y2,1 = w2,1,j

x2 = j (j = 1, . . . , 4)⇒ y2,1 = w2,1,j , y2,2 = w2,2,j

x3 = j (j = 1, . . . , 4)⇒ y3,1 = w3,1,j , y3,2 = w3,2,j

Variables:
y1,1 = {2, 4, 9, 11} y1,2 = {0, 3, 5, 11} y1,3 = {1, 6, 7, 10}
y2,1 = {2, 3, 4, 7} y2,2 = {0, 1, 6, 9} y2,3 = {5, 8, 10, 13}
x1 = {1, 2, 3, 4} x2 = {1, 2, 3, 4} x3 = {1, 2, 3, 4}

Figure 4.1: An instance example of the multiple choice multidimensional knap-
sack constraint

2. If there exists k ∈ 1, . . . ,m such that wk,i,j > ck(i ∈ 1, . . . , n, j ∈ D(xi))

then the wk,i,j is inconsistent.

3. If there exists k ∈ 1, . . . ,m such that
∑n

i=1 max(D(yk,i)) ≤ ck then the k-th

resource dimension can be eliminate.

Property 4: ∀f ∈ 1, . . . , n ∀k ∈ 1, . . . ,m, let lb = ck −
∑n

i=1,i 6=f min(D(yk,i))

then each value v of D(yk,f) >= lb is inconsistent and values j of D(xf), wk,f,j

of D(yk,f) ∀k = (1, . . . ,m) are also inconsistent, where j is the value that corre-

sponds to item j of set Sf whose weight wk,f,j is equal to v

Proof : To be consistent, the mcmdk constraint must check the following inequa-

tion:

n∑
i=1

yk,i ≤ ck

Thus, for a given f ∈ 1, . . . , n

ck −
n∑

i=1,i 6=f

yk,i ≥ yk,f

Chapter 3. The multiple choice multidimensional knapsack constraint 54

The search for a support for a value v of D(yk,f) is immediate because any value

b of
∑n

i=1,i 6=f D(yk,i) such that ck − b ≥ v is a support, so v is consistent with the

constraint if

v ≥ min(ck −
n∑

i=1,i 6=f

D(yk,i))

We can immediately state that all values of D(yk,f) less than or equal to

ck −
n∑

i=1,i 6=f

min(D(yk,i))

can be removed.

Note that, by definition of the problem, each item of Sf is presented by a value in

each yk,f variables k ∈ 1, . . . ,m and by a value in xf variable.

Now, let j the value of xf such that wk,f,j is equal to v. When v of D(yk,f) is

inconsistent, then their correspondent values wk,f,j of D(ykf), k ∈ 1, . . . ,m and j

of D(xf) are also inconsistent (the item j of Sf cannot configurate on any feasible

solution).

Proposition: Finding a solution to mcmdk constraint is NP -complete problem

in general.

Proof : This problem is obviously in NP (easy polynomial certificate). The mcmdk

constraint is an extension of the multiple choice knapsack problem mckp Kellerer

et al. (2004). The mckp is NP -Hard Kellerer et al. (2004) as it contains kp as

special case. Note that no optimization criteria is taken into account, then the

mcmdk is NP -complete.

Chapter 3. The multiple choice multidimensional knapsack constraint 55

4.4 Filtering algorithm for mcmdk constraint

The key idea behind the algorithm is based on property 4 which removes values

from y variables, and propagates the consequences of this removal. In fact, the

removing of a value of D(yk,f), k ∈ 1, . . . ,m involves the deletions of its corre-

spondent values of D(xf) and of D(yk2,f), k2 in1, . . . ,m k2 6= k.

Since the removing of values of D(yk,f)f = (1, . . . , n), k = (1, . . . ,m) depends

on min(D(yk,f2)), f2 ∈ 1, . . . , n f2 6= f , the proposed filtering algorithm must be

called only when a min(D(yk,f2)) are modified. It is useless to call it for other

modification.

1 begin
2 for k ← 1 to m do
3 for i← 1 to n do
4 put(i, k,Q);

5 end

6 end

7 end

Procedure initialize(Q,m,n:Integer)

The main filtering algorithm (see Algorithm 1) has two phases: initialization of a

list Q (line 2 calls procedure initialize) and propagation (lines 3-20).

Procedure initialize is committed to initializing the list Q (Q is a list that stores

pairs 〈knapsack, set〉 awaiting further processing).

Once procedure initialize has finished, algorithm 1 begins the propagation phase.

This process propagates the consequences of the removal of values from y variables.

Thus, the pair 〈k, f〉 stored in Q is selected (line 4) and its corresponding yk,f

variable is revised in the following.

At line 5, the function getInf(V ariable y[][], Integer k, Integer f) returns the

sum of the minimum values of variables yk,i∀i 6= f i = (1, . . . , n) .

Next, at line 6, if the sum of the value sum added to value val which corre-

sponds to the maximum value of the variable yk,f (value returned by the function

Chapter 3. The multiple choice multidimensional knapsack constraint 56

1 begin
2 Initialize(Q, n,m);
3 while Q! = � do
4 〈k, f〉 ← get(Q);
5 sum← getInf(y, k, f);
6 while sum + getSup(y[k][f]) > c[k] do
7 val← getSup(y[k][f]);
8 remV al(y[k][f], val);
9 j ← getIndex(k, f, val, y);

10 remV al(xf , j);
11 for k2← 1 to m do
12 if k2 6= k then
13 if w[k2][f][j] = getInf(y[k2][f]) then
14 putSet(f2, f, k2, Q);

15 end
16 remV al(y[k2][f], w[k2][f][j]);

17 end

18 end

19 end

20 end

21 end

Algorithm 1: Filtering algorithm

getSup(V ariable y)) exceeded the capacity c[k], then the value val is considered

inconsistent and it will be removed. Thus, we propagate the consequences of the

removal of val (lines 9 - 18).

Let j the value (returned by the function getIndex) corresponds to item j of set

Sf whose weight wk,f,j is equal to val. The removal of the item j from the set Si

is done by removing:

• the value j of D(xf) (line 10)).

• the value wk2,f,j of D(yk2,f) k2 ∈ 1, . . . ,m, k2 6= k. (line 16).

Every time that it is detected that a lower value of a variable yk2,f is removed, the

pairs 〈k2, f2〉 ∀ k2 = (1, . . . ,m) k2 6= k, f2 = (1, . . . , n) ∀f2 6= f is added to the

list Q for subsequent propagation using the procedure putSet. (line 14)

Next, we return to line 3 , we select the next pair 〈k, f〉 and we repeat the same

process until the list Q becomes empty.

Chapter 3. The multiple choice multidimensional knapsack constraint 57

pair satisfaction variables list Q
〈1, 1〉 (0 + 1) + 11 ≤ 14 – 〈2, 3〉 〈2, 2〉 〈2, 1〉 〈1, 3〉 〈1, 2〉
〈1, 2〉 (1 + 2) + 11 ≤ 14 – 〈2, 3〉 〈2, 2〉 〈2, 1〉 〈1, 3〉
〈1, 3〉 (2 + 0) + 10 ≤ 14 – 〈2, 3〉 〈2, 2〉 〈2, 1〉
〈2, 1〉 (0 + 5) + 7 ≤ 14 – 〈2, 3〉 〈2, 2〉
〈2, 2〉 (2 + 5) + 9 > 14 y2,2 = {0, 1, 6,�9} y1,2 = {�0, 3, 5, 11} 〈1, 3〉 〈1, 1〉 〈2, 3〉
〈2, 3〉 (2 + 0) + 13 > 14 y2,3 = {5, 8, 10,��13} y1,3 = {�1, 6, 7, 10} 〈1, 2〉 〈1, 3〉 , 〈1, 1〉
〈1, 1〉 (3 + 6) + 11 > 14 y1,1 = {2, 4, 9,��11} y2,1 = {2, 3, 4,�7} 〈1, 2〉 〈1, 3〉

(3 + 6) + 9 > 14 y1,1 = {2, 4,�9} y2,1 = {2,�3, 4, }
〈1, 3〉 (2 + 3) + 10 > 14 y1,3 = {6, 7,��10} y2,3 = {�5, 8, 10} 〈2, 2〉 , 〈2, 1〉 , 〈1, 2〉
〈1, 2〉 (2 + 6) + 11 > 14 y1,2 = {3, 5,��11} y2,2 = {�0, 1, 6} 〈2, 3〉 , 〈2, 2〉 , 〈2, 1〉
〈2, 1〉 (1 + 8) + 4 ≤ 14 – 〈2, 3〉 , 〈2, 2〉
〈2, 2〉 (2 + 8) + 6 > 14 y2,2 = {1,�6} y1,2 = {3,�5} 〈2, 3〉

〈2, 3〉 (2 + 1) + 10 ≤ 14 �

Table 4.1: A worked example

4.4.1 A worked example

Table 4.1 highlight the proposed algorithm by considering the initial example.

In a first phase, which ids initialization and is executed only once, the algorithm

initializes the list (Q): Q = {〈2, 3〉 〈2, 2〉 〈2, 1〉 〈1, 3〉 〈1, 2〉 〈1, 1〉}.

Each line of the table 4.1 represents the work done after the selection of a pair

〈k, f〉 stored in Q (line 4-19 Algorithm 1). The first column pair represents the

selected pair stored in Q (line 4 Algorithm 1). Column 2 satisfaction represents the

satisfaction test of resource capacity k (line 6 Algorithm 1). Column 3 variables

represents the domain modification of y variables. The column list Q represents

the list Q.

Theorem: The filtering algorithm does not maintain generalized arc consistency.

Proof : Generalized arc consistency implies that every value is consistent. To show

the reverse, we present an example in which our filtering algorithm cannot prune

all inconsistent values.

We consider an example with 2 sets of items each one of these sets is composed

by 3 items and a resource with 2 dimensions. The first set set1 is composed

by set1 = {(2, 4), (6, 1), (7, 3)} and the second set set2 is composed by set2 =

Chapter 3. The multiple choice multidimensional knapsack constraint 58

{(1, 5), (5, 2), (6, 4)}.Let c = {c1 = 8, c2 = 6}. Then the y variables are defined as

follows: y1,1 = {2, 6, 7} y1,2 = {1, 5, 6} y2,1 = {1, 3, 4} and y2,2 = {2, 4, 5}.

Applying the proposed filtering algorithm to this example, no values are removed.

Nevertheless, both items (7, 3) of S1 and (6, 4) of S2 cannot configurate on any

feasible solution, i.e. values 7 of D(y1,1) 6 of D(y1,2) 3 of D(y2,1) and 4 ofD(y2,2)

are inconsistent. Therefore, our filtering algorithm is not GAC.

4.5 Experiments

The purpose of our computational experiments to show that propagating mcmdk

using the algorithm introduced in this chapter is more effective and more efficient

than propagating it using the straightforward conjunction:

mcmdk([x1, . . . , xn] , [y1,1, . . . , ym,1, y1,2, . . . , ym,2, . . . , y1,n, . . . , ym,n] , w, c) iff

∀k ∈ 1, . . . ,m
∑n

i=1 yk,i ≤ ck ∧

∀i ∈ 1, . . . , n, ∀j ∈ D(xi), (xi = j)⇒ (yk,i = wk,i,j ∀k ∈ 1, . . . ,m)

We name our filtering algorithm mcmdk-fal and the straightforward conjunction

mcmdk-conj

To evaluate the filtering algorithm we propose randomly instances which can be

described with three parameters, the number of sets n, the number of items for each

set |Si| and the number of resource dimensions m. These instances are generated

in the following manner:

We classify the proposed instances in two classes. The first class is described by

a fixed number of sets (n = 15) and items in each set (|Si| = 15) and varying

the number of dimensions m = 10, 12, . . . , 28. The second class of instances is

described by a fixed (m = 15) and items (|Si| = 15) and a growing number of

sets n = 10, 12, . . . , 38. The weighed values are selected randomly between 0 and

R = 100 and the resource capacity ck is calculated as follows:

Chapter 3. The multiple choice multidimensional knapsack constraint 59

ck = 1/2

 n∑
i=1

min︸︷︷︸
1≤j≤|Si|

wk,i,j +
n∑

i=1

max︸︷︷︸
1≤j≤|Si|

wk,i,j


Ten instances were generated randomly for each combination of parameters, for a

total 250 instances.

We implemented our filtering algorithm using the Java-based constraint program-

ming engine Choco 2.1.5. The hardware used for the experiments is a 2,66 Ghz

Intel Core 2 DUO processor with 3 Gb RAM running Windows XP.

The results are shown in table 4.2 and table 4.3. Table 4.2 reports on instances

of class 1 with a fixed number of sets (n = 15) and varying m. Table 2 reports on

instances of class 2 with a fixe (m = 15) and varying n. The runtimes in seconds

(CPU), the number of backtracks (BT) and the number of visiting nodes (NODE)

are reported as the average over instances with the same parameters.

n m
mcmdk-conj mcmdk-fal

CPU BT NODE CPU BT NODE
15 10 0 25 60 0 16 29

12 1 154 700 0 45 290
14 22 2121 10456 5 464 4360
16 55 4565 23044 9 709 6723
18 127 9042 46601 25 1766 17217
20 1051 64150 340038 406 23161 254600
22 818 45101 236492 307 16454 172047
24 1218 61068 328298 330 15579 166786
26 977 49601 264322 247 11734 120687
28 1729 80489 427152 495 17639 184167

Table 4.2: Comparison on instances with n = 15

As predicted by the complexity of mcmdk, mcmdk-fal and mcmdk-conj become

more time consuming as m grows in the first table and n grows in the second

table. Tables 2 and 3 clearly show the impact of mcmdk-fal. We observe that

our proposed mcmdk-fal introduced in this chapter performs way better than the

basic model in all tested instances.

Chapter 3. The multiple choice multidimensional knapsack constraint 60

n m
mcmdk-conj mcmdk-fal

CPU BT NODE CPU BT NODE
10 15 4 410 2111 1 114 1085
12 78 7228 37435 18 1611 15660
14 45 3921 20799 7 626 6237
16 132 11175 57865 30 2503 24452
18 139 11415 57638 25 2019 19980
20 117 9399 46935 24 1947 19264
22 121 10747 44932 15 1150 10118
24 222 16632 81791 34 2565 25191
26 248 18736 85314 74 4681 45121
28 416 28751 141651 75 5006 49105
30 211 15162 70192 33 2408 21634
32 391 30275 127459 119 8961 74969
34 1129 85582 398771 364 23163 229877
36 997 61378 278173 311 19383 191464
38 979 64656 274952 575 34985 196825

Table 4.3: Comparison on instances with m = 15

4.6 Conclusion

In this chapter we have presented mcmdk, a new global constraint belonging

to the weighted constraints and closely related to the knapsack constraint. We

have shown how the mcmdk constraint can be modelled using the conjunction

of sum and implies constraints. We have shown that the mcmdk constrain is

NP -complete. Also, we have proposed a simple filtering algorithm to solve it.

Our experiments show that propagating the mcmdk constraint via the proposed

filtering algorithm is more effective and efficient than propagating it using the

straightforward conjunction.

Chapter 5

Solving Constrained Optimization

Problems By Solution-based

Decomposition Search

5.1 Introduction

Constrained optimization problems (COPs) are a generalization of the classical

Constraint Satisfaction Problems (CSPs) with an associated function that must

be optimized. COPs appear in many theoretical problems as well as for many

real-life applications. Examples are production planning subject to demand and

resource availability so that profit is maximized, air traffic control subject to safety

protocols so that flight times are minimized and the transportation vehicles so that

delivery times and fuel expenses are minimized.

Solving COPs is a challenging task and these problems are NP-Hard in general.

One of the most common approaches to solve COPs is the Branch and Bound

algorithm (B&B) which is a systematic enumeration method of all candidate so-

lutions, where large subsets of sub-optimal candidate solutions are pruned by using

upper (or lower) bounds of the objective function.

61

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 62

In this chapter we present an new strategy for solving COPs called solve and

decompose (or S&D for short). The proposed strategy is a systematic iterative

depth-first strategy that is based on problem decomposition. At the root node the

corresponding CSP (of the COP) is solved and a feasible solution is computed.

Unlike other decomposition methods, S&D uses a feasible solution of the CSP of

the original COP to further decompose the original problem into a bounded num-

ber of subproblems which are considerably smaller in size. It also uses the value of

the feasible solution as a bound that we add to the created subproblems in order to

strengthen the cost-based filtering. Furthermore, the feasible solution is exploited

in order to create subproblems that have more promise in finding better solutions

which are explored in a depth-first manner. The whole process is repeated until we

reach a specified depth where we do not decompose the subproblems anymore but

we solve them to optimality using B&B (or any other exact method).Our initial

results on two benchmark problems show that S&D may reach improvement of

up to three orders of magnitude in terms of runtime when compared to B&B.

The remainder of this chapter is organized as follows. Section 5.2 provides the

necessary formal background. We introduce a basic version of S&D in Section 5.3

and improve it in Section 5.4. Computational results are given in Section 5.5

whereas the related work is described in Section 5.6. Finally, section 5.7 concludes

this chapter.

5.2 Formal background

The Constraint Satisfaction Problem (CSP) Tsang (1993), Rossi et al. (2006b)

offers a powerful framework for representing and efficiently solving many NP-hard

problems. A CSP is defined by a triplet (X,D,C) where X is a set of decision

variables X = {x1, . . . , xn}, D is a set of domain values associated with x1, ..., xn

respectively and C is set of constraints. The domain of xi is referred to as D(xi).

Each constraint is a relation specifying allowed combinations of values for some

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 63

variables. A solution to a CSP is an assignment of variables to values in their

respective domains such that all of the constraints are satisfied.

In many applications, some solutions are better than others. The task in such

problems is to find optimal solutions, where optimality is defined in terms of some

application-specific functions. These problems are called Constrained Optimiza-

tion Problems (COPs) Jain and Grossmann (2001). A COP is defined by 4-tuple

(X,D,C, f) where (X,D,C) is a CSP and f is an objective function that maps

every solution to a numerical value. The objective of COP is to find a feasible

solution such that its value is either maximized or minimized, depending on the

requirements of the problem. Throughout this chapter, the set of variables X is

partitioned into two types of variables Y and Z such that X = Y ∪ Z. The set

of variables Y represents the variables appearing in the objective function (and

the problem constraints) whereas Z is the set of variables appearing only in the

problem constraints (but not in the objective function).

One of the most common approaches for finding optimal solutions is the Branch

and Bound algorithm (B&B) Lawler and Wood (1966). B&B is a backtracking

algorithm storing the value of the best solution found during search and uses it

to prune parts of the search tree. More precisely, whenever B&B encounters a

partial solution that cannot be extended to form a solution of better value, the

algorithm backtracks.

5.3 The basic Solve and Decompose algorithm

In this section, we describe a basic version of our algorithm called Solve and

Decompose and refer to it as S&D in short.

S&D is a solution-based decomposition. The feasible solution is obtained by solv-

ing the CSP of the original COP. The feasible solution is then exploited in order

to (i) decompose the original problem into a set of subproblems which are con-

siderably smaller in size than the original problem; (ii) identify promising regions

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 64

of the search tree; and (iii) strengthen the cost-based filtering during the solving

process.

5.3.1 The decomposition method

Consider a minimization COP (X,D,C, f) where X = Y ∪ Z and a solution S

to the CSP (X,D,C). We denote by x̄i the value assigned to xi in S. For each

variable yi ∈ Y , we create two sets of values: lefti which contains all values in the

domain of yi less than or equal to ȳi and righti which contains all values strictly

greater than ȳi. Thus, lefti and righti form a partition of the domain of yi.

Using lefti, righti, there exists 2|Y | possible subproblems of (X,D,C). Each

subproblem is created by modifying the domains of the yi’s as follows. The domain

of each yi, in a given subproblem, is set to either lefti or righti. Note that, all

subproblems are smaller in size than the original one.

5.3.2 Identification of promising subproblems

Depending on the form of the objective function and by reasoning on the feasible

solution used to decompose an original problem, one can identify certain subprob-

lems that constitute more promising parts of the search space than others. If

one explores those subproblem first, then the chances of finding better feasible

solutions are higher. This process may speed up the time to finding the optimal

solution.

For instance, consider a minimization COP (X,D,C, f) where the objective func-

tion is linear of the form
∑

i wiyi and wi ≥ 0. Suppose we have three variable

y1, y2, y3 ∈ {1, 2, 3, 4} and all wi are 1. Consider a feasible solution S in which y1

is 2, y2 is 3, and y3 is 3. There are 8 subproblems based on this feasible solution:

• (a) y1 ∈ {1, 2}, y2 ∈ {1, 2, 3}, and y3 ∈ {1, 2, 3}

• (b) y1 ∈ {1, 2}, y2 ∈ {1, 2, 3}, and y3 ∈ {4}

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 65

• (c) y1 ∈ {1, 2}, y2 ∈ {4}, and y3 ∈ {1, 2, 3}

• (d) y1 ∈ {1, 2}, y2 ∈ {4}, and y3 ∈ {4}

• (e) y1 ∈ {3, 4}, y2 ∈ {1, 2, 3}, and y3 ∈ {1, 2, 3}

• (f) y1 ∈ {3, 4}, y2 ∈ {1, 2, 3}, and y3 ∈ {4}

• (g) y1 ∈ {3, 4}, y2 ∈ {4}, and y3 ∈ {1, 2, 3}

• (h) y1 ∈ {3, 4}, y2 ∈ {4}, and y3 ∈ {4}

Since the objective function is linear in this case, one might think of different

heuristics that may be adopted in order to compare two subproblems in terms

of which one has higher chances of improving on f(S). For example, for each

subproblem we may sum the minimum of each decision variable yi and sort the

subproblems in decreasing order by this sum. The rationale behind this method is

that if we find a solution in the subproblem that has the smallest sum, then that

solution would be very tight. We refer to this heuristic as minmin. Conversely,

one might think in terms of the maximum values in each yi instead of the minimum

values. This gives us another heuristic method that we call minmax. Finally, a

simple method is to count the number of yi’s in each subproblems whose domain

values are less than or equal to the the value of yi in S. i.e., those yi’s whose

domain is lefti will not get worse values in the subproblem than the values in

S and hence the more yi’s that fit this criterion, the better chances we have in

improving the objective function value. We refer to this last method as maxleft.

We could also develop problem-specific heuristics for objective functions that are

linear or of any other form that may yield better orderings tailored to the problem

at hand.

5.3.3 Strengthening the cost-based filtering

The solution-based decomposition of the original problem generates subproblems

of smaller size. Furthermore, some of these subproblems may be more promising

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 66

in terms of finding better feasible solution than others. One can exploit these

subproblems in order to strengthen the cost-based filtering in the following way.

First, the value of the solution of the original problem can be used as a bounding

mechanism in order to eliminate certain subproblems that does not bring any

improvements. In other words, we can avoid visiting any subproblem whose lower

bound is worse than the value of the feasible solution S (the current best upper

bound). For instance, in our example, f(S) = 2 + 3 + 3 = 8 and since the

objective function is linear, a lower bound can be simply computed by summing

the minimums of the yi’s in each subproblem. Now, it is easy to see that the lower

bound of subproblems (d), (f), (g), and (h) are greater than or equal to f(S), the

current upper bound. Hence, these subproblems shall not be visited at all.

Second, if we start exploring the most promising subproblems first, the chances

of improving on the best upper bound (f(S)) are higher. This in turn tightens

the best upper bound for the next subproblems which leads to more pruning of

the next subproblems. For instance, suppose we solve subproblem (a) and find a

better feasible solution where each yi = 2. The value of the best upper bound is

now 6 instead of 8. Then we can also avoid visiting subproblems (b) and (c) since

their lower bound is 6. Thus, we are only left with subproblem (e) whose lower

bound is 5 to explore.

Finally, when we visit a subproblem, we may add a constraint that the value of

a feasible solution must be better than the value of the best upper bound found

so far. For instance, if the subproblem (e) does not have a feasible solution with

value 5, the added constraint will speed up the process of proving the infeasibility

of (e) since our best upper bound is 6.

5.3.4 Decomposition-based search

The final characteristic of the basic S&D is to recursively decompose the subprob-

lems in a depth-first manner by visiting the most promising subproblems first. The

root node of such a tree is the original problem. Each internal node is one of the

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 67

subproblems of the parent node. At each internal node, we either find a feasible

solution S or we fail. If we find a feasible solution S, we update our best upper

bound (upperB) and use the solution S to sequentially generate the subproblems

in increasing order of promise (using one the heuristics discussed before) and re-

curse. If we fail, then we backtrack to the parent node and recurse on the next

most promising subproblem. There are two ways in which we can fail at an inter-

nal node. Before we try to solve the subproblem, we fail if the current upperB is

smaller than a valid lower bound of the subproblem. If, however, the lower bound

is smaller than the current upperB, we modify our CSP by adding a constraint

that states that all solutions must have an objective value smaller than upperB.

If the subproblem is infeasible, we also fail. When we backtrack to the root node,

the value upperB constitutes the value of the optimal solution. Note that if the

decomposition process reach a specified depth, we do not decompose the subprob-

lems anymore but we solve them to optimality using B&B (or any other exact

method).

The pseudo-code for the basic S&D is show in Algorithm 2. It takes as input two

parameters: optimization problem oPb = (X,D,C, f) and the depth limit depth

and outputs the optimal solution (bestSol) along with its objective function value

upperB. At line 3, we set the global variable upperB to infinity whereas at line 4

we let pb the CSP corresponding to oPb. The final step, in line 5, computes the

bestSol by calling the function solveAndDecompose shown in Algorithm 3.

The function solveAndDecompose has four parameters: the csp pb, the function

f , the depth limit depth, and the initial 0. At line 2, if the current best upperB

is smaller than or equal to a valid lower bound of pb computed by calling function

lowerBound(), we fail. Note that, when the objective function is linear, a valid

lower bound can easily be computed by summing the minimum values of the yi’s.

If we do not fail, then, at line 3, we add to pb a constraint that enforces that any

feasible solution shall improve on upperB.

Next, at line 4, we test whether we reached our depth limit or not. In case, we

reached the depth limit, at lines 15, we solve the subproblem to optimality and

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 68

update the best upper bound if a solution is found (at lines 16-18). Otherwise, at

line 5, we solve pb.

If no solution is found, we fail. Otherwise, we update our upperB (at line 7) and

our bestSol (at line 8). Then, at line 9, by using the feasible solution found (sol),

we decompose pb in a sequential manner (line 10) and recurse on every subproblem

subPb of pb at line 11.

Note that, at line 10, the function generateNextPromosingSubproblem must gen-

erate the subproblems in the order dictated by one of the heuristics discussed above

(i.e., minmin, minmax, and minleft) one by one in order to avoid generating an

exponential number of them. Unfortunately, it seems quite challenging to imple-

ment such a function for the heuristics minmin and minmax because the ordering

depends on the values of the domains. Luckily, for minleft, we can generate the

subproblems in the preferred order one at a time. The basic idea is to generate

the subproblem where the domains of all the yi’s are lefti. Then, all but one have

domain lefti. Then, all but two have domain lefti, and so on. A simple tail-

recursive procedure can do achieve this. For instance, if we want all subproblems

in which k out of the n yi variables have domain lefti and the rest domain righti,

we can do the following:

1. set all variables’ domains to lefti if k = n (base case 1);

2. set all variables’ domains to righti if k = 0 (base case 2);

3. set the domain of the first variable i to lefti and recurse on the remaining

n− 1 variables with k;

4. set the domain of the first variable i to righti and recurse on the remaining

n− 1 variables with k − 1;

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 69

5.3.5 Example

Suppose we have the following COP: min
∑

i yi s.t.

y1 + y2 ≥ 3, y1 + y3 ≥ 3, y2 + y3 ≥ 3 where yi ∈ {1, . . . , 5}

Figure 5.1 shows a trace of the full search tree using the basic S&D to find the

optimal solution (bestSol = (y1 = 1, y2 = 2, y3 = 2)). The search tree generated

by S&D is of depth 2. The green nodes present a feasible solution obtained by

the function solve. Since, we have three variables in the objective function, at

each depth we have 23 = 8 subproblems to explore. At the root node, we find a

feasible solution with objective value 8 which we use to decompose the problem.

At depth 1, we explore the most promising subproblem subPbl1 according to our

heuristic maxleft. We find a better feasible solution that improves the objective

function value to 5 (which is the optimal solution). We decompose subPbl1 using

the feasible solution found and start exploring at depth 2 subPbl11. However,

subPbl11 is infeasible because it cannot improve on the value of upperB. We

backtrack and explore the next most promising subproblem subPbl12. But, this

time, we immediately fail because the lower bound of subPbl12 is 5 which means

we cannot improve upperB. So, we backtrack and explore the next subproblems.

For the remaining subproblems at depth 2, we either fail immediately (denoted

by squared X) or the problem is shown infeasible (denoted by circled X). After

we explore all subproblem at depth 2, we backtrack and explore the remaining

subproblems at depth 1. For all these subproblems, we immediately fail.

This simple example clearly shows the essence of the solution-based decomposition

search to prune some sub-optimal parts of search tree and the efficiency in which

we find the optimal solution.

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 70

5.4 Improving Solve and Decompose

The basic S&D can has many benefits in terms of pruning large parts of search

tree, generating subproblems of smaller size, identifying the promising subproblems

and consequently finding fast the optimal solution. But it has a main drawback

presented by the difficulty of proof of optimality due to the number of generated

subproblems which is exponential in the number of variables appearing in the

objective function. This means that the generated search tree has a large branching

factor.

To remedy this problem, we propose limiting the number of visited subproblem

to a certain level at which we hope that the optimal solution (or a good solution)

is found. Next, instead to traverse all the rest subproblems, we propose to return

on the parent node and to solve it to optimality.

Also, it should be noted that the subproblems are ranked in levels according to

the number of lefti subdomains. We noted each level by Lp where p presented

the number of lefti subdomains. Then, we propose limiting the decomposition

process to a level Lp such that all subproblems belonging to levels Lq, 0 ≤ q < p

are infeasible. That is mean that the decomposition process is stopped after finding

a solution at level Lp and not in previous levels.

The proposed modifications to the solveAndDecompose constitute our new S&D

algorithm that we refer to as improved S&D. The difference to the basic S&D is

that we now limit the number of visited subproblems, line 12 of the Algorithm 4.

We use a boolean variable stop to test whether the upperB is improved or not at

a level Lp. In case, the upperB is improved, the variable stop is used to stop the

while loop. That is mean we stop the decomposition process, and at line 23, we

solve the parent problem pb (the original problem) to optimality. Otherwise, if any

solution is not found, we increment p line 17 to move to the next level p+ 1. This

process is repeated until the upperB is improved or p reaches |Y | (ie. pb is not

feasible). Note that, at line 14, the function generateNextPromosingSubproblem

must generate subproblems belonging to the level Lp, where p is an input parameter

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 71

of the function, one by one in order to avoid generating an exponential number of

them.

5.5 Computational results

5.5.1 Benchmark problems

For our computational study, we consider two COPs: the multidimensional multiple-

choice knapsack problem (MMKP) Moser et al. (1997b) and the Steel Mill Slab

Design Problem (SMSDP) Frisch et al. (2001).

5.5.1.1 MMKP

MKKP is a generalization of the classical knapsack problem. MMKP is defined

by a set of items divided into n groups and a resource with m dimensions. The

resource has a limited capacity in each dimension k denoted by ck. Each item j

belonging to a group Gi has profits pi,j and a weight in each dimension, denoted by

wk,i,j. The objective is to select exactly one item from each group such that their

overall profit is maximized, while the overall weight does not exceed any resource

capacities. A model for the MMKP is shown in Figure 5.2.

Decision variable itemi is introduced for each group Gi whose value corresponds

to the index of selected item of this group. profiti corresponds to the profit of the

selected item of each group whereas weightk,i is the weight of the selected item

of each group for each dimension k. The first set of constraint enforce that the

capacity in each dimension is not exceeded. The second (third) set of constraints

compute the profit of the selected item (the weight of the selected item in each

dimension).

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 72

5.5.1.2 SMSDP

The SMSDP Frisch et al. (2001) consists in assigning n orders to a set of slabs.

Each order has a color and a weight representing the slab capacity it takes. Each

slab has a capacity that must be chosen from the increasing set of capacities

{c1 . . . cm} where m is the number of slab capacities. A solution is an assignment

of orders to slabs such that the total weights of the orders in a slab must not exceed

the slab capacity and at most p, of k total colors, different colors are present in

each slab. The objective is to minimize the sum of the weights of the slabs used

in the solution.

We use the model in Frisch et al. (2001) and shown in Figure 5.3. We introduce for

each slab j, a variable slabj whose value corresponds to the capacity that takes. 0

is added to the domain of each slab variable in case when the slab is unused. We

introduce 1,0,0two binary variables orderi,j and colori,j. orderi,j is equal to 1 iff

order i is assigned to slab j whereas colori,j is equal to 1 if color i is assigned to

slab j, 0 otherwise. The first set of constraints guarantees that slab capacities are

not exceeded. The second set of constraints enforce that the number of distinct

colors per slab shall not exceed p. The third set of constraints channel between

the color matrix and the order matrix. Whenever an order is assigned to a slab,

then the color of that order is added to the colors of that slab. Constraints (4)

break the symmetry among the slab variables whereas constraint (5) adds a valid

lower bound.

5.5.2 Settings

For the MMKP, we propose a set of random instances with varying sizes, using the

proposed method by Han et al. (2010b), where profits (respectively weights) are

generated using the uniform generating function (respectively the uncorrelated

generating function). Each instance can be described by three parameters, the

number of groups n, the number of items for each group |Gi| and the number of

resource dimensions m. To show the behavior of S&D when varying the number

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 73

of domain values, we classify the proposed instances in two classes. The first class

(respectively the second class) is described by a fixed number of items (|Gi| = 20)

(respectively |Gi| = 50). For each class, we use a growing number of groups

n = 10, 15, 20, 25 to show the impact of S&D when varying the number of objective

variables which used in the decomposition process. For both classes, the number

of dimensions is fixed to 10 and the weight values are selected randomly between

0 and R = 100. Ten instances were generated randomly for each combination of

parameters, for a total 80 instances.

For the SMSDP, we generate randomly a set of instances as subsets of the real

instance available at csplib (prob038) with 10, 11, 12 13, 14 and 15 orders, since

the real instance with 111 orders is a quite large instance and it is hard to solve

with the model in Frisch et al. (2001). Note that, slab capacities and colors are

the same as in the CSPLib real instance. Five instances were generated for each

order, for a total 30 instances.

Our experiments are carried out on a machine with Pentium(R) Dual-Core CPU

2.6 GHz processor, with 2 GB RAM. As our constraint programming solver we use

the Choco Solver, version 2.1.1 1 for solving CSPs as well as COPs. Variable and

value selection heuristics were selected as it were defined by the default branching

heuristic of Choco. We set the time limit for each instance to 3600 seconds.

5.5.3 Results

The objectives of our experiments are aimed at answering the following questions:

• Does the proposed order of the generated subproblems is able to identify the

promising ones?

• What is the behavior of the basic S&D algorithm in both terms search and

proof of optimality?

1http://www.emn.fr/z-info/choco-solver/

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 74

• Does the improved S&D algorithm cancel the drawbacks of the basic S&D

algorithm?

• Does the improved S&D algorithm bring any benefit in terms of pruning

and of search efficiency compared to the B&B algorithm?

• What effect can we observe when we vary the depth limit of the decomposi-

tion?

The results of basic S&D, improved S&D and B&B algorithms of the first and

second class of MMKP instances (respectively the SMSDP instances) are presented

in Table 5.1 and 5.2 (respectively Table 5.3). In order to show the ability of S&D

to identify the promising subproblems, we start the evaluation by setting the depth

parameter depth to 1.

For the basic S&D, we report in column Lp the location level Lp of the optimal

solution for each instance. We observe that the optimal solution is found in a

reduced location level regardless the number of objective variables. The algorithm

has almost the same behavior when we vary the number of objective variable. In

fact, for the MMKP, the position median location level of the optimal solution in

Table 5.1 (respectively Table 5.2) is equal to 0, 1, 0,5 and 2 (respectively 0 ,0.5,

0.5 and 1) for respectively 10, 15, 20 and 25 objective variables. Also, we observe

that the basic S&D has a similar behavior regardless the domain size of objective

variables (Table 5.1 and Table 5.2).

For the SMSDP, the position median location level of the optimal solution is equal

to 0, 1, 0, 0, 0, 0 for respectively 10, 11, 12, 13, 14 and 15 objective variables.

Based on the results, we clearly observe the performance of S&D to identifying

and exploring the promising subproblems.

In order to further understand the behavior of the basic S&D, we report in column

CPU the time (in seconds) required by S&D, the time to find the optimal solution

column FindObj. For both MMKP and SMSDP, results show the efficiency of the

basic S&D to find the optimal solution. On the other side results show a main

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 75

weakness is that we spend most of time trying to prove optimality. For example,

the basic S&D is not able (reach the time limit) to prove the optimality when the

number of objectives variables is greater or equal to 20. Note that all instances

show a very similar behavior in terms of finding the optimal solution and prove

optimality.

In the figure 5.4, we report the the CPU time consumed by the basic S&D in each

level Lp, p = 0, . . . , |Y | = 15 for a representative instance inst17 of MMKP. Note

that all other instances show a very similar behavior as instance inst17.

Although, the optimal solution is found at level L1, we remark that the basic S&D

spent a lot of time due to the exponential number of the generated subproblems.

Also, we remark that it spent a lot of time at level L|Y |/2 since it contains the

biggest number of subproblems.

As we conclude from the previous that the basic S&D to be efficient, it has to be

effective in term of proof of optimality.

Now, we analyse the improved S&D. We show if it is able to remedy the spend

of time trying to prove optimality. We report in column Lp and valSol the po-

sition and the value of the founded solution at level Lp. The quality of a so-

lution is measured by the percentage gap between the optimal solution value

and the founded solution value at level Lp, i.e.100 ∗ (optimalsolutionvalue −

foundsolutionvalue)/(optimalsolutionvalue). We observe that the optimal so-

lution is found in 81.25% for the MMKP instances (respectively 76.7% for the

SMSDP insances) and the percentage gap between the found and the optimal

solution is very small and it is equal to 0.09 (respectively 0.24) in average.

Also, we observe that the proposed parameter plays a significant role to reduce

the CPU time. In fact, results show that the time spent by S&D after finding

the solution at level Lp is clearly reduced compared with the basic S&D. In this

respect, the proposed modification plays a central role to best fine tune S&D.

Finally, we show the results obtained by B&B. Column CPU , Backtracks and

Nodes show the runtime respectively the number of visited nodes= and the number

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 76

of backtracks of B&B. The results clearly show that S&D improves on B&B in

terms of pruning and of search efficiency in all instances. These improvements

may reach 3 orders of magnitude.

In the experiments presented above, by setting the depth limit to 1, we showed

that the improved S&D outperform B&B algorithm in terms of pruning and of

search efficiency. We now investigate if the depth parameter plays any role to

improve the founded results.

For a depth value greater than 1, experiments (see Table 4 and Table 5) showed

that the depth parameter plays a negative role to improve the founded results in

general, and when we increase the depth value the performance goes down. Since

the size of the subproblems decrease with larger depth, we may end up with less

promising subproblems to explore first and we may still be decomposing a non-

promising subproblem. Also, when we increase depth, the size of the subproblems

decrease and consequently the number of feasible solution decrease and in many

cases the subproblem contains a single solution. Therefore, in this case we must

traverse all generated subproblems such that any of them is inconsistent. This

explain the behavior of the depth parameter in many instances.

In some instances such as instances ins5, ins7, and ins30 of SMSDP and inst39

inst41 and inst59 MMKP, we remark that the performance may go up and down

and is rather unstable. We observe a non-consistent behavior when we increase

depth. Sometimes we get lucky and explore a promising subproblem first and the

performance is improved with smaller depth.

Based on the results, we can identify that the configuration of S&D when depth

equal to 1 can be viewed as the best configuration.

5.6 Related work

In this section, we discuss the relevant works that have been done on decomposition

search that are closely related to our works.

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 77

The closest work to ours is the one of Milano and van Hoeve Hoeve and Milano

(2004) which generalizes Milano and Hoeve (2002). Hoeve and Milano (2004)

introduces a search strategy called Decomposition Based Search (DBS) where a

domain splitting strategy is employed to break down a finite domain problem into

subproblems. DBS is used for solving both CSPs and COPs and it is based on

two steps: subproblem generation and subproblem solution. The generation of

subproblems is done through domain splitting. Domain splitting is used to de-

compose the original problem into a set of subproblems with smaller sub-domains

according to a value ordering heuristic. The heuristic needs to rank a value with

two levels of accuracy: first, it should measure accurately how successful a value

is; second, it is required to discriminate among values with the same rank.

They employ Limited Discrepancy Search Harvey and Ginsberg (1995) to exploit

the ranks. At a specified level d, defined by a user in a pre-search stage, the

domains are not split anymore and the resulting subproblem is solved. The authors

propose two alternatives to solve the subproblem. The first one consists of using

the Depth-First Search for solving subproblems at level d and the second consists of

applying again the principle of DBS but by using another value ordering heuristic

at each recursive call. But, only the evaluation of the first strategy is carried

out in Hoeve and Milano (2004) since implementing the DBS recursively is quite

challenging. It is useless to use the same heuristic for the subproblem solution

since all values belonging to the subproblem have a very similar rank. Thus, it

is advised to use another value ordering heuristic which shall partition further

the sub-domains which might be difficult to have for the same problem for each

recursive call.

DBS is close to S&D. In fact, Algorithm 3.1 of DBS (presented in Hoeve and

Milano (2004)) can be viewed as the S&D algorithm where the depth parameter

d of DBS represents the number of objective variables of S&D and the parameter

depth of S&D is set to 1. But, unlike, DBS, which uses value ordering heuristics to

generate the subproblems, S&D uses a feasible problem to the CSP of the COP. It

is this feature which makes S&D very simple when it comes to implementation as

opposed to DBS. Finally, S&D uses only a subset of the variables appearing in the

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 78

objective function in the decomposition that will be used to identify the promising

subproblems. However, in DBS, all variables can be used in the decomposition.

The work in Kitching and Bacchus (2009) introduced a limited approach of ex-

ploiting decomposition on certain types of COPs in which the constraints and

objective function are decomposable. Their approach is compatible with a fully

flexible branch and bound search employing dynamic variable and value ordering.

In practical terms, their method requires that the variables appearing in the ob-

jective function be decomposed into a set of sub-objective variables so that each

subset and each constraint only depends on a proper subset of the variables.

The work in Régin et al. (2014) described an efficient parallel version of the de-

composition for solving CSPs. They propose an Embarrassingly Parallel Search

(EPS) method. EPS decomposes the original problem in large distinct subprob-

lems, each one is then solved independently by workers. This method uses the

cooperation between computation units (workers) to divide the work dynamically

during the resolution. It splits statically the initial problem into a large number of

subproblems that are consistent with the propagation and puts them in a queue.

Once this decomposition is over, the workers take dynamically the subproblems

from the queue. The solving process ends when all subproblems are solved.

5.7 Conclusion

In this chapter, we propose S&D which a systematic iterative depth-first strategy

that is based on problem decomposition. S&D uses a feasible solution at each node

in order to decompose the problem into smaller subproblems. The same solution is

also used in order to explore subproblems that have more promise in finding better

solutions as well as a bound for the next subproblems. The number of subproblems

is bounded and is controlled by parameter p whereas their size is controlled by

depth which is a depth limit after which we stop the decomposition process. S&D

is designed so (i) to speed up the time to finding the optimal solution by problem

decomposition and visiting of promising subproblems first; and (ii) to speed up

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 79

the proof of optimality by strengthening the cost-based filtering. Our experiments

on MMKP and SMSDP benchmarks show that S&D improves on B&B in general

and the improvement may reach orders of magnitude.

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 80

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 81

input : oPb = (X,D,C, f); depth : Integer;

output: bestSol : Solution; upperB : Integer;

1 begin

2 upperB is a global variable;

3 upperB ←∞;

4 pb = (C,D,X);

5 bestSol← solveAndDecompose(pb, f, depth, 0);

6 end

Algorithm 2: Basic S&D

input : pb = (X,D,C) : CSP ; f : function;

output: bestSol : Solution;

1 begin

2 if upperB > lowerBound(pb) then

3 add f(Y) < upperB to constraints of pb;

4 if levelD ≤ depth then

5 sol← solve(pb);

6 if sol 6= null then

7 upperB ← f(sol);

8 bestSol← sol;

9 while pb has more subproblems do

10 subPb← generateNextPromisingSubproblem(pb, sol);

11 solveAndDecompose(subPb, f, levelID + 1);

12 end

13 end

14 else

15 sol← optimize(pb, f);

16 if sol 6= null then

17 upperB ← f(sol);

18 bestSol← sol;

19 end

20 end

21 end

22 return bestSol;

23 end

Algorithm 3: solveAndDecompose(pb,f,depth,levelID)

input : pb = (X,D,C) : CSP ; f : function;

output: bestSol : Solution;

1 begin

2 if UpperB > lowerBound(pb) then

3 add f(Y) < upperB to constraints of pb;

4 if levelD ≤ depth then

5 sol← solve(pb);

6 if sol 6= null then

7 upperB ← f(sol);

8 bestSol← sol;

9 lastUpperB ← upperB;

10 stop← false;

11 p← 0;

12 while p ≤ |Y | and stop = false do

13 while pb has more subproblems at level Lp do

14 subPb← generateNextPromisingSubproblem(pb, sol, p);

15 solveAndDecompose2(subPb, f, levelID + 1);

16 end

17 p← p + 1;

18 if upperB! = lastUpperB then

19 stop← true;

20 end

21 end

22 if stop = true then

23 sol← optimize(pb, f);

24 if sol 6= null then

25 UpperB ← f(sol);

26 bestSol← sol;

27 end

28 end

29 end

30 else

31 sol← optimize(pb, f);

32 if sol 6= null then

33 UpperB ← f(sol);

34 bestSol← sol;

35 end

36 end

37 end

38 return bestSol;

39 end

Algorithm 4: improvedSolveAndDecompose(pb,f,depth,levelID)

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 82

Figure 5.1: A Trace of the basic S&D on an example.

Constraints:
(1)

∑n
i=1weightk,i ≤ ck ∀k ∈ 1, . . . ,m

(2) profiti = pi,itemi
∀i ∈ {1, . . . , n}

(3) weightk,i = wk,i,itemi
∀k ∈ {1, . . . ,m}, ∀i ∈ {1, . . . , n}

Decision variables and domains:
profiti ∈ {pij|∀j ∈ (1, . . . , |Gi|)}, ∀i ∈ {1, . . . , n}
itemi ∈ {1, . . . , |Gi|}, ∀i ∈ {1, . . . , n}
weightk,i = {wk,i,j|∀j ∈ {1, . . . , |Gi|}}, ∀i ∈ {1, . . . , n},∀k ∈ {1, . . . ,m}

Objective function:
maximize

∑n
i=1 profiti

Figure 5.2: Multidimensional multiple choice knapsack problem formulation.

Constraints:
(1)

∑n
i=1weight(i) ∗ orderi,j ≤ slabj, ∀j ∈ {1, . . . , n}

(2)
∑k

i=1 colori,j ≤ p, ∀j ∈ {1, . . . , n}
(3) (orderi,j = 1)→ (colorcolor(i),j = 1), ∀i, j ∈ {1, . . . , n}
(4) slabj ≤ slabj+1, ∀j ∈ {1, ..., n− 1}
(5)

∑n
i=1weight(i) ≤

∑n
j=1 slabj

Decision variables and domains:
slabj ∈ {0, c1, . . . , cm}, ∀j ∈ {1, . . . , n}
orderi,j ∈ {0, 1}, ∀i, j ∈ {1, . . . , n}
colori,j ∈ {0, 1}, ∀i ∈ {1, . . . , k},∀j ∈ {1, . . . , k}

Objective function:
minimize

∑n
j=1 slabj

Figure 5.3: Steel Mill Slab Design Problem formulation.

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 83

Figure 5.4: Time consumed by S&D in each level for MMKP instance inst17

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 84

Table 5.1: The runtime in second for MMKP instances using basic S&D and
improved S&D as well as using B&B. Note that ”–” means that the time limit

has been reached.

B
a
si
c
S
&
D

Im
p
ro

v
e
d

S
&
D

B
&
B

G
A
P

|y
|

L
p

O
b
j

C
P
U

F
in

d
O
b
j

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

L
p

O
b
j

O
b
j
L
p

C
P
U

F
in

d
O
b
j

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

O
b
j

C
P
U

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

S
&
D

/
B
S
&
D

S
&
D

/
B
&
B

In
st
1

1
0

2
9
4
6

2
7

8
1
6
6
6
9

2
5
6
6

1
9
4
6

9
3
0

8
6

1
8
6
0
4

2
8
2
7

9
4
6

3
6

7
8
2
7
4

9
7
2
7

7
0
,3
7

7
7
,7
8

In
st
2

0
9
1
8

2
3

3
7
2
1
5

1
1
4
7

0
9
1
8

9
1
8

3
3

7
2
6
4

1
1
5
6

9
1
8

1
4

2
5
9
1
5

2
8
7
2

8
6
,9
6

7
8
,5
7

In
st
3

0
8
5
2

4
8

1
5

6
5
4
0
9

1
0
3
7
4

0
8
5
2

8
5
2

4
1

1
5

9
0
7
6
1

1
3
5
1
6

8
5
2

2
6
2

5
1
8
3
8
7

5
3
7
0
4

1
4
,5
8

8
4
,3
5

In
st
4

0
9
2
4

2
2

1
6
4
7
7

1
1
9
1

0
9
2
4

9
2
4

3
1

6
5
1
0

1
0
6
6

9
2
4

2
0

4
3
9
2
6

5
4
3
7

8
6
,3
6

8
5
,0
0

In
st
5

0
9
0
5

2
4

3
1
0
3
1
9

1
7
2
1

0
9
0
5

9
0
5

5
3

1
1
8
3
2

1
9
8
4

9
0
5

3
6

7
8
9
0
1

9
7
6
9

7
9
,1
7

8
6
,1
1

In
st
6

2
9
1
4

2
2

2
4
5
4
2

7
5
6

1
9
1
4

9
1
3

2
2

4
9
8
8

8
5
9

9
1
4

1
6

3
4
7
3
3

4
3
3
5

9
0
,9
1

8
7
,5
0

In
st
7

2
9
1
1

2
4

3
9
8
1
8

2
0
3
0

0
9
1
1

8
9
6

7
1

1
6
4
2
1

2
8
2
2

9
1
1

5
6

1
1
1
0
8
7

1
2
2
4
8

7
0
,8
3

8
7
,5
0

In
st
8

0
8
8
5

2
5

3
1
1
9
2
9

2
5
7
4

0
8
8
5

8
8
5

8
3

1
7
9
4
8

3
5
4
1

8
8
5

6
8

1
5
8
2
3
7

1
8
5
4
5

6
8
,0
0

8
8
,2
4

In
st
9

0
8
9
4

2
2

2
4
6
2
1

5
4
5

0
8
9
4

8
9
4

2
2

4
7
4
4

5
6
4

8
9
4

2
7

5
8
5
4
5

5
9
6
7

9
0
,9
1

9
2
,5
9

In
st
1
0

0
9
5
2

2
0

0
1
1
2
2

1
8
3

0
9
5
2

9
5
2

0
0

1
2
2
1

2
1
4

9
5
2

1
3

2
7
0
5
2

3
4
9
7

1
0
0
,0
0

1
0
0
,0
0

in
st
1
1

1
5

2
1
3
7
1

8
0
0

1
1
3

2
4
5
8
9
2

3
8
5
3
8

1
1
3
7
1

1
3
5
0

1
3
2

8
9

2
8
4
9
9
2

4
4
8
2
3

1
3
7
1

1
8
4
0

5
0
1
8
5
7
8

5
3
2
9
5
3

8
3
,5
0

9
2
,8
3

in
st
1
2

1
1
4
1
1

6
8
2

2
4
9
9
3

1
2
5
8

1
1
4
1
1

1
4
1
1

3
2

6
6
8
1

1
7
0
3

1
4
1
1

6
4

1
6
7
7
8
6

2
5
2
7
9

9
9
,5
6

9
5
,3
1

in
st
1
3

2
1
3
8
9

7
0
0

2
3

3
7
0
0
4

6
0
5
8

0
1
3
8
9

1
3
8
6

2
2

1
8

3
8
7
2
7

6
0
1
6

1
3
8
9

6
3
7

1
3
3
7
6
6
2

1
1
6
2
1
1

9
6
,8
6

9
6
,5
5

in
st
1
4

0
1
4
2
9

6
8
5

3
7
0
3
1

1
0
6
3

0
1
4
2
9

1
4
2
9

3
3

7
0
5
0

1
0
7
1

1
4
2
9

1
0
9

2
3
6
2
4
3

2
6
7
9
7

9
9
,5
6

9
7
,2
5

in
st
1
5

1
1
4
0
8

6
9
1

7
1
5
7
4
7

2
7
2
4

0
1
4
0
8

1
3
9
4

7
7

1
5
7
3
3

2
7
2
0

1
4
0
8

3
0
1

4
8
3
5
7
9

4
6
3
2
5

9
8
,9
9

9
7
,6
7

in
st
1
6

2
1
4
3
7

6
8
8

6
1
0
3
3
7

1
6
3
4

2
1
4
3
7

1
4
3
7

8
6

1
0
3
5
9

1
6
4
4

1
4
3
7

3
7
5

6
6
2
4
9
5

6
2
7
0
6

9
8
,8
4

9
7
,8
7

in
st
1
7

1
1
4
1
9

6
8
5

4
1
1
3
8
2

1
9
8
3

1
1
4
1
9

1
4
1
9

6
4

1
3
5
0
0

2
4
4
2

1
4
1
9

2
9
3

6
0
8
0
3
1

6
3
5
8
7

9
9
,1
2

9
7
,9
5

in
st
1
8

1
1
4
1
8

6
9
0

1
1

2
3
5
8
8

3
5
1
0

1
1
4
1
8

1
4
1
8

1
2

1
1

2
4
3
0
0

3
7
2
3

1
4
1
8

6
2
6

1
3
9
3
8
1
0

1
3
0
4
5
3

9
8
,2
6

9
8
,0
8

in
st
1
9

3
1
4
2
1

7
0
2

2
4

3
8
5
6
2

8
0
2
4

2
1
4
2
1

1
4
2
0

2
0

1
1

4
3
3
2
6

8
9
3
0

1
4
2
1

1
3
4
6

4
0
3
7
2
7
1

3
9
5
3
5
6

9
7
,1
5

9
8
,5
1

in
st
2
0

0
1
4
0
6

6
8
4

2
3
5
3
4

5
7
2

0
1
4
0
6

1
4
0
6

2
2

3
5
7
0

5
8
5

1
4
0
6

2
3
2

4
2
6
3
2
3

4
1
6
5
1

9
9
,7
1

9
9
,1
4

in
st
2
1

2
0

1
1
8
7
3

–
2
9

8
1
6
2
4

1
8
6
8
1

1
1
8
7
3

1
8
7
3

5
3

2
9

1
3
0
3
6
3

3
0
1
9
4

1
8
7
3

2
5
9

8
6
6
5
9
9

9
9
0
3
2

9
8
,5
3

7
9
,5
4

in
st
2
2

2
1
8
8
0

–
6
8

1
9
8
5
9
1

3
8
6
0
5

2
1
8
8
0

1
8
8
0

7
9

6
8

2
1
5
1
8
3

4
2
6
5
3

1
8
8
0

5
3
3

1
5
6
9
8
3
2

2
4
1
7
8
4

9
7
,8
1

8
5
,1
8

in
st
2
3

1
1
8
9
1

–
1
8

4
6
0
9
3

8
9
2
0

1
1
8
9
1

1
8
9
1

1
9

1
8

4
7
4
0
5

9
2
1
2

1
8
9
1

3
2
4

1
1
3
6
5
3
2

1
1
4
9
3
2

9
9
,4
7

9
4
,1
4

in
st
2
4

0
1
8
8
8

–
8
8

2
1
2
3
6
9

3
4
3
1
5

0
1
8
8
8

1
8
8
8

8
9

8
9

2
1
2
6
0
6

3
4
4
0
5

1
8
8
8

2
5
1
9

7
3
1
2
1
6
1

6
1
6
2
8
6

9
7
,5
3

9
6
,4
7

in
st
2
5

0
1
9
0
8

–
6
3

1
7
1
9
5
1

3
4
4
2
8

0
1
9
0
8

1
9
0
8

6
3

6
3

1
7
2
0
3
8

3
4
4
6
9

1
6
0
6

–
6
9
7
1
1
3
2

7
9
7
1
5
8

9
8
,2
5

9
8
,2
5

in
st
2
6

0
1
9
0
9

–
6
1

1
6
5
0
0
8

2
0
4
1
9

0
1
9
0
9

1
9
0
9

6
1

6
0

1
6
5
4
1
2

2
0
5
4
3

1
3
4
5

–
4
5
4
7
7
2
0

4
8
0
1
3
1

9
8
,3
1

9
8
,3
1

in
st
2
7

0
1
8
7
3

–
4
1

1
0
7
4
4
9

1
6
8
9
4

0
1
8
7
3

1
8
7
3

5
0

4
1

1
2
2
1
0
5

2
0
0
2
8

1
5
7
0

–
6
5
2
0
8
8
7

6
5
2
2
0
5

9
8
,6
1

9
8
,6
1

in
st
2
8

1
1
9
3
4

–
8

1
8
7
3
5

3
2
6
7

1
1
9
3
4

1
9
3
4

9
8

1
8
8
5
8

3
3
1
6

1
9
3
4

9
6
4

2
8
1
2
8
2
5

2
3
4
2
8
8

9
9
,7
5

9
9
,0
7

in
st
2
9

1
1
9
2
5

–
2

7
7
3
1

2
0
0
7

1
1
9
2
5

1
9
2
5

3
2

7
9
0
8

2
0
7
8

1
9
2
5

3
9
6

8
9
1
5
4
7

9
4
2
4
1

9
9
,9
2

9
9
,2
4

in
st
3
0

0
1
9
0
4

–
4

1
2
6
0
5

3
2
3
8

0
1
9
0
4

1
9
0
4

5
4

1
3
6
7
2

3
5
1
6

1
9
0
4

2
9
8
8

7
8
8
8
1
0
2

7
4
7
9
0
9

9
9
,8
6

9
9
,8
3

in
st
3
1

2
5

3
2
3
7
7

–
6
3

2
8
7
4

1
1
4
5

3
2
3
7
7

2
3
7
7

6
7

6
3

2
8
8
0

1
1
4
8

2
3
7
7

1
0
1

2
8
5
2
2
0

3
5
7
8
9

9
8
,1
4

3
3
,6
6

in
st
3
2

2
2
4
0
3

–
1
0
9

3
1
6
1
0
7

5
0
5
9
5

2
2
4
0
3

2
4
0
3

1
1
1

1
0
9

3
1
6
2
5
5

5
0
6
6
2

2
4
0
3

2
8
0

1
0
3
8
5
8
9

1
4
9
1
3
7

9
6
,9
2

6
0
,3
6

in
st
3
3

1
2
4
2
1

–
2
9

5
2
5
9
6

5
7
1
8

1
2
4
2
1

2
4
2
1

3
0

2
9

5
2
5
9
8

5
7
1
9

2
4
2
1

1
5
4

6
0
3
3
2
9

7
8
0
6
2

9
9
,1
7

8
0
,5
2

in
st
3
4

3
2
3
2
6

–
1
4
3

3
5
3
4
6
3

4
6
1
9
5

2
2
3
2
6

2
3
1
9

1
3
4

1
2
1

3
6
5
2
0
1

4
9
3
7
9

2
3
2
6

1
2
8
9

3
1
9
4
5
4
6

2
8
7
5
1
8

9
6
,2
8

8
9
,6
0

in
st
3
5

1
2
3
5
0

–
1
4

5
0
8
9
0

1
0
5
8
6

0
2
3
5
0

2
3
4
5

1
4

1
2

5
0
3
5
4

1
0
4
5
7

2
3
5
0

1
9
5

6
7
4
0
2
4

8
3
9
9
4

9
9
,6
1

9
2
,8
2

in
st
3
6

4
2
4
0
2

–
2
9
4

6
6
9
8
8

1
1
8
2
3

3
2
4
0
2

2
3
9
8

8
6

5
6

6
8
4
8
2

1
2
1
3
8

2
4
0
2

1
3
5
5

5
3
5
3
2
8
8

6
2
0
1
9
3

9
7
,6
1

9
3
,6
5

in
st
3
7

0
2
3
7
2

–
6

2
2
2
0
7

5
7
4
2

0
2
3
7
2

2
3
7
2

7
6

2
2
8
8
8

5
9
5
2

2
3
7
2

1
5
6

5
2
6
4
9
5

8
8
1
6
9

9
9
,8
1

9
5
,5
1

in
st
3
8

3
2
3
9
9

–
6
9

1
0
2
9
5
5

1
5
8
4
3

3
2
3
9
9

2
3
9
9

1
0
6

6
9

1
0
3
0
4
7

1
5
8
8
2

2
3
9
9

3
5
6
7

9
2
1
6
2
9
2

8
8
8
7
5
3

9
7
,0
6

9
7
,0
3

in
st
3
9

0
2
3
9
7

–
5
0

1
6
6
7
7
9

2
6
1
6
3

0
2
3
9
7

2
3
9
7

5
2

5
0

1
7
2
6
1
1

2
7
6
6
7

2
3
9
7

1
8
8
3

5
9
1
7
1
7
8

7
0
9
5
5
1

9
8
,5
6

9
7
,2
4

in
st
4
0

2
2
4
0
8

–
1
3

1
5
9
3
2

4
4
9
3

1
2
4
0
8

2
4
0
7

7
4

2
0
7
5
9

5
5
6
7

2
4
0
8

9
5
0

4
4
1
4
4
7
9

5
6
9
5
1
2

9
9
,8
1

9
9
,2
6

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 85

Table 5.2: The runtime in second for MMKP instances using basic S&D and
improved S&D as well as using B&B. Note that ”–” means that the time limit

has been reached.
B
a
si
c
S
&
D

Im
p
ro

v
e
d

S
&
D

B
&
B

G
A
P

|y
|

L
p

O
b
j

C
P
U

F
in

d
O
b
j

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

L
p

O
b
j

O
b
j
L
p

C
P
U

F
in

d
O
b
j

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

O
b
j

C
P
U

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

S
&
D

/
B
S
&
D

S
&
D

/
B
&
B

In
st
4
1

1
0

0
9
7
2

4
9

2
9

4
7
4
0
0

5
7
6
7

0
9
7
2

9
7
2

3
2

2
9

5
5
4
2
7

7
3
2
1

9
7
2

1
0
1

1
8
8
9
7
5

2
1
1
4
7

3
4
,6
9

6
8
,3
2

In
st
4
2

0
9
7
7

2
2

2
2
4
5
0

4
1
7

0
9
7
7

9
7
7

3
2

2
7
5
2

4
9
2

9
7
7

8
0

1
1
3
0
7
9

8
5
7
0

8
6
,3
6

9
6
,2
5

In
st
4
3

0
9
6
7

2
2

1
4
4
2
5

7
1
9

0
9
6
7

9
6
7

2
1

6
3
3
6

1
1
4
7

9
6
7

7
0

8
5
4
7
4

6
0
6
1

9
0
,9
1

9
7
,1
4

In
st
4
4

0
9
6
2

2
3

2
4
2
5
9

4
6
7

0
9
6
2

9
6
2

3
2

4
9
4
6

5
9
0

9
6
2

4
2

8
3
3
3
3

8
2
7
6

8
6
,9
6

9
2
,8
6

In
st
4
5

1
9
6
4

2
3

3
6
7
1
4

1
0
1
0

0
9
6
4

9
6
1

4
2

7
5
4
8

1
1
3
7

9
6
4

4
0

7
4
2
6
1

7
0
7
2

8
2
,6
1

9
0
,0
0

In
st
4
6

0
9
7
9

2
0

0
5
1
4

1
3
5

0
9
7
9

9
7
9

0
0

5
1
3

1
2
9

9
7
9

5
9

9
5
4
4
9

8
9
5
8

1
0
0
,0
0

1
0
0
,0
0

In
st
4
7

0
9
7
7

2
4

3
7
5
1
5

9
7
8

0
9
7
7

9
7
7

4
3

7
8
0
4

1
0
6
3

9
7
7

3
0

6
4
8
7
2

9
3
2
8

8
3
,3
3

8
6
,6
7

In
st
4
8

0
9
7
5

2
6

5
1
1
2
8
9

1
5
9
5

0
9
7
5

9
7
5

6
5

1
1
3
7
4

1
6
1
6

9
7
5

4
2

7
8
5
5
0

7
9
4
0

7
6
,9
2

8
5
,7
1

In
st
4
9

0
9
7
0

2
7

7
1
1
2
5
7

1
2
1
5

0
9
7
0

9
7
0

7
7

1
1
4
5
6

1
2
7
9

9
7
0

5
2

7
5
1
8
1

6
9
7
2

7
4
,0
7

8
6
,5
4

In
st
5
0

0
9
6
1

2
6

6
1
5
1
9
6

2
2
7
7

0
9
6
1

9
6
1

8
6

1
9
9
5
8

3
2
5
8

9
6
1

9
6

1
4
5
1
1

6
9
7
2

6
9
,2
3

9
1
,6
7

in
st
5
1

1
5

1
1
4
5
7

7
3
9

5
1

1
0
5
2
2
7

1
8
4
9
3

0
1
4
5
7

1
4
5
6

5
3

5
0

1
1
1
8
7
9

1
9
6
6
0

1
4
5
7

2
2
5

4
7
8
3
4
1

5
1
9
7
3

9
2
,8
3

7
6
,4
4

in
st
5
2

1
1
4
7
2

7
6
3

7
9

1
7
2
7
0
6

2
3
8
9
8

1
1
4
7
2

1
4
7
2

8
0

7
9

1
7
3
0
0
1

2
3
9
9
5

1
4
7
2

2
2
6
8

4
1
3
8
2
1
9

4
4
3
2
1
9

8
9
,5
2

9
6
,4
7

in
st
5
3

0
1
4
7
4

6
9
2

3
7
2
8
3

1
4
2
3

0
1
4
7
4

1
4
7
4

3
3

7
3
4
7

1
4
4
5

1
4
7
4

3
2
9

7
7
9
4
5
6

7
3
2
1
0

9
9
,5
7

9
9
,0
9

in
st
5
4

2
1
4
8
2

6
9
4

5
1
2
1
8
9

2
7
7
4

2
1
4
8
2

1
4
8
2

7
5

1
2
3
7
6

2
8
3
9

1
4
8
2

7
5

1
6
0
6
4
6

2
0
8
9
1

9
8
,9
9

9
0
,6
7

in
st
5
5

0
1
4
7
1

7
0
8

2
4

4
9
5
8
0

7
3
1
9

0
1
4
7
1

1
4
7
1

2
4

2
4

5
0
0
7
2

7
4
6
9

1
4
7
1

7
8
0

1
8
2
8
4
9
4

2
2
6
0
3
4

9
6
,6
1

9
6
,9
2

in
st
5
6

0
1
4
6
1

7
4
4

5
3

1
6
2
4
9
7

2
8
5
8
8

0
1
4
6
1

1
4
6
1

7
0

5
3

2
0
4
2
5
1

3
6
9
8
3

1
3
8
6

–
6
7
8
5
0
2
0

6
2
1
8
4
7

9
0
,5
9

9
8
,0
6

in
st
5
7

1
1
4
6
7

7
0
5

1
5

4
6
7
0
1

8
1
6
4

1
1
4
6
7

1
4
6
7

1
7

1
5

4
8
8
0
9

8
6
1
6

1
4
6
7

5
4
0

9
8
0
7
5
9

9
3
4
6
5

9
7
,5
9

9
6
,8
5

in
st
5
8

0
1
4
7
4

7
1
8

2
8

5
6
7
9
4

8
8
4
1

0
1
4
7
4

1
4
7
4

3
3

2
8

7
1
7
8
7

1
1
6
2
6

1
4
7
4

1
2
3
3

3
4
6
9
6
0
6

4
5
1
4
2
6

9
5
,4
0

9
7
,3
2

in
st
5
9

0
1
4
5
2

7
0
2

1
4

2
7
3
3
3

4
4
1
4

0
1
4
5
2

1
4
5
2

1
4

1
4

2
7
9
4
3

4
6
1
2

1
2
4
9

–
7
4
3
2
6
0
1

7
5
1
5
5
9

9
8
,0
1

9
9
,6
1

in
st
6
0

1
1
4
7
9

7
0
6

1
6

4
2
2
2
9

7
3
1
2

0
1
4
7
9

1
4
7
5

1
6

1
6

4
2
6
1
1

7
4
2
1

1
4
7
9

6
1
5

1
6
5
2
9
8
7

2
2
0
8
6
9

9
7
,7
3

9
7
,4
0

in
st
6
1

2
0

1
1
9
6
2

–
3
2

9
8
7
2
1

2
1
9
1
4

1
1
9
6
2

1
9
6
2

3
3

3
2

9
8
8
6
0

2
1
9
6
0

1
9
6
2

4
7
6

1
1
9
9
4
7
4

1
6
6
1
0
8

9
9
,0
8

9
3
,0
7

in
st
6
2

0
1
9
7
4

–
1
1
9

1
0
5
6
8
8

1
1
5
1
0

0
1
9
7
4

1
9
7
4

1
1
8

1
1
8

1
0
6
2
2
3

1
1
6
9
7

1
2
2
0

–
2
2
7
7
9
7
8

1
0
4
3
9
7

9
6
,7
2

9
6
,7
2

in
st
6
3

0
1
9
5
2

–
1
8

6
7
1
3
4

1
3
2
8
6

0
1
9
5
2

1
9
5
2

1
8

1
8

6
7
4
7
2

1
3
4
1
4

1
9
5
2

1
8
7

5
8
7
3
8
7

1
0
1
1
4
7

9
9
,5
0

9
0
,3
7

in
st
6
4

1
1
9
7
1

–
5
6

1
6
9
2
4
0

4
0
6
6
8

1
1
9
7
1

1
9
7
1

5
8

5
6

1
7
7
0
5
9

4
2
9
9
1

1
9
7
1

9
0
5

2
5
4
0
4
2
5

4
1
8
5
8
3

9
8
,3
9

9
3
,5
9

in
st
6
5

1
1
9
6
4

–
1
2

4
2
6
7
3

1
2
1
4
6

1
1
9
6
4

1
9
6
4

1
2

1
2

4
3
0
8
8

1
2
3
0
9

1
9
6
4

3
7
5

1
2
9
8
0
1
9

3
2
5
4
7
1

9
9
,6
7

9
6
,8
0

in
st
6
6

1
1
9
7
0

–
2
9

6
3
3
9
3

9
5
1
3

1
1
9
7
0

1
9
7
0

2
9

2
9

6
4
1
8
5

9
7
6
5

1
9
7
0

6
8
7

1
8
8
9
9
7
7

2
6
2
0
7
2

9
9
,1
9

9
5
,7
8

in
st
6
7

1
1
9
6
3

–
4
4

1
3
4
1
6
9

3
4
0
9
0

1
1
9
6
3

1
9
6
3

4
8

4
4

1
4
3
2
7
3

3
6
8
8
4

1
9
6
3

3
2
3
6

3
1
2
6
7
6
6

2
5
4
9
5
5

9
8
,6
7

9
8
,5
2

in
st
6
8

0
1
9
7
5

–
3
0

6
4
0
7
7

1
0
5
2
3

0
1
9
7
5

1
9
7
5

3
0

3
0

6
4
3
8
3

1
0
6
3
5

1
8
9
4

–
7
8
8
3
3
1
7

9
5
5
2
7
0

9
9
,1
7

9
9
,1
7

in
st
6
9

0
1
9
7
4

–
1
7

5
2
3
0
8

1
1
0
4
5

0
1
9
7
4

1
9
7
4

1
7

1
7

5
2
3
0
8

1
1
0
4
5

1
9
7
4

2
9
1

6
8
9
0
3
2

1
0
0
4
0
3

9
9
,5
3

9
4
,1
6

in
st
7
0

0
1
9
7
0

–
6

1
8
3
3
3

5
2
7
6

0
1
9
7
0

1
9
7
0

6
6

1
9
0
2
8

5
5
1
3

1
9
7
0

3
7
7

9
3
8
6
1
8

1
2
8
9
8
3

9
9
,8
3

9
8
,4
1

in
st
7
1

2
5

1
2
4
4
9

–
4
7

1
6
3
9
5
3

2
8
1
5
9

1
2
4
4
9

2
4
4
9

4
7

4
7

1
6
4
0
6
6

2
8
2
1
1

2
4
4
9

3
9
2

8
9
6
9
0
1

9
6
8
2
5

9
8
,6
9

8
8
,0
1

in
st
7
2

1
2
4
5
3

–
3
8

5
7
7
0
9

1
2
6
3
0

1
2
4
5
3

2
4
5
3

3
9

3
8

5
8
6
4
7

1
2
9
2
2

2
4
5
3

1
1
0
1

2
7
8
0
9
8
5

3
2
6
2
1
6

9
8
,9
2

9
6
,4
6

in
st
7
3

0
2
4
5
0

–
7

1
5
9
6
2

3
7
8
3

0
2
4
5
0

2
4
5
0

7
7

1
6
0
5
9

3
8
2
8

2
4
5
0

1
4
1

5
0
1
1
4
2

1
1
4
7
1
1

9
9
,8
1

9
5
,0
4

in
st
7
4

1
2
4
6
9

–
2
9

8
9
1
8
4

1
8
9
4
8

0
2
4
6
9

2
4
6
8

3
3

2
4

9
9
4
6
0

2
0
9
1
0

2
4
6
9

9
8
5

2
2
5
3
8
8
9

3
3
2
8
7
3

9
9
,0
8

9
6
,6
5

in
st
7
5

2
2
4
4
9

–
1
3
4

9
1
4
4
5

1
9
9
5
6

2
2
4
4
9

2
4
4
9

1
4
0

1
3
3

9
6
4
6
4

2
1
5
0
7

1
6
8
1

–
2
7
7
6
0
4
3

1
5
2
6
7
3

9
6
,1
1

9
6
,1
1

in
st
7
6

1
2
4
5
0

–
7
8

2
1
3
9
5
9

4
0
3
7
5

1
2
4
5
0

2
4
5
0

7
9

7
8

2
1
6
1
5
4

4
1
3
1
2

2
4
5
0

9
1
2

3
0
4
9
9
0
1

6
9
2
1
5
1

9
7
,8
1

9
1
,3
4

in
st
7
7

1
2
4
4
7

–
1
8

5
8
0
3
6

1
5
5
5
7

1
2
4
4
7

2
4
4
7

1
8

1
8

5
8
0
8
5

1
5
5
8
1

2
4
4
7

4
3
8

1
3
6
4
5
3
4

2
8
4
6
0
1

9
9
,5
0

9
5
,8
9

in
st
7
8

0
2
4
4
5

–
1
3
0

2
5
9
1
3
4

3
7
1
8
7

0
2
4
4
5

2
4
4
5

1
3
1

1
2
9

2
6
3
2
7
5

3
8
8
3
7

2
4
4
5

2
0
2
9

4
9
5
6
5
9
1

5
5
5
6
8
5

9
6
,3
6

9
3
,5
4

in
st
7
9

2
2
4
5
8

–
6

6
7
9
4

2
5
3
0

2
2
4
5
8

2
4
5
8

1
2

6
8
5
9
2

3
1
4
5

2
1
5
4

–
9
7
1
3
5
2
6

9
9
3
0
4
3

9
9
,6
7

9
9
,6
7

in
st
8
0

2
2
4
4
6

–
2
4

4
8
9
9
6

1
3
6
2
3

2
2
4
4
6

2
4
4
6

2
8

2
4

4
9
8
2
6

1
3
9
4
2

1
8
9
2

–
6
3
3
1
3
7
1

6
3
4
5
5
0

9
9
,2
2

9
9
,2
2

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 86

Table 5.3: The runtime in second for SMSDP instances using basic S&D and
improved S&D as well as using B&B. Note that ”–” means that the time limit

has been reached.

B
a
si
c
S
&
D

Im
p
ro

v
e
d

S
&
D

B
&
B

G
A
P

|y
|

L
p

O
b
j

C
P
U

F
in

d
O
b
j

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

L
p

O
b
j

O
b
j
L
p

C
P
U

F
in

d
O
b
j

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

O
b
j

C
P
U

B
a
c
k
tr
a
c
k
s

N
o
d
e
s

S
&
D

/
B
S
&
D

S
&
D

/
B
&
B

in
s1

1
0

0
2
0
9

5
4

1
0

6
0
5
6
0

1
1
8
3
7
1

0
2
0
9

2
0
9

1
0

1
0

6
0
5
6
0

1
1
8
3
7
1

2
0
9

5
7
2

2
9
1
9
8
8
5

9
7
5
0
0
2
8

8
1
,4
8

9
8
,2
5

in
s2

0
2
0
9

1
5
8

1
1
6

5
3
4
6
4
9

1
1
2
1
1
1
4

0
2
0
9

2
0
9

1
1
6

1
1
6

5
3
4
6
4
9

1
1
2
1
1
1
4

2
0
9

4
9
8

3
2
1
3
1
5
2

8
0
9
0
1
0
7

2
6
,5
8

7
6
,7
1

in
s3

1
1
8
7

5
3

1
1

6
0
2
0
7

1
1
6
6
0
1

0
1
8
7

1
8
9

3
7

8
2
0
4
6
2
5

4
4
8
4
9
3

1
8
7

2
5
1

1
5
6
7
3
3
3

3
9
0
6
1
8
2

3
0
,1
9

8
5
,2
6

in
s4

0
2
0
1

6
3

1
9

9
8
8
0
9

1
9
9
5
8
6

0
2
0
1

2
0
1

1
9

1
9

9
8
8
0
9

1
9
9
5
8
6

2
0
1

1
0
2

6
4
2
5
8
4

1
6
1
9
1
8
2

6
9
,8
4

8
1
,3
7

in
s5

0
2
2
1

1
6
3

1
2
0

5
8
5
3
7
8

1
2
1
1
6
1
8

0
2
2
1

2
2
1

1
2
0

1
2
0

5
8
5
3
7
8

1
2
1
1
6
1
8

2
2
1

2
8
8

1
8
7
7
1
0
7

4
3
5
4
4
0
3

2
6
,3
8

5
8
,3
3

in
s6

1
1

1
2
3
1

1
5
7

6
5

3
5
8
8
1
4

7
8
1
3
2
8

0
2
3
1

2
3
4

7
0

2
6

3
6
0
2
9
4

7
4
7
6
8
6

2
3
1

1
1
0
1

5
9
9
5
2
6
2

1
5
7
6
7
8
0
7

5
5
,4
1

9
3
,6
4

in
s7

1
1
9
7

1
2
3

3
2

1
9
7
7
1
5

4
2
2
4
4
4

0
1
9
7

1
9
9

8
6

1
8

4
5
2
0
2
9

1
0
3
5
0
8
2

1
9
7

2
1
7

1
1
4
3
7
8
5

3
0
5
2
3
7
2

3
0
,0
8

6
0
,3
7

in
s8

1
2
2
2

1
1
3

2
6

1
4
4
7
5
0

2
9
2
3
2
2

0
2
2
2

2
2
3

5
0

1
9

2
6
3
0
8
9

5
5
2
3
1
5

2
2
2

2
2
3
9

1
1
8
5
0
6
7
1

3
5
4
2
8
0
1
2

5
5
,7
5

9
7
,7
7

in
s9

0
1
8
3

9
8

8
6
1
5
4
2

1
1
3
2
7
5

0
1
8
3

1
8
3

8
8

6
1
5
4
2

1
1
3
2
7
5

1
8
3

8
3

4
2
0
4
7
4

1
3
6
7
7
5
3

9
1
,8
4

9
0
,3
6

in
s1

0
1

2
3
6

1
2
3

2
7

1
5
2
6
5
9

3
0
1
0
9
8

0
2
3
6

2
3
9

1
0
2

1
3

5
2
7
3
3
5

1
1
9
0
0
6
6

2
3
6

3
0
2

1
6
9
8
3
7
0

3
7
4
6
2
9
9

1
7
,0
7

6
6
,2
3

in
s1

1
1
2

1
2
0
9

2
6
6

5
9

3
6
2
5
6
2

7
2
7
3
1
5

0
2
0
9

2
1
3

7
6

3
9

4
2
0
5
1
1

8
3
5
8
6
9

2
0
9

1
0
2
0

5
0
9
9
3
6
5

1
4
2
8
1
2
3
5

7
1
,4
3

9
2
,5
5

in
s1

2
1

2
5
4

1
0
1
3

8
1
4

4
0
3
9
0
0
1

8
4
8
8
3
6
3

0
2
5
4

2
5
5

1
4
4
6

2
1
3

6
7
2
7
7
9
0

1
4
6
8
1
2
6
0

2
5
7

–
1
8
7
4
3
6
5
7

4
8
6
2
2
5
5
5

-4
2
,7
4

5
9
,8
3

in
s1

3
0

2
0
7

2
5
5

5
6

3
1
4
3
2
9

6
8
7
6
1
0

0
2
0
7

2
0
7

5
6

5
6

3
1
4
3
2
9

6
8
7
6
1
0

2
0
7

1
3
7
1

6
8
0
6
4
8
7

2
0
7
8
4
5
1
5

7
8
,0
4

9
5
,9
2

in
s1

4
0

2
2
1

2
6
7

6
7

1
6
1
7
7
8

3
1
4
2
4
2

0
2
2
1

2
2
1

6
7

6
7

1
6
1
7
7
8

3
1
4
2
4
2

2
2
1

2
2
7

1
2
2
3
4
2
9

2
7
0
6
9
1
5

7
4
,9
1

7
0
,4
8

in
s1

5
0

2
0
9

2
4
8

3
9

1
0
8
9
7
0

2
2
5
2
6
9

0
2
0
9

2
0
9

3
9

3
9

1
0
8
9
7
0

2
2
5
2
6
9

2
0
9

2
9
2

1
5
4
9
4
1
3

3
8
4
2
8
5
0

8
4
,2
7

8
6
,6
4

in
s1

6
1
3

0
2
2
1

5
7
4

1
4
1

5
1
8
9
0
6

1
0
4
6
6
0
3

0
2
2
1

2
2
1

1
4
1

1
4
1

5
1
8
9
0
6

1
0
4
6
6
0
3

2
2
1

6
8
1

3
4
1
4
5
4
5

7
4
3
4
3
1
2

7
5
,4
4

7
9
,3
0

in
s1

7
0

2
4
1

5
4
0

8
6

4
6
7
6
1
8

9
2
6
7
4
1

0
2
4
1

2
4
1

8
6

8
6

4
6
7
6
1
8

9
2
6
7
4
1

2
4
1

3
4
0

1
7
2
0
0
9
2

3
7
0
8
4
3
8

8
4
,0
7

7
4
,7
1

in
s1

8
0

2
3
5

4
6
5

1
5

4
9
1
1
6

9
5
3
2
8

0
2
3
5

2
3
5

1
5

1
5

4
9
1
1
6

9
5
3
2
8

2
3
5

1
6
9

8
4
1
8
6
4

1
9
0
4
6
2
2

9
6
,7
7

9
1
,1
2

in
s1

9
0

1
7
7

4
8
1

3
3

7
1
7
7
0

1
2
7
5
4
7

0
1
7
7

1
7
7

3
3

3
3

7
1
7
7
0

1
2
7
5
4
7

1
7
7

1
5
4

7
5
8
3
3
9

1
7
3
0
9
8
1

9
3
,1
4

7
8
,5
7

in
s2

0
0

2
1
3

5
2
5

8
9

3
9
5
1
9
6

8
2
1
1
7
5

0
2
1
3

2
1
3

8
9

8
9

3
9
5
1
9
6

8
2
1
1
7
5

2
1
3

4
0
1

1
7
7
4
8
1
0

6
3
6
8
3
5
3

8
3
,0
5

7
7
,8
1

in
s2

1
1
4

0
1
8
8

2
1
0

1
6

6
8
8
7
5

1
2
5
0
2
8

0
1
8
8

1
8
8

1
6

1
6

6
8
8
7
5

1
2
5
0
2
8

1
8
8

3
2
0

1
5
7
6
3
0
5

5
0
2
0
3
8
6

9
2
,3
8

9
5
,0
0

in
s2

2
0

2
2
8

1
1
1
7

1
4
2

6
7
1
0
7
6

1
3
2
6
1
1
5

0
2
2
8

2
2
8

1
4
2

1
4
2

6
7
1
0
7
6

1
3
2
6
1
1
5

2
2
8

4
8
8

2
2
9
0
7
3
7

5
1
4
3
9
3
7

8
7
,2
9

7
0
,9
0

in
s2

3
0

2
2
6

1
1
3
9

1
5
9

6
0
3
0
1
1

1
2
1
3
0
3
1

0
2
2
6

2
2
6

1
5
9

1
5
9

6
0
3
0
1
1

1
2
1
3
0
3
1

2
2
6

5
7
7

2
5
7
2
0
9
2

5
4
8
5
5
3
6

8
6
,0
4

7
2
,4
4

in
s2

4
0

2
4
8

1
0
2
7

4
4

1
7
8
7
7
0

3
5
2
5
9
3

0
2
4
8

2
4
8

4
4

4
4

1
7
8
7
7
0

3
5
2
5
9
3

2
4
8

1
6
2

7
4
5
5
3
7

1
5
6
9
2
4
1

9
5
,7
2

7
2
,8
4

in
s2

5
0

2
9
0

1
0
7
7

1
9
4

4
8
1
2
4
8

9
7
8
5
5
7

0
2
9
0

2
9
0

1
9
4

1
9
4

4
8
1
2
4
8

9
7
8
5
5
7

2
9
0

8
7
7

3
8
6
1
8
4
4

7
9
4
7
8
5
2

8
1
,9
9

7
7
,8
8

in
s2

6
1
5

0
2
1
4

2
2
1
2

9
1

1
7
6
6
8
8

3
4
9
3
7
2

0
2
1
4

2
1
4

9
1

9
1

1
7
6
6
8
8

3
4
9
3
7
2

2
1
4

2
6
8

1
1
6
9
1
6
1

2
3
3
8
7
7
7

9
5
,8
9

6
6
,0
4

in
s2

7
0

2
5
5

2
2
1
8

9
2

2
6
6
7
6
2

5
2
9
5
5
8

0
2
5
5

2
5
5

9
2

9
2

2
6
6
7
6
2

5
2
9
5
5
8

2
5
5

1
6
1

6
8
9
1
7
1

1
3
7
3
2
4
6

9
5
,8
5

4
2
,8
6

in
s2

8
0

2
2
8

2
1
1
0

7
3

9
6
9
2
6

1
8
9
8
0
6

0
2
2
8

2
2
8

7
3

7
3

9
6
9
2
6

1
8
9
8
0
6

2
2
8

2
6
2
4

1
1
0
5
3
5
6
2

2
6
4
9
3
1
6
6

9
6
,5
4

9
7
,2
2

in
s2

9
0

2
3
8

2
1
2
6

1
3
4

5
1
1
5
4
8

1
0
4
4
3
5
2

0
2
3
8

2
3
8

1
3
4

1
3
4

5
1
1
5
4
8

1
0
4
4
3
5
2

2
3
8

3
6
1

1
4
7
0
3
0
6

3
0
5
0
3
0
0

9
3
,7
0

6
2
,8
8

in
s3

0
0

1
8
5

2
1
6
0

7
1

3
2
0
7
3
5

6
3
2
6
6
7

0
1
8
5

1
8
5

7
1

7
1

3
2
0
7
3
5

6
3
2
6
6
7

1
8
5

2
5
9

1
1
9
4
4
3
7

2
3
8
1
5
6
1

9
6
,7
1

7
2
,5
9

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 87

Table 5.4: The runtime of S&D in second for MMKP instances using different
depth . Note that ”–” means that the time has reached 1000s.

First class Second class
depth 1 2 3 4 5 depth 1 2 3 4 5

ins1 8 10 35 62 62 ins41 33 10 20 98 126
ins2 3 4 42 87 87 ins42 3 3 5 26 52
ins3 41 45 73 101 126 ins43 2 2 27 75 102
ins4 3 12 37 37 37 ins44 3 3 19 71 71
ins5 5 7 32 58 58 ins45 4 4 14 41 68
ins6 2 1 23 49 49 ins46 0 9 13 40 67
ins7 7 12 38 38 38 ins47 4 14 21 30 54
ins8 8 7 33 34 34 ins48 6 2 12 39 39
ins9 2 15 66 118 118 ins49 7 2 10 33 61
ins10 0 1 26 26 26 ins50 8 7 15 41 97
ins11 132 216 – – – ins51 54 9 629 – –
ins12 3 11 664 – – ins52 79 433 446 – –
ins13 22 266 996 – – ins53 3 134 555 – –
ins14 3 54 813 – – ins54 7 9 139 – –
ins15 7 2 425 – – ins55 24 10 17 818 –
ins16 8 7 447 – – ins56 70 140 305 – –
ins17 6 258 – – – ins57 16 49 47 937 –
ins18 12 8 454 – – ins58 33 90 126 408 –
ins19 20 136 763 – – ins59 15 3 137 418 –
ins20 2 5 899 900 901 ins60 16 20 60 735 –
ins21 55 157 – – – ins61 33 110 20 – –
ins22 78 43 – – – ins62 119 126 – – –
ins23 19 8 – – – ins63 18 254 208 – –
ins24 89 595 – – – ins64 58 174 – – –
ins25 63 116 – – – ins65 12 5 – – –
ins26 61 78 – – – ins66 29 181 – – –
ins27 50 – – – – ins67 47 121 25 – –
ins28 9 170 – – – ins68 31 9 – – –
ins29 3 161 – – – ins69 17 3 620 – –
ins30 5 – – – – ins70 6 3 629 – –
ins31 55 – – – – ins71 47 45 – – –
ins32 110 92 – – – ins72 39 312 – – –
ins33 30 – – – – ins73 7 452 – – –
ins34 133 – – – – ins74 33 – – – –
ins35 14 442 – – – ins75 141 146 – – –
ins36 87 – – – – ins76 78 99 – – –
ins37 7 92 – – – ins77 18 16 – – –
ins38 107 – – – – ins78 132 482 917 – –
ins39 52 5 – – – ins79 12 40 – – –
ins40 7 – – – – ins80 27 66 – – –

Chapter 4. Solving Constrained Optimization Problems By Solution-based
Decomposition Search 88

Table 5.5: The runtime of S&D in second for SMSDP instances using different
depth . Note that ”–” means that the time has reached 1000s.

depth 1 2 3 4 5

ins1 10 8 15 67 68
ins2 116 89 96 102 152
ins3 37 42 42 40 92
ins4 19 15 26 31 37
ins5 120 204 110 141 271
ins6 70 66 503 666 664
ins7 86 92 111 105 227
ins8 50 69 82 87 193
ins9 8 4 2 9 14
ins10 102 77 184 187 187
ins11 76 301 308 308 308
ins12 – – – – –
ins13 56 142 383 383 383
ins14 67 95 142 132 109
ins15 39 64 134 150 163
ins16 141 226 117 173 151
ins17 86 83 123 97 116
ins18 15 82 27 528 551
ins19 33 30 26 41 56
ins20 89 72 71 574 574
ins21 16 19 21 55 321
ins22 142 112 193 107 154
ins23 159 196 188 224 294
ins24 44 58 419 223 –
ins25 194 236 334 416 –
ins26 91 147 – – –
ins27 92 272 – – –
ins28 73 431 288 – –
ins29 134 146 372 861 601
ins30 71 41 49 102 73

Chapter 6

Conclusions and Future Work

This chapter summarises the contributions of this thesis and outlines opportunities

for future work which we hope will usefully expand the results of this thesis.

6.1 Summary and conclusions

The aim of this thesis is multiple (i) study relationship between a set of knapsack

problems (ii) provide a filtering algorithm for the new global constraint mcmdk

and, design a new strategy for solving constrained optimization problems. This

thesis has mainly achieved that goal.

Chapter 3 presents a relationship study between a set of knapsack problems in-

volving dimensions, demands and multiple choice constraints such as: the MKP,

the MDMKP, the MCKP, the MMKP and the GUBMKP. This study lead to de-

fine the generalized problem called the multiple demand multidimensional multiple

choice knapsack problem (MDMMKP) as a generalization of these problems.

And by applying a set of defined transformations between the different integer

linear programs of these knapsack extensions, algorithm for that generalization is

assumed as a a solver. Evenly, results show that the transformations is able to

generate reasonable computing time compared with the original ones.

89

Conclusions and Future Work 90

Chapter 4 presents, a new global constraint belonging to the weighted constraints

and closely related to the knapsack constraint denoted mcmdk. We modeled the

mcmdk constraint using the conjunction of sum and implies constraints and we

associate it a filtering algorithm ”based reasoning”. Experiments show that propa-

gating the mcmdk constraint via the proposed filtering algorithm is more effective

and efficient than propagating it using the straightforward conjunction.

Chapter 5 present a new strategy for solving Constrained Optimization Problems

(COPs) called solve and decompose (or S&D for short). The proposed strategy is

a systematic iterative depth-first strategy that is based on problem decomposition.

S&D uses a feasible solution of the COP, found by any exact method, to further

decompose the original problem into a bounded number of subproblems which

are considerably smaller in size. The number of subproblems is bounded and is

controlled by parameter p whereas their size is controlled by depth which is a depth

limit after which we stop the decomposition process. The proposed algorithm is

designed so (i) to speed up the time to finding the optimal solution by problem

decomposition and visiting of promising subproblems first; and (ii) to speed up

the proof of optimality by strengthening the cost-based filtering. Experiments on

two benchmarks show the efficiency of this algorithm

6.2 Discussion and Future work

The findings discussed in this thesis, sparked new research lines for the future. We

can identify at least three research lines which look promising for extending our

research.

A first research direction is to use the set of he transformations, presented in the

second chapter, between models with existed algorithms of knapsack problems to

solve other problems. In fact, these transformations may very well prove to be

useful in using algorithms (heuristics as a case) already developed. Such as many

extensions, the MKP as example, is extensively studied, so it is very interesting

to use MKP heuristics to solve the GUBMKP and MMKP.

Conclusions and Future Work 91

1. A second line of research, concerns to embedded the objective function into

the filtering algorithm of mcmdk. Such as, in this thesis we have treated

the defined global constraint without the objective function, so we intend to

apply the proposed filtering algorithm on challenging real world problems

when the problem involve an objective to maximize such as the objective

function plays a significant role to reduce the search space.

2. Another promising research direction is to exploit the strength of the pro-

posed algorithm S&D. Several lines can be distinguished:

• Test the efficiency and the effective of S&D on a large optimization

problems.

• Test the effect of S&D on the integer linear programs.

• Such as Operation Research techniques have shown Build a hybrid al-

gorithm between hybrid models

Bibliography

Pascal Van Hentenryck. The OPL Optimization Programming Language. MIT

Press, Cambridge, MA, USA, 1999. ISBN 0-262-72030-2.

Jean-Guillaume Fages, Narendra Jussien, Xavier Lorca, and Charles Prudhomme.

Choco3: an open source java constraint programming library. Technical report,

Research report 13/1/INFO, Ecole des Mines de Nantes, 2013. to appear, 2013.

Nicholas Nethercote, Peter J Stuckey, Ralph Becket, Sebastian Brand, Gregory J

Duck, and Guido Tack. Minizinc: Towards a standard cp modelling language.

In Principles and Practice of Constraint Programming–CP 2007, pages 529–543.

Springer, 2007.

Alan M Frisch, Warwick Harvey, Chris Jefferson, Bernadette Mart́ınez-Hernández,

and Ian Miguel. Essence: A constraint language for specifying combinatorial

problems. Constraints, 13(3):268–306, 2008.

F. Rossi, F. Van Beek, and T. Walsh. Handbook of Constraint Programming.

Elsevier Science Ltd, Foundations of Artificial Intelligence, Radarweg 29, PO

Box 211, 1000 AE Amsterdam, The Netherlands, 2006a.

Krzysztof Apt. Principles of Constraint Programming. Cambridge University

Press, New York, NY, USA, 2003. ISBN 0521825830.

Edward Tsang. Foundations of Constraint Satisfaction. Academic Press Limited,

London and San Diego, 1993. ISBN 0–12–701610–4.

Christian Schulte and Peter J. Stuckey. Efficient constraint propagation engines.

ACM Trans. Program. Lang. Syst., 31(1):2:1–2:43, 2008.

92

Bibliography 93

Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Pro-

gramming (Foundations of Artificial Intelligence). Elsevier Science Inc., New

York, NY, USA, 2006b. ISBN 0444527265.

Willem-Jan van Hoeve and Irit Katriel. Handbook of Constraint Programming,

chapter Global Constraints. Elsevier, 2006.

Jean-Charles Rgin. Global constraints and filtering algorithms, 2003.

Jean-Charles Rgin. Hybrid Optimization: the 10 years of CP-AI-OR, chapter

Global Constraints: a Survey, page in press. Springer, 2010.

Torsten Fahle and Meinolf Sellmann. Cost based filtering for the constrained

knapsack problem. Annals OR, 115(1-4):73–93, 2002.

P. Schaus. Solving Balancing and Bin-Packing problems with Constraint Program-

ming. PhD thesis, University of Maryland. Technical Report for the Institute

for Systems Research, 2009.

Michael A. Trick. A dynamic programming approach for consistency and propa-

gation for knapsack constraints. Annals OR, 118(1-4):73–84, 2003a.

D.S. Chen, R.G. Batson, and Y. Dang. Applied Integer Programming: Modeling

and Solution. Wiley, 2011.

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

ISBN 9783540402862.

S. Martello and P. Toth. Knapsack problems: Algorithms and computer implemen-

tations. DEIS, University of Bologna, John Wiley & Sons Ltd, Baffins Lane,

Chichester West Sussex - PO19 1UD, England, 1990.

A. Freville. The multidimensional 0-1 knapsack problem: An overview. European

Journal of Operational Research, 155(1):1–21, 2004.

P. Cappanera and M. Trubian. A local-search-based heuristic for the demand-

constrained multidimensional knapsack problem. INFORMS Journal on Com-

puting, 17(1):82–98, 2005.

Bibliography 94

D. Pisinger. A minimal algorithm for the multiple-choice knapsack problem. Eu-

ropean Journal of Operational Research, 83(2):394–410, 1995.

M. Moser, D.P. Jokanovic, and N. Shiratori. An algorithm for the multidimensional

multiple-choice knapsack problem. IEICE Transactions on Fundamentals of

Electronics, 80:582–589, 1997a.

S. Khan. Quality adaptation in multi-session adaptative multimedia system: Model

and architecture. PhD thesis, Departement of Electronical and computer Engi-

neering, University of Victoria, 1998.

V.C. Li. Tight oscillation tabu search for multidimnesional knapsack problems

with generalized upper bound constraints. Computer and Operations Research,

32:2843–2852, 2005.

V.C. Li and G.L. Curry. Solving multidimensional knapsack problems with gener-

alized upper bound constraints using critical event tabu search. Computer and

Operations Research, 32:825–848, 2005.

J. Beasley. Or-library: distributing test problems by electronic mail. Journal of

the Operational Research Society, 41:1069–1072, 1990.

P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional knapsack

problem. Journal of Heuristics, 4:63–86, 1998.

S. Khan, F. Kin, E. Manning, and M. Akabr. Solving the knapsack problem for

adaptative multimedia system. Studia Informatica - Special Issue on Combina-

torial Problems, 2:154–174, 2002.

B. Han, J. Leblet, and G. Simon. Hard multidimensional multiple choice knapsack

problems, an empirical study. Computer and Operations Research, 37:172–181,

2010a.

Christian Bessière, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby

Walsh. The roots constraint. In CP, pages 75–90, 2006.

Jean-Charles Régin. Arc consistency for global cardinality constraints with costs.

In CP, pages 390–404, 1999.

Bibliography 95

Jean-Charles Régin. A filtering algorithm for constraints of difference in csps. In

AAAI, pages 362–367, 1994.

Gilles Pesant. A regular language membership constraint for finite sequences of

variables. In CP, pages 482–495, 2004.

Michael A. Trick. A dynamic programming approach for consistency and propa-

gation for knapsack constraints. Annals OR, 118(1-4):73–84, 2003b.

Meinolf Sellmann. Approximated consistency for knapsack constraints. In CP,

pages 679–693, 2003.

Meinolf Sellmann. The practice of approximated consistency for knapsack con-

straints. In AAAI, pages 179–184, 2004.

Vipul Jain and Ignacio E Grossmann. Algorithms for hybrid milp/cp models for

a class of optimization problems. INFORMS Journal on computing, 13(4):258–

276, 2001.

E. L. Lawler and D. E. Wood. Branch-And-Bound Methods: A Survey. Operations

Research, 14(4):699–719, 1966. ISSN 0030364X. doi: 10.2307/168733.

Martin Moser, Dusan P. Jokanovic, and Norio Shiratori. An algorithm for the

multidimensional multiple-choice knapsack problem. IEICE TRANSACTIONS

on Fundamentals of Electronics, Communications and Computer Sciences, 80

(3):582–589, 1997b.

Alan M. Frisch, Ian Miguel, and Toby Walsh. Modelling a steel mill slab design

problem. In Proceedings of the IJCAI-01 Workshop on Modelling and Solving

Problems with Constraints, pages 39–45, 2001.

Bing Han, Jimmy Leblet, and Gwendal Simon. Hard multidimensional multiple

choice knapsack problems, an empirical study. Computers & operations research,

37(1):172–181, january 2010b.

Willem Jan van Hoeve and Michela Milano. Decomposition based search - a

theoretical and experimental evaluation. CoRR, cs.AI/0407040, 2004.

Bibliography 96

Michela Milano and Willem J. van Hoeve. Reduced cost-based ranking for

generating promising subproblems. In Proceedings of the 8th International

Conference on Principles and Practice of Constraint Programming, CP ’02,

pages 1–16, London, UK, 2002. Springer-Verlag. ISBN 3-540-44120-4. URL

http://portal.acm.org/citation.cfm?id=647489.727164.

William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In

Proceedings of the 14th international joint conference on Artificial intelligence

- Volume 1, pages 607–613, San Francisco, CA, USA, 1995. Morgan Kaufmann

Publishers Inc.

Matthew Kitching and Fahiem Bacchus. Exploiting decomposition on constraint

problems with high tree-width. In IJCAI 2009, Proceedings of the 21st Interna-

tional Joint Conference on Artificial Intelligence, Pasadena, California, USA,

July 11-17, 2009, pages 525–531, 2009.

Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Improvement of

the embarrassingly parallel search for data centers. In Principles and Practice

of Constraint Programming - 20th International Conference, CP 2014, Lyon,

France, September 8-12, 2014. Proceedings, pages 622–635, 2014.

http://portal.acm.org/citation.cfm?id=647489.727164

	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Knapsack Problems
	1.2 Constraint programming
	1.3 Contributions
	1.4 Structure of the thesis

	2 Preliminaries: an overview of constraint programming
	2.1 Introduction
	2.2 Variables, Domains and Constraints
	2.3 Propagation and Search
	2.3.1 Propagation
	2.3.2 Search

	2.4 Global Constraint
	2.5 Optimization

	3 The multiple demand multidimensional multiple choice knapsack problem: definition and relationship problems
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Integer linear program
	3.2.2 Knapsack problem constraints
	3.2.3 Reduction, generalization and problems transformation

	3.3 The knapsack problem family involving the notion of dimensions, demands and sets
	3.3.1 The knapsack problem
	3.3.2 The multidimensional knapsack problem
	3.3.3 The multiple demand multidimensional knapsack problem
	3.3.4 The multiple choice knapsack problem
	3.3.5 The multidimensional multiple choice knapsack problem
	3.3.6 The multidimensional knapsack problems with generalized upper bound constraints
	3.3.7 The multiple demand multidimensional multiple choice knapsack problem
	3.3.8 Relation schema between problems

	3.4 Transformations between Integer Linear Programs
	3.4.1 Transformation of the GUBMKP into the MMKP
	3.4.2 Transformation of the MKP into the MMKP
	3.4.3 Transformation of the GUBMKP into the MKP
	3.4.4 Transformation of the MMKP into the MDMKP
	3.4.5 Transformation of the MCKP into the GUBMKP
	3.4.6 Algorithms of MDMMKP are able to solve the other problems

	3.5 Experimental results
	3.5.1 Instances details
	3.5.2 Evaluation of the transformation

	3.6 Conclusion

	4 The multiple choice multidimensional knapsack constraint
	4.1 Introduction
	4.2 Constraint programming preliminaries
	4.2.1 Constraint programming
	4.2.2 sum and implies constraints

	4.3 The multiple choice multidimensional knapsack constraint
	4.3.1 Fundamental properties

	4.4 Filtering algorithm for mcmdk constraint
	4.4.1 A worked example

	4.5 Experiments
	4.6 Conclusion

	5 Solving Constrained Optimization Problems By Solution-based Decomposition Search
	5.1 Introduction
	5.2 Formal background
	5.3 The basic Solve and Decompose algorithm
	5.3.1 The decomposition method
	5.3.2 Identification of promising subproblems
	5.3.3 Strengthening the cost-based filtering
	5.3.4 Decomposition-based search
	5.3.5 Example

	5.4 Improving Solve and Decompose
	5.5 Computational results
	5.5.1 Benchmark problems
	5.5.1.1 MMKP
	5.5.1.2 SMSDP

	5.5.2 Settings
	5.5.3 Results

	5.6 Related work
	5.7 Conclusion

	6 Conclusions and Future Work
	6.1 Summary and conclusions
	6.2 Discussion and Future work

	Bibliography

